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One-dimensional transport of interacting particles: Currents, density profiles,
phase diagrams, and symmetries
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Driven lattice gases serve as canonical models for investigating collective transport phenomena and properties
of nonequilibrium steady states. Here we study one-dimensional transport with nearest-neighbor interactions
both in closed bulk systems and in open channels coupled to two particle reservoirs at the ends of the channel.
For the widely employed Glauber rates we derive an exact current-density relation in the bulk for unidirectional
hopping. An approach based on time-dependent density functional theory provides a good description of
the kinetics. For open systems, the system-reservoir couplings are shown to have a striking influence on
boundary-induced phase diagrams. The role of particle-hole symmetry is discussed, and its consequence for the
topology of the phase diagrams. It is furthermore demonstrated that systems with weak bias can be mapped onto
systems with unidirectional hopping.
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I. INTRODUCTION

One-dimensional driven transport has manifold applica-
tions in biology, physics, and materials science. Prominent
examples are the motion of motor proteins along microtubules
or actin tracks [1,2], protein synthesis by ribosomes [3], ion
diffusion in narrow channels [4–6], or charge transfer in
photovoltaic devices [7,8]. Many of those have been studied
by models based on incoherent hopping processes, where the
focus was either on an effective one-particle description [9]
or on the collective behavior of mutually excluding particles
as described by the asymmetric simple exclusion process
(ASEP) [10–13].

From the fundamental point of view, one-dimensional
driven systems are of vital interest also to gain a better
understanding of the physics of nonequilibrium steady states
(NESSs). These are macrostates carrying steady currents.
An important question is whether and how concepts and
theorems well known for equilibrium systems, for example, the
fluctuation-dissipation theorem, Onsager reciprocal relations,
and maximum entropy considerations, can be generalized to
NESSs [14–16]. Most challenging is certainly the question
of whether, as in equilibrium systems, a limited number of
control variables can be introduced, which allows one to
make general statements with respect to the distribution of
microstates or structural and kinetic properties of NESSs. As a
kind of “minimal model,” totally asymmetric simple exclusion
processes (TASEPs), where particles can hop only in one
direction, are particularly suited for corresponding studies.

The standard TASEP refers to particles on a one-
dimensional lattice, which mutually exclude each other and
perform jumps to vacant nearest-neighbor sites to the right
with a rate �. Considering a bulk system, easily realized by
employing periodic boundary conditions, with Np particles on
a large ring of N sites, corresponding to a density ρ = Np/N .
In this case one finds that the distribution of microstates
is uniform, which means that all particle configurations are
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equally probable [10,17]. The bulk current jB is thus exactly
given by the mean-field expression jB = �(Np/N )[1 − (Np −
1)/(N − 1)], yielding jB = �ρ(1 − ρ) in the limit of infinite
system size. The process becomes more interesting when con-
sidering an open system, where particles are injected from a left
reservoir with particle density ρL and ejected to a right reservoir
with particle density ρR. In this situation the distribution of
microstates in the NESS is no longer uniform but can be calcu-
lated analytically by utilizing a special matrix algebra [10,13],
recursion relations [18,19], or the Bethe ansatz [10,12].

Moreover, there as an intriguing phenomenon appearing in
a NESS, namely, the bulk density ρB far from the boundaries
to the reservoirs shows phase transitions as a function of the
control variables ρL and ρR. Phase diagrams can be derived
from so-called minimum and maximum current principles
[20,21]. These principles state that if the particle density ρL

is lower (higher) than the density ρR, a bulk density ρB is
established in the system, which corresponds to the minimum
(maximum) of the bulk current jB(ρ) in the range ρL < ρ < ρR

(ρR < ρ < ρL). They are a consequence of the fact that to
match the reservoir densities at the boundaries, density profiles
in the system cannot be uniform in general, and accordingly
changes in the bulk current must be compensated by diffusive
currents. For example, if ρL > ρR, and the local density is
assumed to decrease monotonically from the left to the right,
then the diffusive current should be positive everywhere, or
zero in regions of constant density. Accordingly, the current
in the bulk region of flat density profile must be at a local
maximum. It is important to realize that this argument relies
on the assumption that the density profile varies monotonically.

In further studies [21–23] it has been shown that the
minimum and maximum current principles can also be applied
to certain TASEPs with particle-particle interactions beyond
(athermal) site exclusions. In some analogy to equilibrium
systems, this suggests that the bulk behavior is determined
by experimentally controllable reservoir properties and inde-
pendent of microscopic details of system-reservoir couplings.
However, as was shown recently [24], application of the
minimum and maximum current principles requires a very
specific way of particle injection and ejection in this case.

In general, density oscillations appear at the system
boundaries in the presence of interparticle interactions, which
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implies that the minimum and maximum current principles
can no longer be used to predict boundary-induced phase
diagrams [25]. To capture the transport in the presence of
such oscillations requires a theory that allows one to connect
correlations to the density profile on a local scale. The
time-dependent density functional theory (TDFT) of lattice
gases [26,27] is well suited for this situation. In particular,
combined with the Markov chain approach to derive microstate
distributions in equilibrium as functionals of the density
[28,29], it allows one, in a rather straightforward manner,
to calculate relations between correlators and densities in
equilibrium systems with inhomogeneous density profiles.
As a consequence, the method becomes a powerful means
to describe kinetics, and we will refer to it as the Markov
chain approach to kinetics (MCAK) in the following. It has the
merit that it becomes exact for bulk kinetics with a canonical
distribution of microstates. Using the MCAK, boundary-
induced phase diagrams can be predicted with good accuracy.
The resulting phase diagrams appear to be very different for
different system-reservoir couplings, not only with respect to
locations of transition lines but also with respect to the overall
topology. This finding is somewhat surprising, in particular
because it seems at first glance that particle-hole symmetry
gets broken for nearest-neighbor interactions. One of the goals
of this work is to clarify the reason for the change in topology
and the associated question regarding particle-hole symmetry.

A further goal is to study whether the results reported in [24]
for TASEPs with interactions remain valid for ASEPs, where
jumps against the bias direction are possible, as is the case in
any realistic application. In this connection we also reanalyze
the driven transport when it is mediated by Glauber jump rates,
which, among other, have been used in the field of incoherent
electron transport along molecular wires [30,31]. Interestingly,
for these Glauber rates an exact expression can be derived
for the bulk current-density relation. This is because the
Glauber rates belong to a class, where a canonical Boltzmann
distribution is valid for the microstates in the NESS. We also
demonstrate that the MCAK provides good descriptions not
only of the NESS but also of the dynamic time evolution of
density profiles.

