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Phase transition in an exactly solvable reaction-diffusion process

Somayeh Zeraati,1,* Farhad H. Jafarpour,1,† and Haye Hinrichsen2,‡
1Bu-Ali Sina University, Physics Department, 65174-4161 Hamedan, Iran

2Universität Würzburg, Fakultät für Physik und Astronomie, 97074 Würzburg, Germany
(Received 18 March 2013; published 14 June 2013)

We study a nonconserved one-dimensional stochastic process which involves two species of particles A and B.
The particles diffuse asymmetrically and react in pairs as A∅ ↔ AA ↔ BA ↔ A∅ and B∅ ↔ BB ↔ AB ↔
B∅. We show that the stationary state of the model can be calculated exactly by using matrix product techniques.
The model exhibits a phase transition at a particular point in the phase diagram which can be related to a
condensation transition in a particular zero-range process. We determine the corresponding critical exponents
and provide a heuristic explanation for the unusually strong corrections to scaling seen in the vicinity of the
critical point.
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I. INTRODUCTION

One-dimensional driven-diffusion systems have been a
subject of study in recent years because they exhibit interesting
properties such as nonequilibrium phase transitions [1]. These
systems have many applications in different fields of physics
and biology [2,3]. A well-known example is the asymmetric
simple exclusion process, which is studied experimentally by
optical tweezers [4,5].

Various approaches have been developed in order to solve
such systems exactly, including, for example, the matrix
product method. With the matrix product method, the steady-
state weight of a configuration is written as the trace of a
product of operators corresponding to the local state of each
lattice site. The operators obey certain algebraic rules which
are derived from the dynamics of the model [6]. The algebraic
relations among these operators might have finite or infinite
dimensional matrix representations [7,8]. Recently, the matrix
product method with quadratic algebras attracted renewed
attention, as it can also be applied to dissipative quantum
systems [9,10].

It is well known that one-dimensional systems with open
boundary conditions, in which the particle number is not
conserved at the boundaries, can exhibit a phase transition [11].
On the other hand, a phase transition may also take place in
systems with nonconserving dynamics in the bulk [12,13]. For
example, in Ref. [13] the authors have studied a three-state
model on a lattice with periodic boundary conditions with
two particle species which evolve by diffusion, creation, and
annihilation. By changing the annihilation rate of the particles,
this model displays a transition from a maximal current phase
to a fluid phase.

As shown in [14], it is possible to map a one-dimensional
driven-diffusive system defined on a periodic lattice onto a
so-called zero-range process (ZRP). Recently, this mapping
was used to study various models which have an exact solution
in the steady state [15,16]. It was shown that a phase transition
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in the original model corresponds to a condensation transition
in the corresponding ZRP.

In present work, we introduce and study an exactly solvable
one-dimensional driven-diffusive model with nonconserved
dynamics which exhibits an interesting type of phase transi-
tion. The model is defined on a ring of L sites which can be
either empty (denoted by a vacancy ∅) or occupied by one
particle of type A or type B. The system evolves random
sequentially according to a set of two-site processes which
can be written in the most general form as

I∅ αI→ ∅I, IK
βIJ

⇀↽
βJI

JK, IJ
ωIJ

⇀↽
ωJI

J∅, (1)

where I,J,K ∈ {A,B}. In what follows we study a special
case of this model defined by the processes

A∅ α+→ ∅A, B∅ α−→ ∅B,

AB
p+
⇀↽
p−

BB, AA
p+
⇀↽
p−

BA,

AB
α+
⇀↽
α−

B∅, A∅ p+
⇀↽
p−

BA,

A∅ 1
⇀↽
1

AA, B∅ p
⇀↽
α

BB,

(2)

where the rates α and p are given by the ratios

α = α+
α−

, p = p+
p−

. (3)

As we will see below, for this particular choice the model
turns out to be exactly solvable. Obviously, this defines a
nonconserved dynamics, allowing the number of particles
(NA and NB) and vacancies (N∅) to fluctuate under the
constraint L = NA + NB + N∅. Moreover, the model is a
driven system since diffusion and reaction processes are not
left-right symmetric. The dynamical rules in Eq. (1) are
extensible to an exactly solvable model with the various
types of particles, in which a phase transition is accessible.
A generalized model consisting of three species of particles is
presented in the Appendix.

