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Two-temperature Langevin dynamics in a parabolic potential
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We study a planar two-temperature diffusion of a Brownian particle in a parabolic potential. The diffusion
process is defined in terms of two Langevin equations with two different effective temperatures in the X and the Y

directions. In the stationary regime the system is described by a nontrivial particle position distribution, P (x,y),
which we determine explicitly. We show that this distribution corresponds to a nonequilibrium stationary state,
characterized by the presence of space-dependent particle currents which exhibit a nonzero rotor. Theoretical
results are confirmed by the numerical simulations.
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I. INTRODUCTION

The idea of physical systems characterized by two different
temperatures has been proposed a long time ago for the models
of spin glasses and neural networks with partially annealed
disorder [1–4]. In these models, two temperatures, T1 and T2,
are related to two different degrees of freedom, which are
evolving at two essentially different time scales. As an exam-
ple, one may consider a system in which the fast spin variables
are connected with the thermal bath kept at temperature T1,
while the slow spin-spin coupling parameters are connected
with another thermal bath maintained at temperature T2. It can
be easily shown that in the stationary (nonequilibrium) state
the statistical properties of such systems are described by the
usual replica theory of disordered systems with a finite value of
the replica parameter n = T1/T2 (see also [5]). Unfortunately,
generalization of this idea to the case when dynamics of
two types of degrees of freedom are characterized by two
comparable (or equal) time scales turned out to be rather
problematic: it seems that there is no generic explicit expres-
sion for the stationary probability distribution function which
would generalize the Gibbs distribution of the equilibrium
case T1 = T2 [6]. However, there is a particular case for which
one can find an explicit and a rather nontrivial expression for
the stationary distribution function. Namely, this is the case
when two degrees of freedom, x and y, related to the thermal
baths with temperatures Tx �= Ty , respectively, experience a
potential which is a quadratic function of x and y [6,7]. During
the last decade theoretical investigations of such a type of
system were mostly concentrated on studies of nonequilibrium
fluctuations and energy transfer [8]. Recently this type of
model was studied both theoretically [9] and experimentally
[10] from the point of view of entropy production and memory
effects. In this paper, keeping in mind putative experimental
realization of such a type of systems, we are going to discuss
the two-temperature situation reformulated in terms of the two-
dimensional diffusion of a Brownian particle in a parabolic
potential. The diffusion process is defined in terms of Langevin
dynamics with two different effective temperatures in the X

and the Y directions. In the stationary state this system is

described by a nontrivial distribution function, P (x,y), which
can be computed explicitly. Unlike for the equilibrium case
(Tx = Ty), this nonequilibrium stationary state is characterized
by the presence of nontrivial space-dependent particle’s flows
j(x,y). Moreover, these flows exhibit a “symmetry breaking”
rotor, S(x,y) = ∇ × j(x,y) [directed perpendicular to the
(X,Y )-plain], the sign (or the direction) of which is determined
by the temperature difference (Tx − Ty).

The paper is organized as follows. In Sec. II we define
our model and present the explicit solution for the stationary
particle’s probability distribution function P (x,y). In Sec. III
we compute putative “observable” quantities of the system,
such as the variances of the particle displacements in the X

and the Y directions, the rotor S(x,y) of the particle’s flows,
and the average rotation velocity. In Sec. IV we report the
results of the numerical simulations and compare them with
our analytical predictions. Finally, in Sec. V we conclude with
a brief recapitulation of our results.

II. THE MODEL

We consider stochastic, overdamped Langevin dynamics of
a particle moving in a two-dimensional space in the presence
of an external potential, U (x,y). The particle’s instantaneous
position ρ(t) is defined by projections on the X and the Y axes,
x(t) and y(t), respectively. The time evolution of x(t) and y(t)
is described by the following equations:

d

dt
x(t) = − ∂

∂x
U (x,y) + ξx(t),

(1)
d

dt
y(t) = − ∂

∂y
U (x,y) + ξy(t).

Here ξx,y(t) is anisotropic stochastic noise, with zero mean
and correlation function

〈ξα(t)ξβ(t ′)〉 = 2 Tα δα,β δ(t − t ′) , (α,β = x,y), (2)
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where Tx and Ty are two different “temperatures” and U (x,y)
has the following parabolic form:

U (x,y) = 1
2 x2 + 1

2 y2 + u xy. (3)

The shape of the potential is controlled by the parameter u. To
keep the particle localized near the origin, we have to impose
the constraint |u| < 1. This follows from the requirement
that both eigenvalues of the potential, λ1,2 = 1 ± u, must be
positive; in the case |u| > 1, there is a direction in the plane
(x,y) at which the potential U (x,y) has a negative curvature
which allows the particle to escape to infinity.