II. TASEP WITH NEAREST-NEIGHBOR INTERACTIONS

We consider a one-dimensional lattice gas with hard-core
exclusion, unidirectional nearest-neighbor hopping with rates
�i,i+1, and repulsive nearest-neighbor interaction V > 0. The
microstate of the system is specified by the set of occupation
numbers n = {ni}, where each site i of the system is either
occupied by a particle (ni = 1) or is vacant (ni = 0). The total
energy of the system is given by the lattice gas Hamiltonian

H = V
∑

i

nini+1. (1)

Using the master equation for the time evolution of the prob-
ability density P (n,t) of microstates, the evolution equations
for mean values ρi(t) ≡ 〈ni〉t = ∑

n niP (n,t) (henceforth
called densities) are [32]

dρi(t)

dt
= ji−1,i(t) − ji,i+1(t), (2)

FIG. 1. Sketch of particle jump with rate �(ni−1,ni+2) from site
i to site (i + 1) for the different possibilities of occupations of sites
(i − 1) and (i + 2).

where ji,i+1(t) is the average current from i to (i + 1),

ji,i+1(t) = 〈ni(1 − ni+1)�i,i+1(n)〉t . (3)

Here, 〈· · · 〉t refers to an average over P (n,t). As illustrated
in Fig. 1, the rates �i,i+1(n) are functions of the occupation
numbers ni−1 and ni+2 only, �i,i+1(n) = �(ni−1,ni+2). Ac-
cordingly, the current in (3) can be written explicitly in terms
of four-point correlators,

ji,i+1 = 〈ñi−1niñi+1ñi+2〉t �(0,0)

+〈ni−1niñi+1ñi+2〉t �(1,0)

+〈ñi−1niñi+1ni+2〉t �(0,1)

+〈ni−1niñi+1ni+2〉t �(1,1). (4)

Here we introduced hole occupation numbers ñi = 1 − ni .
As mentioned in the Introduction, we here use the widely

employed Glauber rates [33]

�(ni−1,ni+2) = ν

2

[
1 − tanh

(
β�H

2

)]

= ν

exp[β(ni+2 − ni−1)V ] + 1
, (5)

where ν is an attempt frequency, β is the inverse thermal
energy, and �H = (ni+2 − ni−1)V is the energy difference
between the states after and before the jump. In the following
we set β = 1 and ν = 1. Because �(0,0) = �(1,1), the bulk
dynamics is particle-hole symmetric, i.e., a bulk system
with particle concentration ρ and the set of jump rates
{�(0,0),�(1,0),�(0,1),�(1,1)} is equivalent to a bulk system
with particle concentration 1 − ρ and the set of jump rates
{�(1,1),�(1,0),�(0,1),�(0,0)}.

III. BULK CURRENT-DENSITY RELATION

To evaluate the bulk current-density relation in a NESS,
one has to determine the correlators in Eq. (4). In general this
is a difficult task because, unlike in equilibrium systems, there
are no universal laws yielding the distributions of microstates
in NESSs. On the other hand, some authors [34,35] have
considered the question of whether it is possible to specify
the rates �(ni−1,ni+2) in such a way that the distribution of
microstates in the NESS equals the equilibrium Boltzmann
distribution proportional to exp(−H). Indeed it was found that
this is the case, if the rates satisfy the relations

�(0,1) = �(1,0) e−V , (6a)

�(0,0) + �(1,1) − �(0,1) − �(1,0) = 0. (6b)

A derivation of these relations is given in the Appendix,
because it was not given in detail in the original work [34].
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FIG. 2. (Color online) Bulk current-density relation j (ρ) for
various interaction strengths V .

Interestingly, the Glauber rates satisfy Eqs. (6a) and (6b). As
a consequence, the correlators in Eq. (4) equal the equilibrium
correlators in the corresponding one-dimensional Ising model,
which can be calculated by various means, such as the transfer
matrix technique, density functional theory, etc. The result for
the current reads

j (ρ) = (ρ − C(1))2 2f − 1

2ρ(1 − ρ)
+ (ρ − C(1))(1 − f ), (7)

where f = 1/[exp(V ) + 1] = �(0,1) and C(1) = 〈nini+1〉eq is
the equilibrium nearest-neighbor correlator,

C(1) = 1

2(1 − e−V )
[2ρ(1 − e−V ) − 1

+
√

1 − 4ρ(1 − ρ)(1 − e−V )]. (8)

Because the bulk dynamics is particle-hole symmetric, j (ρ) =
j (1 − ρ).

Figure 2 shows the behavior of the current as a function of
density for various interaction strengths V . For V → 0, j (ρ)
approaches the parabola j = (ρ − ρ2)/2 for particles with site
exclusion only. When V exceeds a critical value V� = 2 ln 3 �
2.20, j (ρ) develops a double-hump structure [20,36] with two
maxima at densities

ρ∗
1,2(V ) = 1

2
∓

√√√√3

4
− 1

2

√
2eV

eV − 1
, (9)

and a minimum at half filling, i.e., for ρ = 1/2. In the limiting
case V → ∞, we find j = (x3/2 − 2x + x1/2)/(2 − 2x) with
x = (2ρ − 1)2, meaning that there is no particle movement
for ρ = 1/2. For ρ∗

1,2 = 1/2 ∓ (
√

2 − 1)/2 the current is
maximal, in agreement with earlier findings reported by Krug
[20].

IV. TRANSPORT IN OPEN SYSTEMS: APPLICATION
OF MCAK

Coupling of the TASEP to a left and right reservoir
in general requires eight coupling parameters for nearest-
neighbor interactions, as indicated in Fig. 3. For injection
of particles to site i = 1, α0 and α1 specify the injection
rates if site i = 2 is vacant or occupied, respectively. Due to
the missing neighbor on the left for particles on site i = 1,

FIG. 3. Couplings of the system to the (a) left and (b) right
reservoirs mediated by the α and β rates. Indices 0 and 1 refer to
the occupation of the sites next to the target site (for α rates) and to
the initial site (for β rates). The primed rates are for jumps from and
to boundary sites of the system.

in addition the rates for the two possible jumps from site
i = 1 need to be specified. These are denoted by α′

0,1 for
vacant (occupied) site i = 3. Analogously, β0,1 denote the two
possible ejection rates for vacant (occupied) site i = N − 1,
and β ′

0,1 the two possible rates from site i = N − 1 for vacant
(occupied) site i = N − 2.