In this paper we demonstrate that the model defined in
Eq. (2) exhibits a phase transition and that its stationary state
can be determined exactly by means of the matrix product
method. In Sec. IV we show that our model can be mapped
onto a ZRP and that the phase transition corresponds to a
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FIG. 1. Stationary density of the reaction-diffusion process inves-
tigated in the present work. Left: The lower boundary p = 0, where
the model exhibits two different phases, namely, a high-density phase
for α < 2 (white) and a low-density phase for α > 2 (black), separated
by a discontinuous phase transition when moving along the bottom
line in the left panel. For p > 0 the order parameter ρA changes
continuously without exhibiting a phase transition. Right: The order
parameter ρB displaying instead a continuous phase transition.

condensation transition in the ZRP. In Sec. V we study the
dynamical behavior, which is not part of the exact solution,
by numerical simulations. It turns out that the dynamical
behavior near the critical point is plagued by unusually
persistent corrections to scaling, which are explained from
a phenomenological point of view in Sec. VI.

II. PHASE DIAGRAM AND PHENOMENOLOGICAL
PROPERTIES

The model defined above is controlled by four parameters,
α+, α−, p+, and p−. As we will see below, the essential
quantities which determine the matrix algebra are the ratios
α = α+

α−
and p = p+

p−
in Eq. (3), and therefore it is useful to study

the phase diagram of the model in terms of these ratios. For the
remaining two degrees of freedom we choose α+α− = p− = 1
throughout this paper; i.e., we use the definition

α+ = √
α, α− = 1√

α
, p+ = p, p− = 1. (4)

This selects a two-dimensional subspace in the four-
dimensional parameter space which is believed to capture the
essential phase structure of the system.

The phase diagram for the particle densities ρA and ρB in
terms of α and p is shown in Fig. 1. As can be seen, these

densities vary continuously everywhere except for the point
α = 2,p = 0, where the model exhibits a phase transition.
Moving along the horizontal axis at p = 0, the order parameter
ρA jumps discontinuously from 1/2 to 0, indicating first-order
behavior, while ρB changes continuously as in a second-order
phase transition.

To give a first impression of how the process behaves in
different parts of the phase diagram, we show various typical
snapshots of the space-time evolution in Fig. 2. For p = 0 the
density of B particles (bold black pixels) is very low, while
the A particles (pink or light gray pixels) form fluctuating
domains with a high density. As we will see in the last section,
these sharply bounded domains are important for a qualitative
understanding of the phase transition.

For α < 2 the A particles eventually fill the entire system,
while for α > 2 the A domains almost disappear, leaving
diffusing B particles behind. For p > 0 one can see that B

particles are continuously generated. Thus the parameter α

controls the domain size of A particles, while the parameter p

controls the creation and thus the density of B particles.

III. EXACT RESULTS

The matrix product method is an important analytical
tool developed in the 1990’s to compute the steady state of
driven diffusive systems exactly [6,8]. Let us now investigate
the stationary state of the model by using this method. We
consider a configuration C = {τ1, . . . ,τL} with τi ∈ {∅,A,B}
on a discrete lattice of length L with periodic boundary
condition. According to this method, the stationary state
weight of a configuration C is given by the trace of a product
of noncommuting operators Xi :

W (C) = Tr

[
L∏

i=1

Xi

]
. (5)

Note that this method differs from the well-known transfer
matrix method in so far as different matrices are used
depending on the actual configuration of the lattice sites; i.e.,
the choice of the operator Xi at site i depends on its local state.
In our model, the operator Xi = E stands for a vacancy while
Xi = A(B) represents a particle of type A (B). Depending on
the dynamical rules, these operators should satisfy a certain set
of algebraic relations. For the dynamical rules listed in Eq. (2)

FIG. 2. (Color online) Snapshots of typical space-time evolutions starting with random initial conditions. Particles of type B are represented
by bold black pixels, while A particles are plotted in (pink)light gray color. The figure shows snapshots for four different choices of the
parameters, corresponding to the points in the phase diagram shown on the right.
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one obtains a quadratic algebra of the form

p−BA + AE = (1 + p+)AA,

p−BB + α−BE = (α+ + p+)AB,

p+AA + p+AE = 2p−BA,

p+AB + pBE = (p− + α)BB,

p−BA + AA − (α+ + p+)AE = AE, (6)

α+AB + αBB − (p + 2α− − 1)BE = BE,

α+AE − EA = −EA,

α−BE − EB = −EB,

EE − EE = 0,

where E is an auxiliary matrix which is expected to cancel out
in the final result. We find that the algebra in Eq. (6) has a
two-dimensional matrix representation given by the following
matrices:

A =
(

1 0

1 0

)
, B = p

(
0 1

0 1

)
, E =

(
1 0

0 α

)
, (7)

and E = E − α+I, where I is an identity 2 × 2 matrix.
We note that the algebra in Eq. (6) and its representation