In the stationary regime, the probability distribution func-
tion P (x,y) of the particle’s position obeys the stationary
Fokker-Planck equation:

∂

∂x

[
Tx

∂P (x,y)

∂x
+ P (x,y)

∂U (x,y)

∂x

]

+ ∂

∂y

[
Ty

∂P (x,y)

∂y
+ P (x,y)

∂U (x,y)

∂y

]
= 0. (4)

In the trivial isotropic case, Tx = Ty = T , the solution of the
above equation is simply the equilibrium Gibbs distribution
Piso(x,y) ∝ exp{− 1

T
U (x,y)}.

One can easily show that in the generic anisotropic case
with arbitrary Tx and Ty , the solution of the stationary equation
(4) reads

P (x,y) = Z−1 exp

{
−1

2
γ1x

2 − 1

2
γ2y

2 − uγ3xy

}
, (5)

where the following shortenings have been used:

γ1 = Tx + 1
2u2(Tx − Ty)

TxTy(1 + u2
2)
, (6)

γ2 = Ty + 1
2u2(Ty − Tx)

TxTy(1 + u2
2)
, (7)

γ3 = Tx + Ty

2TxTy(1 + u2
2)
, (8)

and


 = (Ty − Tx)

2
√

TyTx

. (9)

Further on, Z is the normalization constant (the “partition
function”), defined as

Z =
∫∫ +∞

−∞
dxdy exp

{
−1

2
γ1x

2 − 1

2
γ2y

2 − uγ3xy

}

= 2π

√
TxTy(1 + u2
2)

1 − u2
. (10)

One immediately observes that Z exists, so that the system has
the stationary solution, only for |u| < 1.

In the isotropic Tx = Ty environment, the stationary
equilibrium probability distribution function Piso(x,y) must
possess the same symmetry as the potential U (x,y). In the
present case, it is the symmetry x → y and y → x with the
principal axis at 45◦ to the X and Y axis—see Fig. 1 where
U (x,y) along with its contours are plotted as a function of
x and y for u = 0.6. For the anisotropic Tx �= Ty case, the
principal axes of the exponent of the stationary nonequilibrium
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FIG. 1. (Color online) The potential U (x,y) as a function of x

and y for u = 0.6. Right: The contour plot of U (x,y).

probability distribution function P (x,y) in Eq. (4) are rotated
with respect to the ones for the potential U (x,y) by an amount
depending on the values of Tx and Ty—see Fig. 2 where
P (x,y) and its contours are plotted for u = 0.6, Tx = 1, and
Ty/Tx = 10. This symmetry breaking manifests itself by the
appearance of the vorticity, whereby the particle rotates on
average around the origin as is discussed in the next section.

III. THE OBSERVABLE QUANTITIES

A. Variances of particle positions

Using the above probability distribution function we can
straightforwardly calculate the variances of the particle’s
position with respect to the X and the Y axes:

〈x2〉 = Tx + 1
2u2(Ty − Tx)

1 − u2
, (11)

〈y2〉 = Ty + 1
2u2(Tx − Ty)

1 − u2
. (12)

The characteristic quantity, which can serve as the measure of
anisotropy in the system under study, is defined as the ratio of
these two quantities:

g(Ty/Tx ; u) ≡ 〈x2〉
〈y2〉 = 2 + u2(Ty/Tx − 1)

2Ty/Tx + u2(1 − Ty/Tx)
. (13)

In the trivial decoupled case, u = 0, we find g(Ty/Tx ; 0) =
Tx/Ty , while in the isotropic case, Tx = Ty , we have g(1; u) =
1 for all values of the coupling parameter u. Note next that in
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FIG. 2. (Color online) The stationary nonequilibrium probability
function P (x,y), Eq. (4), for u = 0.6, Tx = 1, and Ty/Tx = 10. Right:
The contour plot of P (x,y).
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the strongly anisotropic case, e.g., when Ty/Tx � 1, one has

〈x2〉 � u2

2(1 − u2)
Ty, (14)

〈y2〉 � 2 − u2

2(1 − u2)
Ty, (15)

g � u2

2 − u2
. (16)

In other words, in the strongly anisotropic case the values of
both 〈x2〉 and 〈y2〉 are defined by the largest T , while the
value of the ratio g = 〈x2〉/〈y2〉 becomes a T -independent
constant.