To evaluate the currents in Eq. (4), we cannot use any longer
the mapping of the NESS to an (unbiased) equilibrium state
as discussed in the previous Sec. III, because the translational
invariance used in the derivation (cf. Appendix) is broken.
As known also from the standard TASEP with site exclusion
only, the distribution of microstates is not uniform in the open
systems, which means it changes when going from the bulk to
the open system.

To treat the relevant correlators in Eq. (4) one can consider
their time evolutions. This would lead to the appearance
of higher-order correlators and different procedures could
be applied for closing the resulting hierarchy. However,
this approach usually becomes unhandy. Instead we use the
underlying concept of TDFT [26,27,37], which is based on
the (time-)local equilibrium approximation. This amounts
to approximating the nonequilibrium distribution P (n,t) by
the Boltzmann probability proportional to exp[−H(n)] plus
an effective time-dependent external potential

∑
i hi[ρ(t)]ni ,

where ρ(t) = {ρi}. This implies that the correlators at any time
t are supposed to be related to densities as in an equilibrium
system. These relations are now needed for inhomogeneous
systems without translational invariance. In particular, as
mentioned in the Introduction, it is important to include
information on the local variation of the density.

To this end the Markov approach for express-
ing the distribution of microstates [28] is particularly
suited. In this approach the equilibrium joint probabilities
p

(j+1)
eq (ni, . . . ,ni+j ) for the occupation numbers ni, . . . ,ni+j

are expressed by the Markov chain p
(j+1)
eq (ni, . . . ,ni+j ) =

p(1)
eq (ni)

∏j

s=1 w(ni+s |ni+s−1), where p(1)
eq (ni) is the probability

for ni in equilibrium, and w(ni+1|ni) = p(2)
eq (ni,ni+1)/p(1)

eq (ni)
is the conditional probability for ni+1 given ni . Since
the joint probabilities are directly connected to the
correlators, e.g., p(4)

eq (ni−1 =0,ni =1,ni+1 =0,ni+2 =0) =
〈ñi−1niñi+1ñi+2〉eq, all four-point correlators in Eq. (4) can
thus be reduced to two-point correlators.
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Applying this MCAK procedure to the TASEP with nearest-
neighbor interactions yields

ji,i+1 = C
(2)
i

ρi(1−ρi+1)

× (
C

(3)
i−1C

(4)
i+1�(0,0) + C

(1)
i−1C

(4)
i+1�(1,0)

+ C
(3)
i−1C

(3)
i+1�(0,1) + C

(1)
i−1C

(3)
i+1�(1,1)

)
, (10)

where

C
(2)
i = 〈niñi+1〉eq = ρi − C

(1)
i , (11a)

C
(3)
i = 〈ñini+1〉eq = ρi+1 − C

(1)
i , (11b)

C
(4)
i = 〈ñi ñi+1〉eq = 1 − ρi − ρi+1 + C

(1)
i , (11c)

and C
(1)
i follows from the quadratic equation

C
(1)
i = e−V

(
ρi − C

(1)
i

)(
ρi+1 − C

(1)
i

)
1 − ρi − ρi+1 + C

(1)
i

. (12)

Selecting the physical branch of the solution, we obtain

C
(1)
i = 1

2(1 − e−V )
[(ρi + ρi+1)(1 − e−V ) − 1

+
√

[(ρi + ρi+1)(1 − e−V ) − 1]2 + 4ρiρi+1e−V (1 − e−V )].

(13)

In addition to the currents ji,i+1 not directly coupled to
the injection and ejection rates, we need the currents at the
boundary sites,

jL,1 = 〈ñ1ñ2〉α0 + 〈ñ1n2〉α1, (14a)

j1,2 = 〈n1ñ2ñ3〉α′
0 + 〈n1ñ2n3〉α′

1, (14b)

jN,R = 〈ñN−1nN 〉β0 + 〈nN−1nN 〉β1, (14c)

jN−1,N = 〈ñN−2nN−1ñN 〉β ′
0 + 〈nN−2nN−1ñN 〉β ′

1. (14d)

Using the method outlined above, we obtain

jL,1 = C
(4)
1 α0 + C

(3)
1 α1, (15a)

j1,2 = C
(2)
1

1 − ρ2

(
C

(4)
2 α′

0 + C
(3)
2 α′

1

)
, (15b)

jN,R = C
(3)
N−1β0 + C

(1)
N−1β1, (15c)

jN−1,N = C
(2)
N−1

ρN−1

(
C

(3)
N−2β

′
0 + C

(1)
N−2β

′
1

)
. (15d)

Given the explicit expressions (10) and (15) for the currents
in terms of the densities via Eqs. (11) and (12) the kinetic
equations (2) become a closed set.

V. BOUNDARY-INDUCED NESS PHASES

As mentioned in the Introduction, applicability of the
minimum and maximum current principles requires specific
“bulk-adapted couplings” of the system to the reservoirs. In
fact, the α and β rates need to be defined in such a way that the
system can be viewed as being continued into the reservoirs,
corresponding to relations between correlators and densities
as in the bulk.

In a bulk system, when an initial configuration {ni+1 =
0,ni+2} would be given, two rates are possible for a particle

jump from site i (i.e., ni = 1): �i,i+1 = 1/[exp(ni+2V ) + 1]
if ni−1 = 0, while �i,i+1 = 1/[exp(ni+2V − V ) + 1]
if ni−1 = 1. For given {ni+1 = 0,ni+2}, let us denote
by p(01|0ni+2; ρ) = p(010ni+2; ρ)/p(0ni+2; ρ) and
p(11|0ni+2; ρ) = p(110ni+2; ρ)/p(0ni+2; ρ) the conditional
probabilities for the configurations {ni−1,ni} = {0,1} and
{ni−1,ni} = {1,1} to occur in the NESS of a closed bulk system
with density ρ and interaction V . For example, an injection
rate α0,1 then results from a weighting of rates with the
probabilities p(01|0n2; ρL) and p(11|0n2; ρL) corresponding
to virtual configurations {n−1 = 0,n0 = 1,n1 = 0,n2} and
{n−1 = 1,n0 = 1,n1 = 0,n2} at the boundaries. Following the
same procedure for the other rates we arrive at (m = 0 or 1)