Eq. (7) were studied for the first time by Basu and Mohanty in
Ref. [17] in the context of a different model. It differs from our
model in so far as it evolves only according to the processes
in the first two lines of Eq. (2), where the A and B particles
hop with different rates and can also transform into each other,
meaning that the total number of particles is conserved. The
authors calculated the spatial correlations exactly and mapped
their model to a ZRP. However, as the particle number is
conserved in their model, a phase transition does not occur by
changing the rates. In other words, although the matrix algebra
already contains information about the phase transition, their
model could not access the part of the phase diagram where
the transition takes place. The model presented here is an
extension of their model with the same matrix representation
but with a nonconserved dynamics and an extended parameter
space, in which the phase transition becomes accessible.

To compute the partition sum of the system, we first note
that according to Eq. (2) a configuration without a particle
of type A or B is not dynamically accessible. Therefore, the
partition function, defined as the sum of the weights of all
available configurations with at least one particle, is given by

ZL = Tr[(A + B + E)L − EL]. (8)

With this partition sum the stationary density of the A and
B particles can be written as

ρstat
A = Tr[A(A + B + E)L−1]

ZL

, (9)

ρstat
B = Tr[B(A + B + E)L−1]

ZL

. (10)

We can also compute the density of the vacancies using
ρstat

∅ = 1 − (ρstat
A + ρstat

B ). Using the representation Eq. (7),
Eqs. (8)–(10) can be calculated exactly. In the thermodynamic
limit L→ ∞, where high powers of matrices are dominated
by their largest eigenvalue, the density of the A and B particles

is given by (see Fig. 1)

ρstat
A = (2 − α)(α + p) + α

√
4 − 4α + (p + α)2

2(2α + p)
√

4 − 4α + (p + α)2
, (11)

ρstat
B = p(p + 3α − 2 +

√
4 − 4α + (p + α)2)

2(2α + p)
√

4 − 4α + (p + α)2
. (12)

Approaching the critical point at p = 0 and αc = 2, we find a
discontinuous behavior:

ρstat
A =

{ 1
2 for α < αc

0 for α > αc

, (13)

ρstat
∅ =

{ 1
2 for α < αc

1 for α > αc

, (14)

while ρstat
B = 0. In fact, it is clear from Eq. (2) that for p = 0 the

B particles can only transform into A particles or vacancies
but they are not created. Hence, in the steady state in the
thermodynamic limit, the B particles will disappear.

We also observe that the density of the B particles in
the vicinity of the critical point changes discontinuously in
a particular limit. This can be seen already in the snapshots
of Figs. 2(a) and 2(c): For α < 2 and p = 0 the density of
B particles vanishes rapidly on an exponentially short time
scale, while for α > 2 one observes some kind of annihilating
random walk with a slow algebraic decay. Therefore, for a
small value of p > 0, i.e., when switching on the creation of
B particles at a small rate, it is plausible that the system will
respond differently in both cases. In fact, expanding Eq. (10)
around p = 0 to first order in p in the two phases α > αc or
α = αc + ε and α < αc or α = αc − ε, where ε is very small,
we find a band gap as


 = ρ
stat,α>αc

B − ρ
stat,α<αc

B ≈ L2pε

8
, (15)

which is valid for 1 	 L 	 Lmax where Lmax = (pε)−1/2.

IV. RELATION TO A ZERO-RANGE PROCESS

A zero-range process (ZRP) is defined as a system of L

boxes where each box can be empty or occupied by an arbitrary
number of particles. The particles hop between neighboring
boxes with a rate that can depend on the number of particles
in the box of departure [15]. The stationary state of the
ZRP factorizes, meaning that the steady-state weight of any
configuration is given by a product of factors associated with
each of the boxes.

It is known that various driven-diffusive systems can be
mapped onto a ZRP [15]. This is usually done by interpreting
the vacancies (particles) in the driven-diffusive systems as
particles (boxes) in the ZRP. Following the same line we find
that our model can be mapped onto a nonconserving ZRP with
two different types of boxes. More specifically, the n vacancies
to the right of an A(B) particle are regarded as an A(B) box
containing n particles in the ZRP denoted as An(Bn). The total
number of particles distributed among the boxes is denoted
as N∅, while the number of boxes of type A(B) is denoted
as NA(NB). By definition, the sum NA + NB + N∅ = L is
conserved. However, the individual numbers are not conserved
and change according to the following dynamical rules:
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(i) Particles from an A(B) box hop to the neighboring left
box with rate α+ (α−):

XmAn

α+−→ Xm+1An−1,
(16)

XmBn

α−−→ Xm+1Bn−1 (X = A,B).

