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We derive rigorous analytical results for the stationary energy probability density function of linear and
nonlinear oscillators driven by additive Gaussian noise. Our study focuses on two cases: (i) a harmonic oscillator
subjected to Gaussian colored noise with an arbitrary correlation function and (ii) nonlinear oscillators with
a general potential driven by Gaussian white noise. We also derive analytical expressions for the stationary
moments of the energy and investigate the partition of the mean energy between kinetic and potential
energy. To illustrate our general results, we consider specifically the case of exponentially correlated noise
for (i) and power-law and bistable potentials for (ii). Our theoretical results are substantiated by Langevin
simulations.
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I. INTRODUCTION

The study of the effects of noise on oscillators has a
long and distinguished history [1]. Early studies focused on
the motion of a harmonically bound Brownian particle in
a viscous fluid. The Brownian particle experiences thermal
noise, modeled as a Gaussian white noise process. The
evolution equation for the position is then a Langevin equation,
a stochastic differential equation. The corresponding Fokker-
Planck equation for the probability density of the position and
velocity can be readily derived and solved [2–5]. Kramers
considered a nonlinear oscillator, a system with a double-well
potential, to study the noise-activated escape from a potential
well or the crossing of an energy barrier [6,7]. The Kramers
oscillator is essentially the Duffing oscillator [8,9], which has
played the role of a paradigm in nonlinear dynamics [10]. The
Duffing oscillator has found many applications to mechanical
systems (see, e.g., [9]), but it also has been employed to
describe nonlinear electrical circuits [11,12] and to model
certain aspects of Rayleigh-Bénard convection [13,14]. More
recently, the Duffing oscillator has served as a model for nano-
and micro-mechanical oscillators [15–18].

In the 1980s, studies of linear and nonlinear oscillators
were extended to the case of colored noise driving forces.
The effect of correlations in the random driving force on the
stationary probability density and its moments were investi-
gated [19–22], as were related problems, such as the escape
from a potential well and the mean first passage time [7],
stochastic resonance [23–25], the stability of metastable states
[26], and the dynamics of excitable systems [27]. Much less
attention has been paid to how the color of the noise and the
nonlinearities of the potential affect the statistical properties of
the particle’s energy. This is a important topic, since oscillators
have recently been considered for harvesting energy from
ambient fluctuations to power small self-contained sensors
and actuators [28–35]. The aim of this paper is to begin
addressing this gap. We derive analytical expressions for the
stationary probability density function (PDF) of the particle’s
energy. We determine the mean energy and its variance
and compare our theoretical predictions with Monte Carlo
simulations. We further investigate the partition of the energy

between the kinetic energy and the potential energy of the
oscillator. Our studies focus on two cases. First, we consider
a harmonically bound particle driven by general additive
Gaussian colored noise. Second, we consider a particle in a
general potential driven by Gaussian white noise. In both cases
we develop a general theory and study specific illustrative
examples.

The paper is organized as follows. In Sec. II we formulate
the Langevin equations for a particle with inertia in a general
potential driven by an additive random force. We also derive
the general relation between the stationary energy PDF and
the stationary PDF for the particle’s position and velocity.
Section III is devoted to the motion of a particle in a harmonic
potential driven by colored Gaussian noise with an arbitrary
correlation function. The stationary energy PDF, as well as the
first and second moments of the energy, is derived analytically.
We apply these results to the case of exponentially correlated
Gaussian noise and to Gaussian white noise. For these specific
cases, we also determine the partition of the energy between
kinetic and potential energy. We analyze the effect of the
potential shape on the stationary energy PDF for oscillators
driven by an additive Gaussian white noise in Sec. IV. We
apply our analytical results to two specific cases: a general
power-law potential and a bistable potential. The first type
of oscillator, without friction and with additive noise [36]
and multiplicative noise [37], has recently been studied in
the context of anomalous diffusion. The second type, the
Duffing oscillator, has been investigated as an alternative to the
linear oscillator for harvesting energy from external random
sources [28,29,35,38,39].

II. STATIONARY ENERGY PROBABILITY DENSITY

While linear and nonlinear oscillators are encountered in
a wide variety of applications as discussed in Sec. I, we
adopt a mechanical picture for the sake of concreteness in
the following. To be specific, we consider the motion of a par-
ticle in a one-dimensional fluctuating environment. The state of
the particle is fully described by its position x and its velocity v.
Both variables are random and evolve according to the system
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of stochastic differential equations (Langevin equations),

dx

dt
= v, (2.1a)

dv

dt
= −bv − V ′(x) + ξ (t). (2.1b)

Without loss of generality, we assume that the particle has
unit mass. It moves in the potential V (x) whose gradient
gives rise to a force acting on the particle. The potential is
determined only up to an additive constant. We choose that
constant such that the deepest potential well corresponds to
an energy level of zero. The particle also experiences friction.
We assume the friction force to be a linear function of the
velocity, and b is the friction coefficient. The fluctuations
of the environment are represented by the external random
force ξ (t) with mean zero, 〈ξ (t)〉 = 0. We consider only
nonequilibrium situations. For such systems, the fluctuating
force ξ (t) and the friction coefficient b are not related by a
fluctuation-dissipation theorem. Our aim is to describe the
evolution of the particle’s energy. Since position and velocity
are random quantities, the energy of the particle,