αm = p(01|0m; ρL)

exp(mV ) + 1
+ p(11|0m; ρL)

exp[(m − 1)V ] + 1
, (16a)

α′
m = p(0|10m; ρL)

exp(mV ) + 1
+ p(1|10m; ρL)

exp[(m − 1)V ] + 1
, (16b)

βm = p̄(00|1m; ρR)

exp(−mV ) + 1
+ p̄(10|1m; ρR)

exp[(1 − m)V ] + 1
, (16c)

β ′
m = p̄(0|01m; ρR)

exp(−mV ) + 1
+ p̄(1|01m; ρR)

exp[(1 − m)V ] + 1
. (16d)

Here, p(0|10m; ρ) and p(1|10m; ρ) are, respectively, the bulk
probabilities for ni−1 = 0 and ni−1 = 1 under the condition
that {ni,ni+1,ni+2} = {1,0,m}. Note that for the β rates the
given occupation numbers are those to the left side, i.e.,
p̄(00|1m; ρ) = p(m100; ρ)/p(m1; ρ) and so on.

Application of the minimum and maximum current princi-
ples to the TASEP with V = 2V� and the bulk-adapted rates in
Eqs. (16) yields the boundary-induced phase diagram shown
in Fig. 4(a). In total seven phases occur, where the bulk
density equals either the left reservoir density ρL (phases I
and VI), or the right reservoir density ρR (phases III and V),
or the densities ρ�

1,2 [see Eq. (9)] of maxima in the current
(phases II and VII), or the density 0.5 of the (local) minimum
in the current (phase IV). Transitions between these phases
can be of first or second order, which are indicated by thick
solid and thick dashed lines, respectively. The thin lines refer to
changes of the phase diagram when allowing for jumps against
the bias direction, as further discussed in Sec. VII. Notice
that the diagram has symmetry with respect to the diagonal
ρR = 1 − ρL, which reflects the particle-hole symmetry in the
system as explained in the following Sec. VI.

The results for the bulk densities and currents of the
NESS in the case of bulk-adapted couplings and for our
choice of rates satisfying the relations (6) are exact. Note
that this does not hold true for the density profile close to the
boundaries. Application of the MCAK described in Sec. IV
allows one also to calculate the time evolution of density
profiles. Corresponding numerical solutions of Eq. (2) with the
expressions for the currents derived in Sec. IV are approximate
both at the boundaries and in the bulk, because at transient
times the relations between correlators and densities differ
from those in the equilibrium state without bias.

In order to get insight into how well the MCAK captures
the kinetics, we have performed kinetic Monte Carlo (KMC)
simulations of the TASEP with bulk-adapted couplings for a
chain of N = 1000 sites with ρL = 0.9, ρR = 0.6, V = 2V�,
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FIG. 4. (Color online) Boundary-induced phase diagrams of the NESS at V = 2V� for (a) the bulk-adapted and (b) the equilibrated-bath
couplings. Thick solid and thick dashed lines mark first- and second-order phase transitions for the TASEP. Corresponding thin lines are for
the ASEP with F = 2. In (b) the symbols refer to kinetic Monte Carlo (KMC) results and the lines to MCAK results.

and an initially empty lattice. Results from these KMC
simulations (symbols) for density profiles at five different
times, as well as the stationary state, are compared in Fig. 5(a)
with the predictions of the MCAK (lines). Three different
time regimes can be distinguished. The first regime is the
“penetration regime” for t � 2000 during which the initially
injected particles pass the system and reach the right reservoir.
In this regime there is excellent agreement of the KMC
data with the MCAK predictions. The penetration regime is
followed by an “intermediate regime”, where the density in the
system increases until it approaches values close to the limiting
one in the NESS. The two times t = 4000 and t = 8000 in
Fig. 5(a) belong to this regime. For the choice of parameters in
the present example, it is interesting that a kind of domain wall
appears in the system; see the jumplike change of density at
i ≈ 900 for t = 4000 that has moved to i ≈ 200 for t = 8000.
A second such kind of domain wall appears in the time interval
8000–16 000 and moves to the right (not shown).

One can view the occurrence of these transient domain
walls as resembling the occurrence of domain walls along
first-order lines in the phase diagrams of the NESS. Contrary to
the latter, the positions of the transient walls not only fluctuate,
but exhibit an average drift, because the local current in the
system is not constant. For the wall seen in Fig. 5(a), the current
left of the wall must on average be larger than that right of the
wall. The MCAK captures the formation of transient domain
walls, but the quantitative agreement with the KMC data is
less accurate than in the penetration regime. The intermediate
regime is followed by a “relaxation regime,” where at each
point the density continuously relaxes, without rapid jumplike
changes, towards the limiting value in the NESS. In this regime
the MCAK predictions are again in excellent agreement with
the KMC data.

The bulk-adapted couplings are specifically tuned to make
the minimum and maximum current principles applicable.
With respect to applications such couplings will not be
realized, but one is led by the fact that the time scale of
relaxation processes in the reservoirs is much faster than
in the system. With this assumption, baths can be assumed
to correspond to equilibrated Fermi gases with chemical

potentials μL = ln[ρL/(1 − ρL)] and μR = ln[ρR/(1 − ρR)]. A
reasonable ansatz for the α and β rates then is

αm = ρL[exp(mV − μL) + 1]−1, (17a)

α′
m = [exp(mV ) + 1]−1, (17b)

βm = (1 − ρR)[exp(μR − mV ) + 1]−1, (17c)

β ′
m = [exp(−mV ) + 1]−1. (17d)

The Fermi factors in these rates correspond to the Glauber
rates, if one considers that injected particles lose an energy μL,
ejected particles gain an energy μR, and the interaction with
particles in the system is as in the bulk. The additional factors
ρL in Eq. (17a) and 1 − ρR in in Eq. (17c) take into account the
filling of the baths. The functional form in Eq. (17) resembles
forms resulting from Fermi’s golden rule for transition rates
[30,31,38,39]. We will refer to the couplings mediated by the
rates in Eq. (17) as the “equilibrated-bath couplings.”

For these couplings, the density profiles at the boundaries
can no longer be expected to vary monotonically, as is
required for applicability of the minimum and maximum
current principles. Considering equilibrium systems, it is well
known that modified interactions, for example at confining
walls, commonly lead to density oscillations. It would be
surprising if such density oscillations did not appear for
NESSs under modified interactions at the boundaries, as for
the equilibrated-bath couplings.