(ii) An empty A(B) box transforms into an empty B(A) box
with the rate p+ (p−):

A0

p+
⇀↽
p−

B0. (17)

(iii) An A(B) box with n particles together with an adjacent
empty B(A) box on the left side transform into a single A(B)
box containing n + 1 particles with rate p− (α+). The reversed
process is also possible and takes place with rate p+ (α−):

B0An

p−
⇀↽
p+

An+1, A0Bn

α+
⇀↽
α−

Bn+1. (18)

(iv) An A(B) box containing n particles and a neighboring
empty A(B) box on the left side transform into an A(B) box
with n + 1 particles with the rate 1 (α). The reversed process
is also possible and takes place with rate 1 (p):

A0An

1
⇀↽
1

An+1, B0Bn

α
⇀↽
p

Bn+1. (19)

With these dynamical rules, we can show that the weights of
configurations in the ZRP can be expressed as factorized forms.
We consider a configuration consisting of δ = NA + NB boxes
with N∅ particles distributed in the boxes. Defining nk as the
number of particles in kth box of type τk ∈ {A,B}, where∑δ

k=1 nk = N∅, the weight of the configuration can be written
as

WZRP
({n1τ1, · · · ,nδτδ}

) =
δ∏

k=1

fτk
(nk), (20)

where fA(n) [fB(n)] is the weight of an A(B) box containing
n particles. In order to compute fA(n) and fB(n), let us define
the vectors |a1〉, 〈a2|, |b1〉, and 〈b2| by

|a1〉 = |b1〉 = |1〉 + |2〉, 〈a2| = 〈1|, 〈b2| = p〈2|, (21)

where we used the basis vectors

|1〉 =
(

1
0

)
, |2〉 =

(
0
1

)
. (22)

Then the operators A and B in the matrix representation Eq. (7)
can be rewritten as

A = |a1〉〈a2|, B = |b1〉〈b2|. (23)

Using Eqs. (21)–(23) and Eq. (7) we obtain

fA(n) = 〈a2|En|a1〉 = 〈a2|En|b1〉 = 1, (24)

fB(n) = 〈b2|En|b1〉 = 〈b2|En|a1〉 = pαn. (25)

We can show that Eq. (20) satisfies the pairwise balance
condition [18]; therefore, it is the stationary state for the
dynamics specified by Eqs. (16)–(19).

Let us finally turn to the case p = 0. It is clear from
Eqs. (20), (24), and (25) that the stationary state weight of
the ZRP consists only of the weights of A boxes containing
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FIG. 3. (Color online) Decay of the order parameters ρA,B at the
critical point in a very large system with 105 sites with random initial
conditions (see text).

particles. Defining 〈NA〉 as the average number of A boxes
and 〈n〉 as the average number of particles in an A box, and
noticing the dynamical rules of the nonconserving ZRP, Eqs.
(13) and (14), we observe different behaviors for 〈NA〉 and 〈n〉,
namely, (i) for p = 0, α < αc, 〈NA〉 and 〈n〉 are finite; and (ii)
for p = 0, α > αc, 〈NA〉 = O(1) and 〈n〉 = O(L). Therefore,
we have a condensation transition where a large number of
particles accumulate in a single A box.

V. NUMERICAL RESULTS

Since all stationary properties of the model defined in
Eq. (2) can be computed exactly, our numerical simulations
focus on its dynamical evolution. As we will see, the dynamical
behavior is affected by strong scaling corrections which will
be explained heuristically in Sec. VI.

A. Decay of ρA and ρB at the critical point

At the critical p = 0, α = 2 we have p+/p− = p = 0 and
α+/α− = 2, implying p+ = 0, meaning that at this point the
model is controlled by two parameters, α+ and p−. In Fig. 3
we measured the time dependence of both order parameters
for p− = 1 and various values of α+, starting with a random
initial state with ρA(0) = ρB(0) = 1/3. The behavior turns
out to be qualitatively similar in all cases: While the density
ρA(t) seems to increase slightly, the density ρB(t) shows a
decay reminding one of a power law ρB(t) ∼ t−δ . However,
if we first estimate the exponent δ ≈ 0.57 and then divide the
data by t−δ one observes a significant curvature of the data:
The effective exponent δeff decreases from 0.6 to 0.57 without
having reached a stable value in the numerically accessible
regime, indicating strong scaling corrections.

It turns out that the effective exponent depends strongly
on the particle densities in the initial state. This freedom can
be used to reduce the influence of the scaling corrections.
Choosing for example a random initial configuration with
ρA(0) = 0.9 and ρB(0) = 0.1 one obtains a less pronounced
curvature of ρB(t) with an effective exponent of only δ ≈ 0.51.
This suggests that the asymptotic exponent is δ = 1/2.