E = v2

2
+ V (x) = T + V (x), (2.2)

is also a random quantity. (We use T to denote the kinetic
energy of the particle.) The temporal evolution of its mean
value is given by

d〈E〉
dt

=
〈
v
dv

dt

〉
+ 〈V ′(x)v〉 = −b〈v2〉 + 〈vξ 〉. (2.3)

Equation (2.3) can be interpreted as the balance equation
for the power of the particle. Two processes contribute to
the rate of change of the particle’s energy. The first term is
negative and represents the rate of energy dissipation due to
friction. The second term corresponds to the rate of exchange
of energy with the external noise. We expect that the particle
eventually reaches a steady state where the dissipation of the
energy is balanced by the injected energy; i.e., 〈E〉 becomes
constant. In the steady state

b〈v2〉s = 〈vξ 〉s , (2.4)

where the subscript s denotes “steady state.”
Our goal is to find the PDF of the particle’s energy in the

steady state. This PDF can be obtained from the stationary
density for the position and velocity of the particle, Ps(x,v),
by applying the following relation between the PDFs of related
random variables [40]:

Ps(E) =
∫

dx

∫
dvPs(x,v)δ[E − H (x,v)], (2.5)

where

H = v2/2 + V (x). (2.6)

The composition δ[g(x)] for continuously differentiable func-
tions g is defined by

δ[g(x)] =
∑

i

δ(x − xi)∣∣ ∂g

∂x

∣∣
xi

, (2.7)

where xi are the roots of g(x), which are assumed to be simple,
and the sum runs over all roots [41]. We apply this property to

[E − H (x,v)] and obtain

δ[E − H (x,v)] = δ

[
E − v2

2
− V (x)

]

= δ[v − v0(x)]∣∣ ∂H
∂v

∣∣
v=v0(x)

+ δ[v + v0(x)]∣∣ ∂H
∂v

∣∣
v=−v0(x)

, (2.8)

where v0(x) is the solution of the equation E − H = 0 for v,
i.e., v0(x) = √

2[E − V (x)]. Consequently,

δ[E − H (x,v)] = δ[v − v0(x)] + δ[v + v0(x)]√
2[E − V (x)]

, (2.9)

and taking into account (2.9), we obtain from (2.5)

Ps(E) =
∫

V (x)�E

dx
Ps[x,v0(x)] + Ps[x, − v0(x)]√

2[E − V (x)]
. (2.10)

III. LINEAR OSCILLATOR

In this section we analyze the effect of Gaussian noise on
the stationary energy PDF of a particle in a harmonic potential,
V (x) = ω2x2/2. We assume that the correlation function of the
Gaussian noise ξ (t) is arbitrary:

〈ξ (t)ξ (t ′)〉 = C(t − t ′). (3.1)

Since the system (2.1) is linear in this case and since the
external driving force is Gaussian, the stationary PDF for the
position and velocity of the particle will also be Gaussian and
reads, with u = ( x

v
),

Ps(u) = 1

2π |A|1/2
exp

[
− 1

2
(u − m)T A−1(u − m)

]
, (3.2)

where

m =
(〈x〉s

〈v〉s

)
(3.3)

denotes the mean, and A represents the covariance matrix,

A = 〈(u − m)(u − m)T 〉s =
(

σ 2
xx σ 2

xv

σ 2
vx σ 2

vv

)
. (3.4)

Taking the average of (2.1) in the steady state, we find that

m = 0. (3.5)

The elements of the covariance matrix A are given by [42–44]

σ 2
xx = 2

∫ ∞

0
G(t1)dt1

∫ t1

0
G(t2)C(t1 − t2)dt2, (3.6a)

σ 2
vv = 2

∫ ∞

0
H (t1)dt1

∫ t1

0
H (t2)C(t1 − t2)dt2, (3.6b)

σ 2
xv = lim

t→∞

∫ t

0
G(t1)dt1

∫ t

0
H (t2)C(t1 − t2)dt2, (3.6c)

where

G(t) = exp(−bt/2)
sin(�t)

�
, H (t) = dG(t)

dt
. (3.7)

Here �2 = ω2 − b2/4, and we assume that the oscillator
operates in the underdamped regime, i.e., 4ω2 > b2. Since we
are interested in the stationary state, this assumption does not
imply any lack of generality. The final steady state is the same,
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regardless of whether the transient behavior is overdamped or
underdamped. Given the form of G(t) and H (t) and using
Euler’s formula to represent the sine and cosine function,
we find that the elements of the covariance matrix (3.6)
correspond to Laplace transforms with a complex argument,
s = b/2 ± i�, of the correlation function C(t). Defining Ĉ(s)
to be the Laplace transform of C(t) with argument s, after
some calculations we obtain the following expressions:

σ 2
xx = 1

bω2
Re[Ĉ(s = b/2 − i�)]

+ 1

2�ω2
Im[Ĉ(s = b/2 − i�)], (3.8a)

σ 2
vv = 1

b
Re[Ĉ(s = b/2 − i�)] − 1

2�
Im[Ĉ(s = b/2 − i�)],

(3.8b)

σ 2
xv = σ 2

vx = 0, (3.8c)

where Re[·] and Im[·] represent the real and imaginary parts.
Using the elements of the covariance matrix (3.8) in the
stationary PDF (3.2) for the position and velocity of the
particle, we find

Ps(x,v) = 1

2πσxxσvv

exp

[
− 1

2

(
x2

σ 2
xx

+ v2

σ 2
vv

)]
. (3.9)