B. Mean rotation velocity

In the stationary case the current j = (jx,jy) is defined as
follows:

jx = Tx

∂P (x,y)

∂x
+ P (x,y)

∂U (x,y)

∂x
, (17)

jy = Ty

∂P (x,y)

∂y
+ P (x,y)

∂U (x,y)

∂y
. (18)

Using Eqs. (3)–(5) we obtain

jx = [(1 − Txγ1)x + u(1 − Txγ3)y] P (x,y), (19)

jy = [(1 − Tyγ2)y + u(1 − Tyγ3)x] P (x,y). (20)

Note that in the isotropic case, Tx = Ty = T , we have γ1 =
γ2 = γ3 = 1/T , so that j ≡ 0. In the anisotropic case, Tx �= Ty ,
the above nontrivial pattern of currents can be characterized in
terms of the rotor:

S(x,y) ≡ ∇ × j(x,y) = ∂

∂x
jy − ∂

∂y
jx. (21)

In general, the rotor S(x,y) is a rather complicated function
of two variables x and y, but it is remarkable that the function
S(x,y) has a nonzero (and very simple) value at the origin at
x = y = 0:

S(0) = u (Tx − Ty)γ3 Z−1

= u

4π

T 2
x − T 2

y

T 2
x T 2

y

√
TxTy(1 − u2)

(1 + u2
2)
. (22)

Note that this quantity changes sign from minus (“left
rotation”) at Ty > Tx to plus (“right rotation”) at Ty < Tx .

Due to the presence of a nonzero particle’s current rotor, one
finds that the mean particle’s rotation velocity is also nonzero.
Indeed, for a given value of the particle’s linear velocity v
located in the point r on the two-dimensional plane, its angular
velocity is

ω(t) = 1

r2
(v × r), (23)

where (v × r) is the vector product directed along the z axis.
Thus, the mean rotation velocity 〈ω〉 in the limit of an infinite
observation time can be defined as follows:

〈ω〉 = lim
τ→∞

1

τ

∫ τ

0
dtω(t). (24)

Changing averaging over time by averaging over ensemble
(which will be justified in what follows by numerical simula-
tions) we get

〈ω〉 =
∫

d2r
1

r2
(j × r)

=
∫ 2π

0
dφ

∫ ∞

0
dr(jx sin φ − jy cos φ). (25)

Here the average current j is defined in Eqs. (19) and (20).
According to Eq. (5), the probability distribution function
P (r,φ) can be represented as follows

P (r,φ) = Z−1 exp
{ − 1

2 r2�(φ)
}
, (26)

where

�(φ) = γ1 cos2(φ) + γ2 sin2(φ) + uγ3 sin(2φ). (27)

Substituting the explicit expressions for the components jx

and jy of the current, Eqs. (19)–(20), and using Eqs. (6)–(9),
we get

(jx sin φ − jy cos φ) = u(Ty − Tx)

2Z
r

×�(φ) exp

{
−1

2
r2�(φ)

}
. (28)
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FIG. 3. (Color online) (a) The ratio 〈x2〉/〈y2〉 of variances of
particle’s displacements along the X and the Y axes vs the parameter
u. [The symbols and the color-code are as in panel (b).] (b) The mean
angular velocity 〈ω〉 as a function of u for different Ty/Tx = 1, 2, 4,
6, 8, and 10. Solid lines are our predictions in Eqs. (13) and (24).
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Substituting Eq. (28) into Eq. (25) and performing simple
integrations we obtain

〈ω〉 = u


√
1 − u2

1 + u2
2
, (29)

where the parameter 
 is defined in Eq. (9).
One can easily prove that the maximal value of the mean

angular velocity is 〈ω〉max = 1, and it is achieved either in
the limits 
 → −∞ (which corresponds to Ty → 0 for finite
Tx) or in the limit 
 → +∞ (which corresponds to Tx → 0
for a finite Ty), and the value of the coupling parameter u =
1/

√

 → 0.