B. Finite-size scaling

Using the initial condition ρA(0) = 0.9 and ρB(0) = 0.1
we repeated the simulation in finite systems. The results are
plotted in the left panel of Fig. 4, where we divided ρB(t) by
the expected power law t−1/2 so that an infinite system should
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FIG. 4. (Color online) Finite-size scaling at the critical point (see
text).

produce an asymptotically horizontal line. As can be seen, a
finite system size leads to a sudden breakdown of ρB(t), while
there is no change in ρA(t). Plotting the same data against t/Lz

(right panel), where z = ν‖/ν⊥ is the dynamical exponent, the
best data collapse is obtained for z = 2. This is plausible since
so far all systems, which have been solved by means of matrix
product methods, are essentially diffusive with a dynamical
exponent z = 2.

C. Off-critical simulations

Finally, we investigate the two-dimensional vicinity of the
critical point where


α = α − αc = α − 2 (26)

as well as p are small. First, we choose 
α = 0 and study
the model for p > 0. In this case the order parameter ρB(t)
first decays as if the system was critical until it saturates at a
constant value, as shown in the inset of Fig. 5.

Surprisingly, ρB(t) first goes through a local minimum
and then increases again before it reaches the plateau. This
phenomenon of undershooting has also been observed in
conserved sandpile models [19] and may indicate that the
system has a long-time memory for specific correlations in
the initial state. Plotting ρB(t)t1/2 against tpν‖ one finds
an excellent data collapse for ν‖ = 1.00(5), indicating that
ν‖ = 1.

Next, we keep p = 0 fixed and vary 
α. For 
α < 0 one
finds that the density ρB(t) crosses over to an exponential
decay. For 
α > 0, where one expects supercritical behavior,
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FIG. 5. (Color online) Data collapses for off-critical simulations.
Left: Variation of p in the range 0.0001,0.0002, . . . ,0.4096. Inset:
Corresponding raw data. Right: Variation of 
α = α − 2 in the range
±0.001, ±0.002, . . . , ± 0.512.

ρB(t) does not saturate at a constant; instead, it first decreases
as t−1/2 followed by a short period of a decelerated decay until
it continues to decay as t−1/2. This means that α > 2 causes
an increase of the amplitude but not a crossover to a different
type of decay. To our knowledge this is the first example
of a power law to the same power law but with a different
amplitude.

Plotting ρB(t)t1/2 against tpη‖ the data collapse is un-
satisfactory due to the scaling corrections discussed above.
However, the best compromise is obtained for η‖ = 1.9(2),
which is compatible with η‖ = 2.

D. Phenomenological scaling properties

Apart from the scaling corrections which will be discussed
in the following section, the collected numerical results suggest
that the process in the vicinity of the critical point is invariant
under scale transformations of the form

t → �ν‖ t, L → �ν⊥L, ρB → �βρB,
(27)

p → �p, 
α → �θ
α,

where θ = ν‖/η‖ is the crossover exponent between the two
control parameters.

Assuming that the critical behavior is described by simple
rational exponents, our findings suggest that the universality
class of the process is characterized by four exponents, β =
1/2, ν‖ = 1, ν⊥ = 1/2, and θ = 1/2, together with the
scaling relations

δ = β

ν‖
= 1

2 , (28)

z = ν‖
ν⊥

= η‖
η⊥

= 2, (29)

θ = ν‖
η‖

= 1/2. (30)

The values of the exponents are listed in Table I. Regarding
the stationary properties for p > 0, these exponents are in full
agreement with the exact solution in Sec. III.

The scaling scheme in Eq. (27) implies various scaling
relations. For example, it allows us to predict that the stationary
density of B particles in the vicinity of the critical point should
scale as

ρstat
B = pβF

(
(
α)2

p

)
, (31)

where F is a universal scaling function. Comparing this form
with the exact result Eq. (12) we find that

F (ξ ) = 1

2
√

4 + ξ
. (32)

TABLE I. Expected values of the critical exponents.

β ν⊥ ν‖ z η⊥ η‖ θ δ

1/2 1/2 1 2 1 2 1/2 1/2
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FIG. 6. (Color online) Motivation of the reduced model (see text). (a) Temporal evolution of the original model for α = 2 and p = 0.01 in
a vertically compressed representation with 20 Monte Carlo sweeps per pixel. As before, particles of type A and B are marked by (pink)light
gray and bold black pixels, respectively. (b) Illustration of compactified A domains. (c) Kink representation, interpreted as a pair-creating and
pair-annihilating diffusion process. (d) Removal of the overall bias.