Substituting (3.9) into (2.10), we obtain, after some calcula-
tions,

Ps(E) = 1

2
[λ2

+ − λ2
−]1/2I0

(
λ−E

2

)
exp

(
− λ+E

2

)
, (3.10)

where

λ± = ω2σ 2
xx ± σ 2

vv

ω2σ 2
xxσ

2
vv

, (3.11)

and I0(·) is the modified Bessel function. In (3.10) we display
explicitly the dependence on E, i.e., the parameters λ± depend
on b, ω, and the parameters involved in the correlation function
C(t), but they do not depend on the energy. For large z the
function I0(z) behaves asymptotically as I0(z) ∼ ez/2/

√
z, and

the tail of the stationary energy PDF decays as

Ps(E) ∼ 1√
E

exp

[
− (λ+ − λ−)E

2

]
. (3.12)

The average of the energy in the stationary state is given by

〈E〉s = 1

2
〈v2〉 + 1

2
ω2〈x2〉

= 1

2
σ 2

vv + 1

2
ω2σ 2

xx

= 1

b
Re[Ĉ(s = b/2 − i�)], (3.13)

where we have used (3.8). Similarly, (2.4) implies that the
power in the stationary state is given by

〈vξ 〉s = b〈v2〉s = bσ 2
vv

= Re[Ĉ(s = b/2 − i�)] − b

2�
Im[Ĉ(s = b/2 − i�)].

(3.14)

The mean squared energy can be calculated with the help of
(3.10) and is

〈E2〉s =
∫ ∞

0
E2Ps(E)dE = 4

2λ2
+ + λ2

−
(λ2+ − λ2−)2

. (3.15)

We apply our results for general external Gaussian forces to
two specific cases.

A. Exponentially correlated Gaussian noise

As a first example, we consider the case of Gaussian colored
noise with an exponential correlation function:

〈ξ (t)ξ (t ′)〉 = a2 exp(−|t − t ′|/τ ). (3.16)

The Laplace transform of the correlation function, Ĉ(s) =
a2τ (1 + sτ )−1, evaluated at b/2 − i� yields

Re[Ĉ(s = b/2 − i�)] = a2τ

2

2 + τb

1 + τb + ω2τ 2
, (3.17a)

Im[Ĉ(s = b/2 − i�)] = a2τ 2�

1 + τb + ω2τ 2
. (3.17b)

Equation (3.8) implies that

〈x2〉s = σ 2
xx = a2τ

bω2

1 + τb

1 + τb + ω2τ 2
, (3.18a)

〈v2〉s = σ 2
vv = a2τ

b

1

1 + τb + ω2τ 2
. (3.18b)

From (3.10) we obtain the stationary energy PDF,

Ps(E) = b

a2τ

1 + τb + ω2τ 2

√
1 + τb

I0

[
b2(1 + τb + ω2τ 2)

2a2(1 + τb)
E

]

× exp

[
− b(2 + τb)(1 + τb + ω2τ 2)

2a2τ (1 + τb)
E

]
(3.19)

for E ∈ [0,∞). In Fig. 1 we plot the stationary PDF (3.19),
using solid curves for different values of τ , and compare
the results with the corresponding simulations. As can be
appreciated the stationary energy PDF shows a monotonic
behavior with respect to the correlation time τ . It decays
faster as τ increases. The numerical simulations are performed

FIG. 1. Stationary energy PDF of a particle in a harmonic
potential and driven by external Gaussian noise with an exponential
correlation function (3.16). The values of the amplitude a and the
correlation time τ are listed on the figure. The other parameters are
ω = b = 1. The symbols correspond to numerical simulations and
the curves represent results obtained from (3.19).

062132-3
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by solving numerically the Langevin equations (2.1). We
have discretized the equations by using the so-called Heun
algorithm [45]. At each time step we generate Gaussian white
random numbers for ξ (t) by means of the Box-Mueller-Wiener
algorithm [45]. For the case of Fig. 1 we have added to the
system (2.1) a third equation for the variable ξ (t), namely,
dξ/dt = −ξ/τ + aη(t)/

√
τ , where η(t) is Gaussian white

noise with correlation 〈η(t)η(t ′)〉 = 2a2τδ(t − t ′). In this case
the system of stochastic equations have been discretized again
by using the Heun method and the random numbers for η(t)
have been generated by the Box-Mueller-Wiener algorithm.
To obtain mean values we have averaged over 105 realizations
of the noise.

The stationary mean energy can be calculated directly from
(3.19), from (2.2) using the second moments (3.18), or from
(3.13):

〈E〉s =
∫ ∞

0
EPs(E)dE = 〈v2〉s

2
+ ω2〈x2〉s

2

= a2τ

2b

2 + τb

1 + τb + ω2τ 2
. (3.20)

Equation (3.14) implies that the power dissipated by the
particle and the power supplied by the Gaussian colored noise
in the steady state are given by

〈vξ 〉s = a2τ

1 + τb + ω2τ 2
. (3.21)

It is proportional to the noise intensity D = a2τ and inversely
proportional to the damping coefficient b and the square of the
oscillation frequency. We obtain the expression for the mean
squared energy from (3.15),

〈E2〉s = (a2τ )2

4b2

8 + 8τb + 3(τb)2

(1 + τb + ω2τ 2)2
, (3.22)

and the variance of the energy fluctuations is given by

σ 2
EE ≡ 〈E2〉s − 〈E〉2

s = (a2τ )2

2b2

2 + 2τb + (τb)2

(1 + τb + ω2τ 2)2
. (3.23)

The coefficient of variation or relative standard deviation, a
measure for the dispersion of a PDF, is defined as the ratio of
the standard deviation to the mean. Keeping the amplitude of
the noise a fixed and varying the correlation time τ from 0 to
∞ we find

1 <
σEE

〈E〉s <
√

2. (3.24)

The coefficient of variation increases as the correlation time
τ increases from 1 at τ = 0 to

√
2 as τ → ∞. For any τ , the

fluctuations of the energy are of the same order as the mean
energy due to the Gaussian nature of the noise.