Figure 5(b) shows the time evolution of density profiles
obtained from KMC simulations (symbols) and the MCAK
(lines) for the same reservoir densities and coupling strength
as in Fig. 5(a). Indeed, density oscillations appear at the walls
in the stationary state, as demonstrated in the inset of Fig. 5(b).
They can be understood when we realize that the oscillations
are missing in the bulk due to translational invariance. If one
were to, in the bulk, determine the spatial dependence of
the density with respect to an occupied site, which in fact
amounts to a determination of density correlations, then it
would be clear that oscillations occur due to the repulsive
nearest-neighbor interactions. The same holds true when
the spatial dependence of density profiles is determined by
starting from a vacant site. The reservoir in the case of the

062126-5



MARCEL DIERL, MARIO EINAX, AND PHILIPP MAASS PHYSICAL REVIEW E 87, 062126 (2013)

200
i

0.

0

0.2

0.4

0.6

0.8

1

0 400 600 800 1000

ρi

(a)

t = 1000

t = 2000

t = 4000

t = 8000

t = 16000

t → ∞

0.2

0.4

0.6

1 10 990

ρ

i

t → ∞

1000

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

ρi

i

(b)

t = 1000

t = 2000

t = 4000

t = 8000

t = 16000

t → ∞

FIG. 5. (Color online) Time evolution of ρi for (a) bulk-adapted and (b) equilibrated-bath couplings of the systems to the reservoirs for
ρL = 0.9, ρR = 0.6, V = 2V�, N = 1000, and ρi(t = 0) = 0. KMC results are marked by symbols and MCAK results by lines. In the KMC
simulations, averages were performed over 106 different configurations. The inset in (b) zooms out the oscillatory behavior at the boundaries.

equilibrated-bath couplings resembles a vacant site (missing
nearest neighbors) and therefore oscillations appear at the
boundary. In agreement with this picture, the density at site
N next to the right reservoir is particularly large, the density at
the next site N − 1 to the left is then particularly low, and this
alternating behavior continues on the scale of the correlation
length towards the bulk. The bulk density is ρB

∼= 0.34 and
deviates from the bulk density ρB

∼= 0.70 in Fig. 5(a), following
from the maximum current principle.

To cope with the oscillations a theory is needed where
the local current ji,i+1 is dependent on the form of the
density profile around sites i and i + 1, as is the case in the
MCAK. As can be seen from Fig. 5(b), the density oscillations
at the boundaries are well accounted for by the MCAK,
and accordingly the predicted bulk density is in excellent
agreement with that from the KMC simulations. Also the time
evolution of the density profiles is well captured by the MCAK
in Fig. 5(b). Let us note that the breakdown of the minimum
and maximum current principles does not imply that phases
corresponding to the local minimum and to the maxima in
the bulk current density relation can no longer appear. In
fact, starting from the flat region and considering the onset
of the bending of the profile at the ends of this region, an
enlarged region of monotonically varying density profile could
be considered, where the minimum and maximum current
principles apply.

The boundary-induced phase diagram for V = 2V� and
the equilibrated-bath couplings is displayed in Fig. 4(b). This
diagram strongly differs from the corresponding one for the
bulk-adapted couplings in Fig. 4(a). Instead of seven phases,
five phases appear, where the bulk density either is determined
by the left reservoir density ρL via a function fI(ρL) (phase
I), or is determined by the right reservoir density ρR via
functions fIII(ρR) and fV(ρR) (phases III and V), or is equal
to ρ�

1 (phase II), or is equal to the density 0.5 of the (local)
minimum in the current (phase IV). Analogous to Fig. 4(a),
first- and second-order transitions are marked by thick solid
and thick dashed lines, respectively. Phases in Figs. 4(a)
and 4(b) labeled by the same Roman numbers correspond to
each other in the sense that their character agrees (determined
by left or right boundaries, or minimum or maximum current

phases). In addition, the phase diagram in Fig. 4(b) is not
symmetric with respect to the diagonal ρR = 1 − ρL. The
reason for this will be clarified in the following Sec. VI.

VI. PARTICLE-HOLE SYMMETRY

Under exchange of particles by holes the ejection rates
β0, β1, β ′

0, and β ′
1 would correspond to injection rates α1,

α0, α′
1, and α′

0, respectively, and the current direction would
be reversed. Because the bulk dynamics is particle-hole
symmetric, the particle-hole-exchanged system must have the
same properties with respect to the hole occupation num-
bers ñi = 1 − ni , i.e., densities ρ̃i(t) = 〈ñi〉t and correlators
〈ñi ñj ñk · · · 〉t at any time t in the particle-hole exchanged
system equal ρi(t) = 〈ni〉t and 〈nknjni · · · 〉t in the original
system. In this sense particle-hole symmetry holds true in
general.

The bulk density in particular must fulfill in the NESS

ρB(α0,α1,α
′
0,α

′
1,β0,β1,β

′
0,β

′
1)

= 1 − ρB(β1,β0,β
′
1,β

′
0,α1,α0,α

′
1,α

′
0). (18)

For compact notation, let us introduce multivariate α̃ and
β̃ jump rates under particle-hole exchange of the α =
(α0,α1,α

′
0,α

′
1) and β = (β0,β1,β

′
0,β

′
1) rates,

α̃ ≡ (α1,α0,α
′
1,α

′
0), β̃ ≡ (β1,β0,β

′
1,β

′
0). (19)

Then we can rewrite Eq. (18) as ρB(α,β) = ρ̃B(β̃,α̃) = 1 −
ρB(β̃,α̃).

Following the view that the reservoirs are controlled by only
a few variables, such as their chemical potentials or densities,
we should require the injection and ejection rates to depend on
ρL and ρR, respectively. Given α = α(ρL) and β = β(ρR), the
bulk density becomes a function of ρL and ρR,

ρ̂B(ρL,ρR) ≡ ρB(α(ρL),β(ρR)). (20)

Particle-hole symmetry will show up in this function, if the
relation

ρ̂B(ρL,ρR) = 1 − ρ̂B(1 − ρR,1 − ρL) (21)

is fulfilled. Replacing the left-hand side with ρ̂B(ρL,ρR) =
ρB(α(ρL),β(ρR)) = 1 − ρB(β̃(ρR),α̃(ρL)) by using Eq. (18), and
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the right-hand side by 1 − ρ̂B(1 − ρR,1 − ρL) = 1 − ρB(α(1 −
ρR),β(1 − ρL)), we obtain by comparison

α(ρ) = β̃(ρ̃) (22)

as the condition for the particle-hole symmetry in Eq. (21) to
be obeyed.