IV. NUMERICAL SIMULATIONS: BROWNIAN DYNAMICS

To verify our analytical predictions and the underlying
assumption that the time average can be replaced by the
ensemble average, we perform numerical simulations of appro-
priately discretized Langevin equations, Eqs. (1). Substituting
the potential U (x,y) = 1

2x2 + 1
2y2 + uxy into Eqs. (1) we first

write these equations explicitly:

ẋ(t) = −x − uy + ξx(t),
(30)

ẏ(t) = −y − ux + ξy(t) ,

where the variances of the thermal noise components are
defined by 〈ξ 2

x 〉 = 2Tx , 〈ξ 2
y 〉 = 2Ty , and 〈ξxξy〉 = 0.
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FIG. 4. (Color online) (a) The 〈x2〉/〈y2〉 and (b) the mean angular
velocity 〈ω〉 as functions of Ty/Tx for different values of u = 0, 0.2,
0.4, 0.6, 0.8, and 0.9. Solid lines define our theoretical predictions in
Eqs. (13) and (24), and the symbols denote the results of numerical
simulations.

Discretizing Eq. (30) with a time step, 
t , we have

x(t + 
t) = x(t) − 
t(x + uy) + gx(t)
√

2Tx
t,
(31)

y(t + 
t) = y(t) − 
t(y + ux) + gy(t)
√

2Ty
t,

where gx(t) and gy(t) are δ-correlated random numbers
with Gaussian distribution of unit half-width, 
t � 1,√

2Tx,y
t � 1, which are the conditions of a smooth motion.
In that case for a free motion of a particle [U (x,y) = 0]
which starts at the origin [(x(0) = 0, y(0) = 0)], the diffusion
coefficients are Dα = Tα , α = x,y, and the variances of the
displacement are given by 〈x2(t)〉 = 2Txt and 〈y2(t)〉 = 2Tyt .
In the case of the symmetric potential (u = 0), one has in the
stationary regime 〈x2〉 = Tx and 〈y2〉 = Ty , independently of t .
For asymmetric potential u �= 0, we compute the mean angular
velocity 〈ω〉 given in Eq. (24) and the measure of anisotropy
g(Ty/Tx,u) = 〈x2〉/〈y2〉 that is described by Eq. (13).

The numerical simulation has been done for the time step

t = 0.001. The averaging has been performed over the total
time period τ = 106 time units, and the numerical inaccuracy
has been evaluated by splitting the whole time interval into
10 subintervals. In Figs. 3(a) and 3(b) we plot numerical
results for the ratio of variances 〈x2〉/〈y2〉 and for the mean
angular velocity 〈ω〉, calculated as the time average of ω(t),
as functions of u for Tx = 1 and Ty = 1, 2, 4, 6, 8, and 10.
For comparison we also show our analytical predictions in
Eqs. (13) and (24), respectively, and find a perfect agreement.
This justifies the replacement of the time average by the
ensemble average in our analytical calculations.

Further on, in Figs. 4(a) and 4(b) we plot the same quantities
as functions of Ty/Tx (with Tx = 1) for u = 0, 0.2, 0.4, 0.6,
0.8, and 0.9. We again observe a very good agreement between
our numerical and analytical results.

V. CONCLUSIONS

In the present work we studied a simple stochastic “toy
model” with only two degrees of freedom which are connected
to two thermostats maintained at two different temperatures,
Tx and Ty , respectively. The model describes the diffusion
of a particle on a two-dimensional plane in the presence
of a parabolic potential such that the stochastic noises in
the X and the Y directions have different strengths (Tx

and Ty , respectively). We determine the stationary state
probability distribution function for the position of the particle.
Despite its relatively simple structure, it turns out to be
rather nontrivial, revealing interesting qualitative physical
phenomena. In particular, in the stationary state one finds
a rather sophisticated pattern of particles’ density currents
(which would be identically equal to zero in the equilibrium
case) characterized by the nonzero rotor. Moreover, due to the
presence of this flux rotor one observes the phenomenon which
could be interpreted as a “spontaneous symmetry breaking,”
namely, one finds a nonzero value for the average particle’s
rotation (around the origin) velocity. This value is proportional
to (Ty − Tx), Eq. (29), being positive (left rotation) for Tx < Ty

and negative (right rotation) for Tx > Ty .
It should be stressed, however, that except for the recently

proposed two-temperature electric analog system [10], for the
moment the considered model has no experimental realization.
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Thus, the aim of the present work is somewhat provocative: we
would like to argue that systems of such a type are sufficiently
interesting to stimulate investigations for their “hardware”
implementations. We also believe that modification of our toy
model towards a system that could be realized in practice and at
the same time would not lose its interesting behavior (rotation)
is possible.
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