VI. HEURISTIC EXPLANATION OF THE CRITICAL
BEHAVIOR

A. Reduction to an effective model

The model investigated above can be related to an effective
process of pair-creating and pair-annihilating random walks.
As we will see below, this effective model captures the phase
structure and the essential critical properties of the full model.

The starting point is the observation that the original model,
especially close to the critical point, tends to form dense and
sharply bounded domains of A particles, while the B particles
are sparsely distributed. The A domains are not compact;
rather, they are interspersed by little patches of empty sites.
As can be seen in Fig. 6(a), these small voids inside the A

domains do not exceed a certain typical size. This suggests
that they can be regarded as some kind of local noise which is
irrelevant for the critical behavior on large scales, meaning that
we may disregard them and consider the A domains effectively
as compact objects, as shown schematically in Fig. 6(b).

Second, we note that the B particles in the full model are
predominantly located at the right boundary of the A domains.
This suggests that the dynamics can be encoded effectively
in terms of the left and right boundaries of the A domains,
interpreted as charges − and + [see Fig. 6(c)]. In this kink
representation, the negative charges can be identified with the
B particles in the original model, while the positive charges
can be understood as marking the left boundary of A domains.

Third, we observe that the dynamics of the original model
is biased to the right. In the kink representation, an overall bias
does not change the critical properties of the model and can be
eliminated in a comoving frame, as sketched schematically in
Fig. 6(d).

Having completed this sequence of simplifications, the
original process can be interpreted as an effective pair-creating
and pair-annihilating random walk of + and − charges
according to the reaction-diffusion scheme

+ ∅ λ−→ ∅ + ∅+ 1/λ−→ +∅
− ∅ 1/λ−→ ∅ − ∅− λ−→ −∅ (33)

− + 1−→ ∅∅ ∅∅ q−→ − + .

Here, the parameter λ controls the relative bias between the two
particle species, and thus it is expected to play the same role
as α in the full model, although with a different critical value
λc = 1. The other parameter q controls the rate of spontaneous
pair creation and therefore plays a similar role as p in the
original model.

The reduced process starts with an alternating initial con-
figuration + − + − + − . . ., where ρ+(0) = ρ−(0) = 1/2. As
time evolves, particles are created and annihilated in pairs,
meaning that the two densities

ρ+(t) = ρ−(t) (34)

are exactly equal. These densities are expected to play the
same role as the order parameter ρB(t) in the original model.

B. Numerical results for the reduced model

The reduced model has the advantage that it can be
implemented very efficiently on a computer by storing the
coordinates of the kinks in a dynamically generated list.
Simulating the model we find the following results:

(i) q > 0: The model evolves into a stationary state with
a constant density ρ+ = ρ−, qualitatively reproducing the
corresponding results for the full model shown in the right
panel of Fig. 1.

(ii) q = 0, λ > 1: Positive charges move to the right and
negative charges move to the left until they form bound +−
pairs which perform a slow unbiased random walk. If two
such pairs collide they coagulate into a single one by the
effective reaction + − +− → +−. Therefore, one expects the
density of particles to decay as t−1/2 in the same way as in a
coagulation-diffusion process [20].

(iii) q = 0, λ = 1: At the critical point the particle density
seems to decay somewhat faster than t−1/2. The origin of these
scaling corrections will be discussed below.

(iv) q = 0, λ < 1: In this case the negative charges diffuse
to the right while positive charges diffuse to the left. When
they meet they quickly annihilate in pairs, reaching an empty
absorbing state in an exponentially short time.

Therefore, the reduced model exhibits the same type of
critical behavior as the full model. Moreover, repeating the
standard simulations of Sec. V (not shown here), we obtain
similar estimates of the critical exponents.

C. Explaining the scaling corrections heuristically

Performing extensive numerical simulations of the reduced
model at the critical point over seven decades in time (see
Fig. 7), one can see a clear curvature in the double-logarithmic
plot. Unlike initial transients in other models, this curvature
seems to persist over the whole temporal range. To confirm this
observation, we plotted the corresponding local exponent δeff

against 1/ ln(t) in the right panel of the figure. If the curve is
extrapolated visually to t → ∞, the most likely extrapolation
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FIG. 7. (Color online) Numerical simulation of the reduced

model with L = 107 sites simulated at the critical point. Left panel:
Decay of the particle density ρ(t). The green dashed straight line
visualizes the slow curvature of the data, indicating persistent scaling
corrections. Right panel: Corresponding local slopes plotted against
1/ ln(t), interpreted as an effective critical exponent −δeff (t). A visual
extrapolation along the red dashed line to t → ∞ is consistent with
the expected asymptotic exponent δ = 0.5.

limit is indeed δ = 1/2, confirming our previous conjecture in
the case of the full model.