Note that (3.18) implies that the stationary mean potential
energy and the stationary mean kinetic energy of the oscillator
are given by

〈T 〉s =
〈
v2

2

〉
s

= 1

2

a2τ

b

1

1 + τb + ω2τ 2
, (3.25a)

〈V (x)〉s =
〈
ω2x2

2

〉
s

= 1

2

a2τ

b

1 + τb

1 + τb + ω2τ 2
. (3.25b)

Consequently, we obtain for the ratio of the mean potential
energy to the mean kinetic energy

Q ≡ 〈V (x)〉s
〈T 〉s = 1 + τb. (3.26)

This ratio does not depend on ω−1, the characteristic time of
the undamped oscillator, but it depends on τ , the characteristic
time of the external random driving force. More precisely, it
depends on the ratio of the correlation time to the characteristic
time of the dissipative force, b−1. Note that correlations in the
external Gaussian noise prevent equipartition of the energy.
For nonvanishing τ , the mean potential energy always exceeds
the mean kinetic energy.

B. Gaussian white noise

As a second example, we consider the case of Gaussian
white noise. The white noise limit corresponds to a → ∞
and τ → 0 keeping D = a2τ < ∞ fixed. In this limit, (3.19)
yields

Ps(E) = b

D
exp(−bE/D) for E ∈ [0,∞). (3.27)

In other words, the energy is exponentially distributed in the
steady state. In Fig. 2 we compare the theoretical result of
(3.27) with numerical Monte Carlo simulations.

Taking the Gaussian-white-noise limit of (3.20)–(3.23), we
obtain

〈E〉s = D

b
, (3.28)

〈vξ 〉s = D, (3.29)

〈E2〉s = 2

(
D

b

)2

, (3.30)

FIG. 2. Stationary energy PDF of a particle in a harmonic
potential and driven by external Gaussian white noise. The parameter
values are ω = 0.63, b = 0.2, and D = 0.5. The jagged curve
corresponds to the results of numerical simulations and the solid
curve corresponds to (3.27). Inset: The same results plotted on a
semilog scale.
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σ 2
EE =

(
D

b

)2

, (3.31)

σEE

〈E〉s = 1. (3.32)

It is easily verified that the mean energy 〈E〉s and the power
〈vξ 〉s of the particle are larger for Gaussian white noise than
for exponentially correlated Gaussian colored noise. Note that
the stationary energy PDF does not depend on the frequency
ω for Gaussian white noise, in contrast to the case of colored
noise. As noted above, the ratio of mean potential energy to
the mean kinetic energy does not depend on ω, but solely on
τ . For Gaussian white noise, the system achieves equipartition
of the energy,

〈V (x)〉s = 〈T 〉s . (3.33)

IV. NONLINEAR OSCILLATOR

In this section we analyze the effect of the shape of the
potential on the stationary energy PDF for systems driven by
Gaussian white noise,

〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′). (4.1)

The stationary PDF Ps(x,v) for the system (2.1) with Gaussian
white noise is given by (see, for example, [46–48])

Ps(x,v) = 1

Z
exp

[
− bv2

2D
− bV (x)

D

]
, (4.2)

where Z is the normalization constant,

Z =
√

2πD

b

∫ ∞

−∞
exp

[
− bV (x)

D

]
dx. (4.3)

Note that the stationary PDF (4.2) factorizes as

Ps(x,v) = 1

Zx

exp

[
− bV (x)

D

]
· 1

Zv

exp

[
− bv2

2D

]
= Ps(x)Ps(v). (4.4)

In other words, the position and the velocity of a particle
driven by an additive external Gaussian white noise force are
independent random variables in the steady state for the motion
in an arbitrary potential.

Equations (2.10) and (4.2) imply that

Ps(E) = 2

Z
exp(−bE/D)

∫
V (x)�E

dx√
2[E − V (x)]

. (4.5)

If we define μ = b/D, then the stationary PDF (4.2) formally
looks like a Boltzmann equilibrium distribution,

Ps(x,v) = Z−1 exp[−μH (x,v)], (4.6)

with Z = ∫
dx

∫
dv exp[−μH (x,v)]. Note that this is only

a formal resemblance; as stressed in Sec. II we consider
exclusively nonequilibrium systems. The form (4.6) implies

that

∂Ps(x,v)

∂x
= −μ

∂H (x,v)

∂x
Ps(x,v). (4.7)

Multiplying (4.7) by x on both sides and integrating by parts
on the left-hand side, we obtain〈

x
∂H

∂x

〉
s

= 〈xV ′(x)〉s = D

b
. (4.8)

We proceed in a similar way to calculate〈
v
∂H

∂v

〉
s

= 〈v2〉s = D

b
. (4.9)

For the mixed expectations values, we exploit the stochastic
independence of x and v and find〈

x
∂H

∂v

〉
s

= 〈xv〉s = 〈x〉s〈v〉s = 〈x〉s · 0 = 0, (4.10)

〈
v
∂H

∂x

〉
s

= 〈vV ′(x)〉s = 〈v〉s〈V ′(x)〉s
= 0 · 〈V ′(x)〉s = 0. (4.11)

Equation (4.9) implies that the stationary mean kinetic energy
is given by

〈T 〉s = D

2b
(4.12)

for any potential.