The rates in Eqs. (17) for the equilibrated-bath couplings
do not satisfy relation (22) and hence the phase diagram
in Fig. 4(b) does not display the symmetry according to
Eq. (21). For the bulk-adapted couplings, in contrast, the rates
in Eq. (16) satisfy Eq. (22). For example, β1 = [exp(−V ) +
1]−1p(1100; 1 − ρ)/p(11; 1 − ρ) + 2−1p(1101; 1 − ρ)/
p(11; 1 − ρ) = [exp(−V ) + 1]−1p(1100; ρ)/p(00; ρ) + 2−1

p(0100; ρ)/p(00; ρ) = α0, where we have used the
particle-hole symmetry p(ni−1,ni,ni+1,ni+2; 1 − ρ) =
p(ñi−1,ñi ,ñi+1,ñi+2; ρ) in the bulk. Analogously, the other
relations in Eq. (22) can be proven.

Theoretically, given the particle-hole-symmetric bulk dy-
namics, the behavior in the open system is fully controlled by
the eight α and β jump rates, and the different boundary-
induced phases would appear in a particle-hole-symmetric
manner in the respective eight-dimensional space. However,
in practice it will be difficult to “control” couplings in this
detailed way. Rather, the system will be connected somehow
to the reservoirs and one could tune the reservoir properties.
In the case considered here, this is reflected by Eq. (20), which
parametrizes the eight rates in terms of two densities. As
a consequence, different phases from the eight-dimensional
space are projected out into the (ρL,ρR) plane for different
coupling mechanisms. This can go along with significant
changes of the topology, as indeed obtained in Fig. 4.

VII. ASEPS

TASEPs are simplified models because jumps against the
bias direction are not included. For hard-core exclusions only,
it is known that the structure of the boundary-induced phase
remains essentially the same when allowing for backward
jumps [40,41]. In the presence of a bias F in the forward
direction, forward and backward jump rates �→ and �← are
generally assumed to fulfill the detailed balance condition, i.e.,
�→/�← = exp(−�H), where the lattice gas Hamiltonian in
the presence of the bias reads

H = V
∑

i

nini+1 − F
∑

i

i ni . (23)

Considering a corresponding ASEP in the limit F → ∞, an
associated TASEP with rates � = limF→∞ �→ is obtained, if
the forward rates saturate for infinite bias. Conversely, given
a TASEP with rates �, an ASEP can be defined that in the
limit F → ∞ reduces to the TASEP, for example, by setting
�→ = � independent of F and �← = � exp(−�H).

Interestingly, TASEPs can even be associated with ASEPs
in the linear response regime of weak bias F . Let us consider an
ASEP with the Glauber rates from Eq. (5), where the forward
jump rate is now given by

�→(ni−1,ni+2) = 1

e(ni+2−ni−1)V −F + 1
, (24)

and the backward jump rate by �←(ni−1,ni+2) =
�→(ni−1,ni+2) exp[(ni+2 − ni−1)V − F ]. Because the
�→(ni−1,ni+2) no longer satisfy Eqs. (6), calculations
for the bulk behavior in the NESS, based on equilibrium
relations between correlators and densities, are not exact. We
can expect, however, that the MCAK will provide a good
approximation for small bias F .

The forward current ji,i+1 from site i to site i + 1 has the
same form as in Eq. (10) with the jump rates given by Eq. (24).
The backward current ji+1,i follows from interchanging ρi

and ρi+1, and the indices (i − 1) and (i + 1) as well as the
superscripts (2) and (3) in the correlators,

ji+1,i = C
(3)
i

ρi+1(1−ρi)

(
C

(2)
i+1C

(4)
i−1�←(0,0)+C

(1)
i+1C

(4)
i−1�←(0,1)

+C
(2)
i+1C

(2)
i−1�←(1,0)+C

(1)
i+1C

(2)
i−1�←(1,1)

)
. (25)

Except that the ji,i+1 must be replaced by the net currents

Ji,i+1(t) = ji,i+1(t) − ji+1,i(t) (26)

between sites i and i + 1, the rate equations (2) remain the
same.

Bulk current-density relations in the NESS from the MCAK
are compared to KMC results in Figs. 6(a)–6(c) for various
interaction strengths V and three different bias values F =
1, 2, and 3. As expected, for small F = 1 [Fig. 6(a)], the
MCAK gives excellent agreement with the KMC simulations
for all V . With increasing F , deviations become significant for
F � V ; see, for example, the results for V = V� and F = 3
in Fig. 6(c). Note, however, that for the special case V = 0,
corresponding to the standard ASEP with hard-core exclusion
only, the MCAK always gives exact results, independent of F ,
because in this case all microstates are equally probable [10]. In
the regime of strong interactions V > F , the MCAK provides
good results, and in particular agrees with the KMC results in
the limit V → ∞.

The current as a function of the bias F is shown in
Fig. 6(d) for one representative particle density ρB = 0.3 and
three different values V = 0, V�, and 2V�. For F � 1, the
current increases linearly with F , while for F � 1 nonlinear
response effects become relevant. For large F , the currents
from the KMC simulations saturate at values independent of
V , while the limiting currents in the MCAK are V dependent.
The critical values Vc(F ), where the bulk-current density
relation develops a double-hump structure [see Figs. 6(a)–
6(c)], increase with stronger bias. In the inset of Fig. 6(d), we
display the MCAK results for Vc(F ). Surprisingly, for F → 0,
where the MCAK becomes accurate, Vc(F ) approaches the
critical value V� for the TASEP considered in Sec. II.