Where do the slow scaling corrections come from? This
question is of general interest because various other nonequi-
librium phase transitions, where the universal properties are
not yet fully understood, show similar corrections. For exam-
ple, the diffusive pair contact process [21] and fixed-energy
sandpiles [19,22] both exhibit a similar slow curvature of the
particle decay at the critical point. Here, we have a particularly
simple system with an exactly known critical point, where the
origin of the slow scaling corrections can be identified much
easier.

To explain the scaling corrections heuristically, let us
consider the pair-annihilation process defined in Eq. (33) at the
critical point starting with an alternating initial configuration
(+ − + − + − . . .). We first note that this process has the
special property that pairs of particles which eventually
annihilate must have been nearest neighbors in the initial
configuration. So far, this process differs significantly from
the usual annihilation process 2A → ∅, where in principle
any pair can annihilate.

If the process had started with only a single −+ pair,
both particles would perform a simple random walk until they
collide and annihilate. In this case, the annihilation probability
would be related to the first-return probability of a random
walk [23]. Since the first-return probability is known to scale
as t−3/2 in one spatial dimension, the lifetime of the pair, which
is obtained by integration over time, would decay as t−1/2.
However, in the present case the −+ pair is interacting with
other pairs to the left and to the right. These neighboring pairs
impose a kind of nonreactive fluctuating boundary, limiting
the space in which the random walk of the two particles can
expand. In other words, the neighboring pairs lead to a small
effective force, pushing the two charges toward each other.
This in turn enhances the frequency of annihilation events,
explaining qualitatively why the particle density first decays
faster than t−1/2.

However, as time proceeds the accelerated decay of the
particle density leads to a corresponding increase of the
average distance between the particles which grows faster than
t1/2. Since the average distance between − and + particles

100 101 102 103 104 105 106 107
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distance between - and +
-+ pairs

+- pairs

FIG. 8. (Color online) Explanation of the accelerated decay in
the reduced charge model. The upper panel shows a typical snapshot
of the process at the critical point monitored over a long time. As
can be seen, the process preferentially forms −+ pairs separated by
large empty intervals. This impression is confirmed by a measurement
of the average distance between neighboring charges shown in the
lower left panel. Likewise, the average number of adjacent +− and
−+ pairs evolves differently.

cannot grow faster than t1/2, this implies that the average
distance between + and − has to grow faster than t1/2, as we
could confirm by numerical measurements in Fig. 8. This in
turn implies that the effective force mentioned above decreases
with time.

To find out how fast the effective force decreases with time,
we first note that the force is caused by adjacent +− pairs
which cannot penetrate each other. A numerical measurement
shows that the number of +− pairs decays in the same
way as the squared particle density, i.e., like in a mean-field
approximation (see the right panel of Fig. 8), while the number
of −+ pairs is—as expected—proportional to the particle loss:

n+−(t) ∼ ρ2(t), n−+(t) ∼ ρ̇(t). (35)

Therefore, we expect the effective force to be proportional to
ρ2(t), which roughly scales as t−1. Thus, we conclude that the
particle density of the pair-annihilation process at the critical
point (and similarly in the full model) decays in the same
way as the survival probability of a one-dimensional random
walk starting at the origin subjected to a time-dependent bias
proportional to 1/t toward the origin, terminating upon the
first passage of the origin. In fact, simulating such a random
walk, we find slowly decaying logarithmic corrections of the
same type, confirming the heuristic arguments given above.
To our knowledge an exact solution of a first-passage random
walk with time-dependent bias is not yet known.

VII. CONCLUSIONS

In this work we have introduced and studied a two-species
reaction-diffusion process on a one-dimensional periodic
lattice which exhibits a nonequilibrium phase transition. Its
stationary state can be determined exactly by means of the
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matrix product method. Together with numerical studies of the
dynamics we have identified the critical exponents which are
listed in Table I. The transition can be explained qualitatively
by relating the model to a reduced process (see Sec. VI). This
relation also provides a heuristic explanation of the unusual
corrections to scaling observed in this model.

Our findings seem to be in contradiction with a previous
claim by one of the authors [24,25] that first-order phase
transitions in nonconserving systems with fluctuating domains
should be impossible in one dimension. In [24] it was argued
that a first-order transition needs a robust mechanism in
order to eliminate spontaneously generated minority islands
of the opposite phase, but this would be impossible in one
dimension because in this case the minority islands do not have
surface tension. Although this claim was originally restricted to
two-state models, the question arises why we find the contrary
in the present case.