A. Power-law potential

In this section we consider the case of a general power-
law potential, V (x) = kx2n, n � 1 [37]. The normalization
constant (4.3) is given by

Z =
√

2πD

b

�(1/2n)

n

(
D

bk

) 1
2n

, (4.13)

and (4.5) provides the stationary energy PDF,

Ps(E) = 4

Z
exp(−bE/D)

∫ (E/k)
1

2n

0

dx√
E − kx2n

= b/D

�
(

n+1
2n

)(
bE

D

) 1−n
2n

exp(−bE/D). (4.14)

Note that for n = 1 we recover the case of the linear oscillator
(3.27). For E → 0+, the PDF (4.14) diverges if n > 1, while
for the case n = 1 (harmonic oscillator) it approaches b/D. In
Fig. 3 we compare the analytical result (4.14) with numerical
simulations for different values of n.

The rth-order moment of the stationary energy PDF (4.14)
is easily calculated as

〈Er〉s = �
(

n+1
2n

+ r
)

�
(

n+1
2n

) (
D

b

)r

. (4.15)

This result allows us to compare the linear and nonlinear
oscillators in terms of their mean energy and their energy
fluctuations, i.e., their variance. For the mean energies we find
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MÉNDEZ, CAMPOS, AND HORSTHEMKE PHYSICAL REVIEW E 87, 062132 (2013)

FIG. 3. Stationary energy PDF of a particle in a potential V (x) = kx2n and driven by external Gaussian white noise. The parameter values
are k = 0.2, b = 0.2, and D = 0.5. Each panel corresponds to a different value of the exponent n. The symbols correspond to numerical
simulations and the curves are obtained from (4.14).

that

〈E〉Ls = D

b
> 〈E〉NL

s = n + 1

2n

D

b
. (4.16)

In other words, the mean energy of the linear oscillator exceeds
the mean energy of nonlinear oscillators. The variance of the
energy in the steady state is given by

σ 2
EE = n + 1

2n

(
D

b

)2

. (4.17)

Note that the variance of the energy for a nonlinear oscillator
is smaller than that for the linear harmonic oscillator. This
suggests that a nonlinear potential “absorbs” the energy
fluctuations by reducing their amplitudes.

Combining (4.12), i.e., the stationary mean kinetic energy
is independent of the potential, 〈T 〉s = D/(2b), and (4.16), we
determine the mean potential energy as

〈V (x)〉s = 〈E〉s − 〈T 〉s = 1

n

D

2b
. (4.18)

The mean kinetic energy of a particle driven by Gaussian
white noise in a power-law potential V (x) = kx2n that is softer
than the harmonic potential, i.e., n > 1, always exceeds the
potential energy for such a system,

n〈V (x)〉s = 〈T 〉s (4.19)

and Q = 1/n. Equation (4.19) shows that the power-law
oscillator with additive Gaussian white noise obeys the virial
theorem [49]. As the potential becomes softer, i.e., as n

becomes larger, more of the energy of the particle will on
average be kinetic energy.

B. Bistable potential

In this section we consider case of the bistable potential

V (x) = −a

2
x2 + δ

4
x4 + 
. (4.20)

System (2.1) with this potential is the well-known Duffing
oscillator. We are interested in analyzing the effect of the
barrier height 
 on the stationary energy PDF, in particular on
how the mean energy of the oscillator depends on 
. Simple
analysis shows that the potential (4.20) has two minima at
x = ±√

a/δ and a maximum at x = 0. The height of the
potential barrier is V (0) − V (±√

a/δ) = a2/4δ. As stated in
Sec. II, we choose the additive constant of the potential such
that the deepest well corresponds to an energy level of zero.
Therefore we set 
 = a2/4δ, which results in V (±√

a/δ) = 0
and V (0) = 
.

To evaluate the integral in (4.5), we have to determine
the domain of integration V (x) � E, which is defined as
the interior of the boundary V (x) = E. This boundary will
be different for E > 
 and E < 
. The integral needs to be
split into two parts, one for 0 < E < 
 and one for E > 
.
Since E = 
 corresponds to a separatrix of the deterministic
problem, we expect the stationary energy PDF to diverge at
E = 
.

Within the region 0 < E < 
, the boundary V (x) = E has
four real roots for x. Since the potential is an even function,
we integrate over x ∈ [x ,x+], where

x± =
√

a

δ

(
1 ±

√
E




)
, (4.21)
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and multiply by 2. Equation (4.5) yields

P (1)
s (E) = 2

√
2

Z
exp(−bE/D)

∫ x+

x−

dx√
E + a

2 x2 − δ
4x4 − 


= 4
√

2

Z
√

δ
exp(−bE/D)

∫ x+

x−

dx√
(x2 − x2−)(x2+ − x2)

= 4
√

2

Z
√

a

exp(−bE/D)√
1 + √

E/

K

([
2
√

E/


1 + √
E/


]1/2)
,

(4.22)

where K(·) is the complete elliptic integral of the first kind.
Within the region E > 
, the boundary V (x) = E has only

two real roots for x. Due to the symmetry of the potential we
integrate over x from 0 to x+ and multiply by 2. Equation (4.5)

yields

P (2)
s (E) = 4

√
2

Z
√

δ
exp(−bE/D)