To understand this, let us write the net current as

J = p(0100)�→(0,0) − p(0010)�←(0,0)

+p(1100)�→(1,0) − p(0011)�←(0,1)

+p(0101)�→(0,1) − p(1010)�←(1,0)

+p(1101)�→(1,1) − p(1011)�←(1,1), (27)

where we have combined in each line “reversed configura-
tions,” i.e., equivalent situations for forward and backward
jumps. The p(· · · ) are independent of F in the MCAK
(in the bulk) and the same for a given configuration and
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FIG. 6. (Color online) (a)–(c) Current-density relations j (ρ) for the ASEP at various V and three different bias strengths F . In (d) the
current-bias relation is shown for ρ = 0.3. Symbols refer to KMC data, lines to MCAK results, and the assignment of lines and symbols to the
different interaction strengths V is given in the legend of (a).

its reverse. Hence we can rewrite Eq. (27) in such a way
that in each line the first p(· · · ) are multiplied by the
differences �→(.,.) − �←(.,.) between forward and backward
rates. Taking the linear response limit of these differences
gives J = FjTASEP + O(F 2), where jTASEP refers to a TASEP
with rates

�(ni−1,ni+2) = 1

1 + cosh[(ni+2 − ni−1)V ]
. (28)

Again these rates do not satisfy Eq. (6), implying that the
MCAK treatment of the bulk NESS behavior of this TASEP
is no longer exact. Although the rates in Eqs. (28) and (5) are
different, the MCAK yields the same current-density relation
given in Eq. (7). Accordingly, Vc(F ) becomes V� in the limit
F → 0.

That in the MCAK the ASEP in the linear response regime
can be associated with a TASEP raises the question of whether
this would be true in an exact treatment. Considering a general
expansion of the right-hand side of Eq. (27) for small F , this
requires the p(· · · ) to exhibit no linear terms in F . We have not
yet been able to prove this property, but representative KMC
results shown in Fig. 7 for the p(· · · ) in the second line of
Eq. (27) are in agreement with it.

Let us now extend our discussion to open systems. The
functional form of the boundary currents in bias direction are
as in Eqs. (15a)–(15d) with the α and β rates replaced by α→
and β→ rates. The backward currents are

j1,L = C
(2)
1 α←,0 + C

(1)
1 α←,1, (29a)

j2,1 = C
(3)
1

ρ2

(
C

(2)
2 α′

←,0 + C
(1)
2 α′

←,1

)
, (29b)

jR,N = C
(4)
N−1β←,0 + C

(2)
N−1β←,1, (29c)

jN,N−1 = C
(3)
N−1

1 − ρN−1

(
C

(4)
N−2β

′
←,0 + C

(2)
N−2β

′
←,1

)
. (29d)

As discussed above, the MCAK provides an accurate
description in the linear response regime, and the bulk behavior
of the ASEP in this regime is equivalent to a TASEP
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FIG. 7. (Color online) KMC results for the joint probabilities
p(1100) and p(0011) of finding a configuration {ni−1 = 1,ni =
1,ni+1 = 0,ni+2 = 0} and its reversed configuration {ni−1 = 0,ni =
0,ni+1 = 1,ni+2 = 1} in the bulk part of the NESS for the ASEP
defined in Eq. (24). The interaction strength is V = 2V� and the
particle concentration ρ = 0.5.
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with rates (28). Moreover, the MCAK predicts the same
bulk-density relation for the rates (28) as for the rates (5).
Accordingly, it is insightful to compare the boundary-induced
phase diagrams of the ASEP with the TASEP in Sec. II.

To this end we have, for the bulk-adapted coupling, applied
the minimum and maximum current principles to the bulk
current-density relations of ASEPs for various F at V = 2V�,
such as, for example, to those shown in Figs. 6(a)–6(c). For the
equilibrated-bath couplings we use Eqs. (17) for the α→, β→
rates withH from Eq. (23) and α←, β← rates determined by the
detailed balance condition. The corresponding rate equations
are integrated numerically for various F at V = 2V� and the
resulting density profiles analyzed in the long-time limit.

For small F → 0, we found that MCAK results for the
phase diagrams in Figs. 4(a) and 4(b) are almost the same for
the ASEP. Visible small differences appear when F leaves the
linear response regime. To illustrate this, we have indicated
in both Figs. 4(a) and 4(b) phase transitions (thin solid and
dashed lines) for F = 2.

VIII. CONCLUSIONS

Effects of interparticle interactions beyond hard-core ex-
clusions in collective driven transport pose many challenges
and possibilities, whose significance has not yet been fully
explored. Here we have considered ASEPs and TASEPs with
repulsive nearest-neighbor interactions in one dimension. For
these jump processes on lattices, currents can in general be
expressed in terms of correlators of occupation numbers whose
order increases with the interaction range. To arrive at closed
sets of kinetic equations, one has to decide on how to treat the
relevant correlations. The Markov chain approach for deriving
exact density functionals [28] allows one to express correlators
in terms of densities, where the respective relations, strictly
valid in equilibrium, entail information on the local density
variation, which is necessary to capture interaction-induced
nonmonotonic behavior of density profiles. Let us note that
a standard TDFT treatment based on an exact functional
would provide such relations only via the solution of integral
equations connecting the correlators with direct correlation
functions.

As we have demonstrated, application of the MCAK leads
to a good description of both the time evolution of density
profiles and their limiting shape in the NESS. Because of
this, boundary-induced phase transitions of the bulk density
as functions of reservoir densities could be well predicted.
The coupling to the reservoirs turned out to have a decisive
influence also on the topology of phase diagrams. Particle-hole
symmetry in the nearest-neighbor interacting lattice gas with
open boundaries manifests itself in certain relations between
the injection and ejection rates. It was clarified under what
conditions the particle-hole symmetry shows up also with
respect to the reservoir densities in the boundary-induced
phase diagrams. Furthermore we have demonstrated that
ASEPs in the linear response regime can be mapped onto
TASEPs with rates that are related to the first term in an
expansion of the difference between forward and backward
rates with respect to the bias. As a consequence, no significant
changes in boundary-induced phase diagrams occur when
connecting ASEPs with weak bias to corresponding TASEPs.

For the jump rates we have used Glauber forms in this work.
These were shown to belong to a class where the distribution of
microstates in the NESS is equal to the Boltzmann distribution
of the interacting lattice gas without bias. Accordingly, an
exact bulk current-density relation in NESS could be derived.
We notice that the mapping of a NESS to an equilibrium state
without bias would not be possible in higher dimensions for
the Glauber rates [34].