Again the caricature of the reduced process sketched in
Fig. 6(a) provides a possible explanation: As can be seen,
there are two types of white patches, namely, large islands
with a blue B particle at the left boundary and small islands
without. This means that the B particles are used for marking
two different types of vacant islands, giving them different
dynamical properties. Only the large islands containing a B

particle are minority islands in the sense discussed in [24],
while the small islands without B particles inside the A

domains are biased to shrink by themselves.
Therefore, we arrive at the conclusion that first-order phase

transitions in nonconserving one-dimensional systems with
fluctuating domains are indeed possible in certain models with
several particle species if one of the species is used for marking
different types of minority islands.

APPENDIX: AN EXACTLY SOLVABLE THREE
SPECIES MODEL

In this Appendix, we show that a similar type of phase
transition can also exist in four-state models. We introduce
an exactly solvable one-dimensional driven-diffusive model
with nonconserved dynamics consisting of three species of
particles. The system evolves random sequentially according
to the dynamical rules in Eq. (1), where I,J,K ∈ {A,B,C}.
This system is defined by the processes

A∅ λ+→ ∅A, B∅ α+→ ∅B, C∅ β+→ ∅C,

AA
p+
⇀↽
p−

BA, AC
p+
⇀↽
p−

BC, AB
p+
⇀↽
p−

BB,

AB
q+
⇀↽
q−

CB, AA
q+
⇀↽
q−

CA, AC
q+
⇀↽
q−

CC,

BA
q
⇀↽
p

CA, BB
q
⇀↽
p

CB, BC
q
⇀↽
p

CC,

AB
λ+
⇀↽
α+

B∅, AC
λ+
⇀↽
β+

C∅, CB
α
⇀↽
q

B∅,

BB
α
⇀↽
p

B∅, BC
β
⇀↽
p

C∅, CC
β
⇀↽
q

C∅,

A∅ p+
⇀↽
p−

BA, A∅ 1
⇀↽
1

AA, A∅ q+
⇀↽
q−

CA,

(A1)

where the rates α, β, p, and q are given by the ratios

α = λ+
α+

, β = λ+
β+

, p = p+
p−

, q = q+
q−

.

The first four lines of Eq. (A1) have been studied in Ref. [17],
where the phase transition is not accessible. We have found
that the matrix algebra of the dynamical rules in Eq. (A1)
has a three-dimensional matrix representation given by the
following matrices:

A =

⎛
⎜⎝

1 0 0

1 0 0

1 0 0

⎞
⎟⎠ , B = p

⎛
⎜⎝

0 1 0

0 1 0

0 1 0

⎞
⎟⎠ ,

(A2)

C = q

⎛
⎜⎝

0 0 1

0 0 1

0 0 1

⎞
⎟⎠ , E =

⎛
⎜⎝

1 0 0

0 α 0

0 0 β

⎞
⎟⎠ .

The representation Eq. (A2) is the same as the matrix
representation represented in Ref. [17]. The partition function
defined as the sum of the weights of all available configurations
with at least one particle is given by

ZL = Tr[(A + B + C + E)L − EL]. (A3)

The stationary density of the A, B, and C particles can be
written as

ρstat
A = Tr[A(A + B + C + E)L−1]

ZL

, (A4)

ρstat
B = Tr[B(A + B + C + E)L−1]

ZL

, (A5)

ρstat
C = Tr[C(A + B + C + E)L−1]

ZL

. (A6)

We can compute the density of the vacancies using ρstat
∅ =

1 − (ρstat
A + ρstat

B + ρstat
C ). Using the representation Eq. (A2),

Eqs. (A3)–(A6) can be calculated exactly. In the thermody-
namic limit L→ ∞, the density of the A particles and the
vacancies vary discontinuously approaching the critical point,
namely,

(i) For β � 2 and p = q = 0, we find a discontinuous
behavior as

ρstat
A =

{ 1
2 for α < 2

0 for α > 2
,

ρstat
∅ =

{ 1
2 for α < 2

1 for α > 2
,

and ρstat
B = ρstat

C = 0.
(ii) For α � 2 and p = q = 0, we find a discontinuous

behavior as

ρstat
A =

{ 1
2 for β < 2

0 for β > 2
,

ρstat
∅ =

{ 1
2 for β < 2

1 for β > 2
,

and ρstat
B = ρstat

C = 0.
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Phys. Rev. Lett. 89, 035702 (2002).
[17] U. Basu and P. K. Mohanty, Phys. Rev. E 82, 041117

(2010).
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