∫ x+

0

dx√
(x2 − x2−)(x2+ − x2)

= 4

Z
√

a
exp(−bE/D)

(
E




)−1/4

×K

([
2
√

E/


1 + √
E/


]−1/2)
. (4.23)

We need to determine the normalization constant by integrat-
ing Ps(E) over E for E ∈ [0,∞),∫ 


0
P (1)

s (E)dE +
∫ ∞




P (2)
s (E)dE = 1. (4.24)

The final result reads

Ps(E) = b

I (β)D

⎧⎪⎨
⎪⎩

√
2

2
exp(−bE/D)√

1+√
E/


K
([ 2

√
E/


1+√
E/


]1/2)
, 0 < E < 
,

1
2 exp(−bE/D)

(
E



)−1/4
K

([ 2
√

E/


1+√
E/


]−1/2)
, E > 
.

(4.25)

Here

I (β) = β

∫ 1

0

du

2 − u2
exp

(
− βu√

2 − u2

)
K(u)

+ 4β

∫ 1

1/
√

2

udu

(2u2 − 1)5/2
exp

(
− β

(2u2 − 1)2

)
K(u),

(4.26)

and we have defined the dimensionless potential barrier

β = b
/D. (4.27)

FIG. 4. Stationary energy PDF of a particle in the bistable
potential (4.20) and driven by external Gaussian white noise. The
parameter values are a = b = D = 1. Each plot corresponds to a
different value of the potential barrier 
. The symbols correspond
to numerical simulations, while the solid curves are obtained from
(4.25).

In Fig. 4 we compare the analytical result (4.25) with numerical
simulations. As we expected, the stationary energy PDF
diverges at E = 
.

By virtue of (4.12), the stationary mean kinetic energy
is independent of the potential, that is, 〈T 〉s = D/2b for the
Duffing oscillator. To evaluate the stationary mean potential
energy, we use (4.8) and find

−a〈x2〉s + δ〈x4〉s = D

b
. (4.28)

This implies that

〈V (x)〉s = 
 − a

2
〈x2〉s + δ

4
〈x4〉s

= 
 + D

4b
− a

4
〈x2〉s , (4.29)

and the stationary mean total energy is given by

〈E〉s = 〈T 〉s + 〈V (x)〉s = 
 + 3D

4b
− a

4
〈x2〉s . (4.30)

We evaluate the second moment 〈x2〉s directly from (4.2)
and (4.3), obtaining

〈x2〉s =
∫ ∞
−∞ x2 exp

(
ab
2D

x2 − δb
4D

x4
)
dx∫ ∞

−∞ exp
(

ab
2D

x2 − δb
4D

x4
)
dx

. (4.31)

Introducing the new variable u = δbx4/4D, we obtain

〈x2〉s = 4D
√

β

ab

∫ ∞
0 u−1/4 exp(−u) exp(2

√
β
√

u)du∫ ∞
0 u−3/4 exp(−u) exp(2

√
β
√

u)du
. (4.32)
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To evaluate the integrals, we employ the following series
expansion:

exp(2
√

β
√

u) =
∞∑

n=0

(2
√

β)n

n!
u

n
2 (4.33)

and obtain, using (4.27),

〈x2〉s = 2


a
[1 + ϕ(β)], (4.34)

where we have defined

ϕ(β) = I3/4(β/2) + I−3/4(β/2)

I1/4(β/2) + I−1/4(β/2)
. (4.35)

Here Iν(·) is the modified Bessel function of order ν. We
substitute this result into (4.30) to find

〈E〉s = 3D

4b
+ D

2b
β[1 − ϕ(β)]. (4.36)

As in the previous sections, we investigate the partition of
the energy in the stationary state between the potential energy
and the kinetic energy. For the Duffing oscillator, the ratio of
the mean potential energy to the mean kinetic energy in the
stationary state is given by

Q = 〈V (x)〉s
〈T 〉s = 1

2
+ 2b


D
− ab

2D
〈x2〉s . (4.37)

Substituting the expression (4.34) into (4.37) and using (4.27),
we obtain

Q = 1
2 + β[1 − ϕ(β)]. (4.38)

Note that Q, in contrast to 〈E〉s , depends only on the
dimensionless potential barrier β and not on the individual
parameters of the random Duffing oscillator. On the other hand,
(4.36) and (4.38) show that the behavior of the stationary mean
energy and of the ratio of the potential energy to the kinetic
energy is qualitatively the same as the dimensionless barrier β

is varied.
In Fig. 5 we compare the stationary mean energy (4.36)

with numerical simulations. In this case the fluctuations are
even greater than for the previous oscillators studied here, and
it is difficult to obtain a mean value with sufficient accuracy.
The behavior of Q as a function of the dimensionless potential
barrier β is shown in the inset of Fig. 5.