In Refs. [24,37] we considered TASEPs with jump rates
proportional to exp(−�H/2), where, as in Eq. (5), �H is
the energy difference between states after and before the
jump. Unlike the Glauber rates, these rates are not bounded
and do not fulfill Eqs. (6a) and (6b). Nevertheless the phase
diagrams for bulk-adapted and equilibrated-bath couplings are
very similar to the ones displayed in Fig. 4. This suggests that
the bulk dynamics has only a weak influence, in contrast to
the dynamics coupled to the reservoirs. This suggestion is
reinforced by the fact that the topology of the phase diagram
appears to be the same (for given boundary couplings),
even if a bulk dynamics is considered that reflects repulsive
nearest-neighbor interactions but does not obey particle-hole
symmetry (see Fig. 2 in Ref. [22]).

It would be interesting to extend the successful treatment
based on the TDFT to higher dimensions. For nearest-neighbor
interactions there exists a lattice fundamental measure form of
the exact zero- and one-dimensional density functionals [42],
which enable an extension of these functionals to higher
dimensions. Alternatively, the approach used in Sec. IV can
also be generalized to higher dimensions [32]. Based on the
resulting approximate functionals one could make contact to
previous studies of nearest-neighbor-interacting driven lattice
gases in two dimensions. In these studies structural patterns in
the NESS were found [34], such as, for example, alternating
regions of low and high density for attractive interactions
V < 0, manifesting themselves in backgammon- [43] or stripe-
[44] like structures. For repulsive interactions V > 0, the
bias can induce transitions from an ordered to a disordered
state [34,45]. The treatment of these phenomena by TDFT
should in particular allow one to identify phenomenological
parameters in former field theoretical approaches [43,45] by
appropriate coarse graining.
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APPENDIX: DERIVATION OF RATE CONDITIONS
IN EQ. (6)

The master equation

∂P (n,t)

∂t
=

∑
n′

[�(n′ → n)P (n′,t) − �(n → n′)P (n,t)]

(A1)

describes the change of the probability P (n,t) of finding state
n at time t due to transitions from and to other states n′ with
rates �(n′ → n) and �(n → n′), respectively. For the model
in Sec. II with nearest-neighbor hopping in the presence of
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nearest-neighbor interactions, we can write

�(n → n′) =
∑

i

ni ñi+1δn′,n(i,i+1)�(ni−1,ni+2), (A2)

where n(i,i+1) is identical to the microstate configuration
n except that the occupation numbers ni and ni+1 are
interchanged. Inserting this into Eq. (A1), the master equation
for the stationary state of the TASEP reads

0 =
∑

i

[ñini+1P (n(i,i+1)) − niñi+1P (n)]�(ni−1,ni+2). (A3)

Assuming that P (n) ∝ exp [−H(n)] with H from Eq. (1),
P (n(i,i+1))/P (n) = exp[−(ni+2 − ni−1)V ], and Eq. (A3) be-
comes

0 =
∑

i

[ñini+1e
−(ni+2−ni−1)V − niñi+1]�(ni−1,ni+2)

= [
N

n

0010 − N
n

0100

]
�(0,0) + [

N
n

1010 e−V − N
n

1100

]
�(1,0)

+ [
N

n

0011 eV − N
n

0101

]
�(0,1) + [

N
n

1011 − N
n

1101

]
�(1,1),

(A4)

where N
n

0100 = ∑
i ñi−1niñi+1ñi+2 is the frequency of the

sequence {0100} of occupation numbers in the microstate
n, and analogous definitions apply for the remaining

N
n

..... Replacing all ñi by ñi = 1 − ni , the eight num-
bers N

n

.... can be expressed in terms of the six ir-
reducible numbers N

n

11 = ∑
i ni−1ni , N

n

1 1 = ∑
i ni−1ni+1,

N
n

111 = ∑
i ni−1nini+1, N

n

1 11 = ∑
i ni−1ni+1ni+2, N

n

11 1 =∑
i ni−1nini+2, and N

n

1111 = ∑
i ni−1nini+1ni+2. This yields

0 = [�(1,0) − �(0,1)eV ]N
n

11

+ [�(0,1) − �(1,0)e−V ]N
n

1 1

+ [�(1,0)e−V + �(0,1)eV − �(1,0) − �(0,1)]N
n

111

+ [�(1,0)e−V + �(0,1)eV − �(0,0) − �(1,1)]N
n

1 11

+ [�(0,0) + �(1,1) − �(1,0) − �(0,1)]N
n

11 1

+ [�(1,0) − �(1,0)e−V + �(0,1) − �(0,1)eV ]N
n

1111.

(A5)

This equation is indeed satisfied for each configuration n if
the rates fulfill Eqs. (6a) (vanishing of the first three lines
and the last line) and (6b) (vanishing of the fourth and fifth
lines). It is straightforward to extend the analysis to ASEPs
with detailed balanced backward jump rates against the bias
direction. Equations (6a) and (6b) then specify the conditions
for the forward rates.
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[41] A. B. Kolomeisky, G. M. Schütz, E. B. Kolomeisky, and J. P.
Straley, J. Phys. A 31, 6919 (1998).

[42] L. Lafuente and J. A. Cuesta, J. Phys. A 38, 7461 (2005).
[43] D. H. Boal, B. Schmittmann, and R. K. P. Zia, Phys. Rev. A 43,

5214 (1991).
[44] P. I. Hurtado, J. Marro, P. L. Garrido, and E. V. Albano, Phys.

Rev. B 67, 014206 (2003).
[45] K.-t. Leung, B. Schmittmann, and R. K. P. Zia, Phys. Rev. Lett.

62, 1772 (1989).

062126-11

http://dx.doi.org/10.1080/00018738000101406
http://dx.doi.org/10.1080/00018738000101406
http://dx.doi.org/10.1209/0295-5075/93/50003
http://dx.doi.org/10.1209/0295-5075/93/50003
http://dx.doi.org/10.1140/epjb/e2005-00087-5
http://dx.doi.org/10.1140/epjb/e2005-00087-5
http://dx.doi.org/10.1103/PhysRevB.74.235309
http://dx.doi.org/10.1103/PhysRevB.74.235309
http://dx.doi.org/10.1103/PhysRevE.50.2660
http://dx.doi.org/10.1088/0305-4470/31/33/003
http://dx.doi.org/10.1088/0305-4470/38/34/002
http://dx.doi.org/10.1103/PhysRevA.43.5214
http://dx.doi.org/10.1103/PhysRevA.43.5214
http://dx.doi.org/10.1103/PhysRevB.67.014206
http://dx.doi.org/10.1103/PhysRevB.67.014206
http://dx.doi.org/10.1103/PhysRevLett.62.1772
http://dx.doi.org/10.1103/PhysRevLett.62.1772