Using the limiting form of the modified Bessel function Iν

for small arguments [50],

Iν(z) ∼
(

1

2
z

)ν/
�(ν + 1), ν �= −1, − 2, . . . , (4.39)

we find that

Q → 1
2 as β → 0 (4.40)

and

〈E〉s → 3D

4b
as β → 0. (4.41)

This is the expected result. As the dimensionless potential
barrier goes to zero, because either a → 0, which implies

 → 0, or D → ∞, the particle moves in a quartic potential,

FIG. 5. Mean energy of a particle in the bistable potential (4.20)
and driven by external Gaussian white noise. The parameter values are
a = b = D = 1. The symbols correspond to numerical simulations,
while the solid curve represents (4.36). Inset: Ratio of the mean
potential energy to the mean kinetic energy Q of a particle in the
bistable potential (4.20) and driven by external Gaussian white noise
vs the dimensionless potential barrier β. The solid curve represents
Eq. (4.38) and the symbols correspond to numerical results.

and according to (4.19)

〈V (x)〉s
〈T 〉s = 1

2
. (4.42)

On the other hand, using the asymptotic expansion of the
modified Bessel function Iν for large arguments [50],

Iν(z) ∼ exp(z)√
2πz

[
1 − 4ν2 − 1

8z
+ · · ·

]
, (4.43)

we find that

Q → 1 as β → ∞ (4.44)

and

〈E〉s → D

b
as β → ∞. (4.45)

In other words, the random Duffing oscillator achieves equipar-
tition of the energy in the stationary state, which is the expected
result. As the dimensionless potential barrier goes to infinity,
because either a → ∞, which implies 
 → ∞, or D → 0,
the particle is trapped in one of the two potential wells. It
undergoes harmonic motion in that well and (3.33) applies. As
the potential barrier increases from a value of zero, the ratio of
the mean potential energy to the mean kinetic energy and the
stationary mean total energy decrease and reach a minimum at
βmin = 0.065 464 96, where

Qmin = 0.416 685 3, 〈E〉s,min = 0.708 342 7
D

b
. (4.46)

The mean kinetic energy is about 2.4 times larger than the
mean potential energy, and the mean total energy is about 30%
smaller than the mean energy of a Gaussian-white-noise-driven
harmonic oscillator. As the potential barrier increases further,
the ratio Q and the mean energy 〈E〉s increase. The ratio
Q passes through 1 and 〈E〉s passes through D/b at β =
1.524 664, and they reach a maximum at βmax = 3.325 336,
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where

Qmax = 1.167 284, 〈E〉s,max = 1.083 642
D

b
. (4.47)

This maximum value has been predicted numerically [28,29,
32] but has never been established analytically. At this point,
the mean potential energy exceeds the mean kinetic energy
by only about 16%, and the mean total energy is only about
8% larger than the mean energy for the case of a harmonic
potential. A further increase of the potential barrier leads to
a monotonic decrease of Q and 〈E〉s toward the asymptotic
values of 1 and D/b, respectively. At β = 20.0, 〈V (x)〉s is
already only about 2% larger than 〈T 〉s .

As in previous sections we study now the energy dispersion.
To compute the energy variance we have to compute first 〈E2〉s .
Taking into account (2.2) and (4.12) we find

〈E2〉s =
(

D

b

)2

+ 
D

b
− aD

4b
〈x2〉s + 〈V (x)2〉s . (4.48)

On the other hand, we can make use of (4.20) and (4.28) to get

〈V (x)2〉s = 
2 + 3D


2b
+ a


2
〈x2〉s

+ a4

44
2
〈x8〉s − a3

42

〈x6〉s . (4.49)

The moments 〈x6〉s and 〈x8〉s can be computed from (4.2)
straightforwardly as we did to find (4.32). The expression for
the relative energy dispersion can be finally obtained as a
function of the dimensionless potential barrier β only:

σEE

〈E〉s =
{

21 + 12β + 8β2 − 8β(2 + β)ϕ(β)

[3 + 2β − 2βϕ(β)]2
− 1

}1/2

.

(4.50)

Since β ranges from 0 (where the potential resembles the
quartic potential) to ∞ (where the potential is harmonic) it
can be easily shown from (4.50) that

0.9 � σEE

〈E〉s � 2√
3

= 1.155. (4.51)

The maximum value for the relative energy dispersion, 2/
√

3,
is reached when β → 0+, i.e, when the potential is quartic.
Note that this result equals that obtained from (4.16) and
(4.17) with n = 2. On the other hand, the minimum is not
reached for β → ∞ where σEE/〈E〉s = 1 but at β = 1.587
where σEE/〈E〉s reaches a local minimum.

V. CONCLUSIONS

The problem of harvesting energy from ambient fluctu-
ations to power small devices in a self-contained manner
has attracted much attention. Linear and nonlinear oscillators
have been considered for this purpose [29,30,32,35,39]. It is
therefore important to understand the interplay of the potential
shape of an oscillator with the nature of the external random
driving force on the energy of oscillators in the steady state.

We have addressed this problem by analyzing the stationary
energy PDF of oscillators driven by additive Gaussian noise
and focused on two cases, namely, linear oscillators driven
by Gaussian noise with an arbitrary correlation function
and oscillators with a general nonlinear potential driven
by Gaussian white noise. We have applied our analytical
results to specific examples, such as exponentially correlated
external noise and the Duffing oscillator, and substantiated our
theoretical results by Langevin simulations.

Besides obtaining rigorous expressions for the stationary
energy PDF and its moments, we have also derived analytical
results for the mean kinetic and potential energy. We find
that exponential correlations in the Gaussian driving force
destroy the equipartition of kinetic and potential energy in the
harmonic oscillator. The larger the correlation time compared
to the dissipative time scale, the larger the mean potential
energy compared to the mean kinetic energy. We find that
for the power-law oscillator, V (x) = kx2n, the virial theorem
holds for additive Gaussian white noise.

The mean total energy of a Gaussian-white-noise-driven
Duffing oscillator, as well as the ratio of mean potential
energy to mean kinetic energy, depends in a nonmonotonic
way on the barrier height. We have provided an analytical
derivation that these quantities pass through a minimum
and then a maximum as the barrier height between the
two potential wells is increased. The oscillator reaches a
state of equipartition between kinetic and potential energy
as the dimensionless potential barrier β goes to infinity. For
β < 1.524 664, the mean kinetic energy exceeds the mean
potential energy and achieves its largest value relative to
the latter at βmin = 0.0654 649 6. This is also the point of
minimum mean total energy. For β > 1.524 664, the mean
potential energy exceeds the mean kinetic energy and achieves
its largest value relative to the latter at βmax = 3.325 336,
which is also the point of maximum total energy. Our results
demonstrate that the mean total energy of the Gaussian-
white-noise-driven Duffing oscillator is minimal when the
mean kinetic energy is maximal relative to the mean potential
energy. Conversely, the mean total energy is maximal when the
mean kinetic energy is minimal relative to the mean potential
energy.

There are three main directions that we will explore in
future work. The first is the effect of correlations in the random
driving force on the stationary energy PDF and the mean
kinetic and potential energy of the power-law and Duffing
oscillators. The second is the effect of non-Gaussian noise.
While the assumption of a normal distribution for the ambient
fluctuations is often justified due to the central limit theorem,
the external force on the oscillator may be of an impulsive
type, which is better modeled by Poisson noise [32]. Finally,
we will explore the effect of the asymmetry of the potential
shape and the presence of periodic forcing on the stationary
energy PDF.

ACKNOWLEDGMENTS

This research has been partially supported by the Gener-
alitat de Catalunya with Grant No. SGR 2009-164 (VM and
DC) and by Ministerio de Ciencia e Innovación with Grant
No. FIS2012-32334.

062132-9
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3493 (1985).
[14] P. K. Newton, Phys. Rev. A 37, 932 (1988).
[15] J. S. Aldridge and A. N. Cleland, Phys. Rev. Lett. 94, 156403

(2005).
[16] Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, Phys. Rev. B

81, 241405 (2010).
[17] N. Akerman, S. Kotler, Y. Glickman, Y. Dallal,

A. Keselman, and R. Ozeri, Phys. Rev. A 82, 061402
(2010).

[18] J. Zou, S. Buvaev, M. Dykman, and H. B. Chan, Phys. Rev. B
86, 155420 (2012).

[19] L. Fronzoni, P. Grigolini, P. Hänggi, F. Moss, R. Mannella, and
P. V. E. McClintock, Phys. Rev. A 33, 3320 (1986).

[20] M. Kłosek-Dygas, B. Matkowsky, and Z. Schuss, SIAM J. Appl.
Math. 48, 425 (1988).

[21] R. Mannella, P. V. E. McClintock, and F. Moss, Europhys. Lett.
4, 511 (1987).

[22] P. Hänggi and P. Jung, Adv. Chem. Phys. 89, 239 (1995).
[23] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Rev.

Mod. Phys. 70, 223 (1998).
[24] T. Wellens, V. Shatokhin, and A. Buchleitner, Rep. Prog. Phys.

67, 45 (2004).

[25] R. Mantegna and B. Spagnolo, Nuovo Cimento D 17, 873 (1995).
[26] A. Fiasconaro and B. Spagnolo, Phys. Rev. E 80, 041110 (2009).
[27] D. Valenti, G. Augello, and B. Spagnolo, Eur. Phys. J. B 65, 443

(2008).
[28] F. Cottone, H. Vocca, and L. Gammaitoni, Phys. Rev. Lett. 102,

080601 (2009).
[29] L. Gammaitoni, I. Neri, and H. Vocca, Appl. Phys. Lett. 94,

164102 (2009).
[30] J. M. Renno, M. F. Daqaq, and D. J. Inman, J. Sound Vib. 320,

386 (2009).
[31] S. Priya and D. J. Inman (eds.), Energy Harvesting Technologies

(Springer, New York, 2009).
[32] N. A. Khovanova and I. A. Khovanov, Appl. Phys. Lett. 99,

144101 (2011).
[33] R. Masana and M. F. Daqaq, J. Appl. Phys. 111, 044501 (2012).
[34] H. Vocca, I. Neri, F. Travasso, and L. Gammaitoni, Appl. Energy

97, 771 (2012).
[35] P. L. Green, K. Worden, K. Atallah, and N. D. Sims, J. Sound

Vib. 331, 4504 (2012).
[36] K. Mallick and P. Marcq, Eur. Phys. J. B 31, 553 (2003).
[37] K. Mallick and P. Marcq, Phys. Rev. E 66, 041113 (2002).
[38] M. F. Daqaq, in Structural Dynamics and Renewable Energy,

Vol. 1, edited by T. Proulx (Springer, New York, 2011),
pp. 219–226.

[39] M. F. Daqaq, Nonlinear Dyn. 69, 1063 (2012).
[40] L. E. Reichl, A Modern Course in Statistical Physics (Wiley-

Interscience, New York, 1998).
[41] I. M. Gel’fand and G. E. Shilov, Generalized Functions

(Academic, New York, 1964).
[42] J. Masoliver and J. M. Porrà, Phys. Rev. E 48, 4309 (1993).
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