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Large deviations of cascade processes on graphs
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Simple models of irreversible dynamical processes such as bootstrap percolation have been successfully
applied to describe cascade processes in a large variety of different contexts. However, the problem of analyzing
nontypical trajectories, which can be crucial for the understanding of out-of-equilibrium phenomena, is still
considered to be intractable in most cases. Here we introduce an efficient method to find and analyze optimized
trajectories of cascade processes. We show that for a wide class of irreversible dynamical rules, this problem can
be solved efficiently on large-scale systems.
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I. INTRODUCTION

Large-scale cascading processes observed in physical and
biological systems can be described and understood by means
of stylized models of propagation on lattices or graphs. Over
the last 40 years, these models have found application to
problems arising in a number of different contexts, ranging
from competing interactions in dilute magnetic systems [1,2],
jamming transitions in glass formers and granular media [3],
epidemic spreading [4], and activation cascades in cortical [5]
and other biological networks [6] to the spread of information
and innovations in social models [7–11] and propagation
of liquidity shocks in financial interbank lending networks
[12,13]. In all these problems the basic units composing the
systems are discrete and undergo irreversible transitions from
an “inactive” state to an “active” one depending on the state
of their neighbors. Following recent works in the computer
science community [14], we refer to this class of dynamical
processes as models of progressive dynamics.

Theoretical works across several disciplines have focused
mostly on the mechanisms responsible for the emergence of
some collective behavior, explaining under what conditions
on the dynamical rule and the graph (or lattice) structure
large-scale propagations can be observed as an outcome of
typical realizations of the process, i.e., when starting from
random initial conditions. Because of the intrinsic nonlinearity
of the dynamics, a critical (or tipping) point usually separates
a region of parameters in which the dynamics typically occurs
only locally from a region of large-scale propagations. This
is exactly what occurs in celebrated models of statistical
physics, such as bootstrap and k-core percolation [1,15–17],
and zero-temperature Ising-like models [2,18], whose critical
properties have been extensively studied for several classes of
networks, such as d-dimensional lattices and random graphs.
Similarly, tipping points are observed in simple models of
binary decisions with externalities [7,9,10], providing an
explanation for the occurrence of abrupt changes in the
collective behavior of socioeconomic systems. These analyses
are usually performed either by simulating the evolution of the
dynamical rule and averaging over many (randomly drawn)
initial conditions, or by resorting to approximate descriptions
of the dynamics in the form of differential equations based on
mean-field and pair-approximation techniques [19,20].

While the average dynamical properties of these models
starting from random initial conditions are rather well under-
stood on general networks, their large deviations, describing
macroscopic behaviors that deviate considerably from the
average ones, are still a largely unexplored domain of research
that goes beyond the means of current methods of analysis.
Large deviations are of interest for at least two different
reasons: because they correspond to desired final states (e.g.,
extraordinarily large propagations of a small set of initially
active nodes) or because they correspond to an observed
final state of an unknown initial one. The application of
large-deviation analyses to the nonequilibrium dynamics of
interacting particle systems is a subject of intense study in
statistical physics [21]. Models of progressive dynamics offer
a sufficiently simple, though nontrivial, setting to extend these
studies to systems with complex interaction patterns such as
random graphs and complex networks.

In this paper we consider the problem of characterizing
dynamical trajectories with interesting nontypical statistical
properties in deterministic progressive models. In this class
of models, the choice of the initial conditions completely
determines the dynamical trajectory of the system. However,
because of the nonlinearity of the local update rule, even slight
differences in the initial conditions can result in completely
different collective behaviors. By averaging over all possible
initial conditions or drawing them at random, the macroscopic
quantities of interest are dominated by their typical behavior,
which can be very different from the observed one when a
particular choice of the initial conditions is made. On the con-
trary, we will provide here a method to estimate the statistical
properties of rare, but relevant, dynamical trajectories and find
the initial conditions that give rise to cascading processes with
some desired properties. Understanding under what conditions
a rare large-scale propagation may occur and estimating the
probability and other statistical properties of such an outcome
have remarkable practical applications in a variety of fields be-
yond physics, such as the study of the spread of information in
social networks, the problem of targeted silencing in gene regu-
latory networks, or the development of systemic risk measures
and control techniques in financial and infrastructure systems.

Our approach is based on a static representation of the
dynamical rules of deterministic progressive models that
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allows one to recast the study of their large deviations into
the evaluation of a partition function. In networked systems
this can be done by means of the cavity method and derived
message-passing algorithms. Even though the method we
propose is very general and can be applied to any deterministic
progressive dynamics with discrete degrees of freedom, in
the following we shall consider explicitly the linear threshold
model (LTM), a prototypical model for the analysis of cascade
processes on networks.

II. TYPICAL BEHAVIOR OF PROGRESSIVE DYNAMICS
ON GRAPHS

In this section we will present the cavity formalism for the
analysis of the typical behavior of trajectories in progressive
dynamics, from which we will recover previously known
results; the formal connection with the main result on large
deviations will be discussed in Appendix A. We consider a
generic deterministic progressive dynamics in discrete time
defined over a graph G = (V,E) and involving discrete state
variables x = {xi,i ∈ V }. For simplicity we shall assume
that there are only two states, xi = 0 called inactive and
xi = 1 called active, the generalization to more states being
straightforward. A vertex which is active at time t will remain
active at all subsequent times, while a vertex which is inactive
at time t can get activated at time t + 1 if some condition,
depending on the state of its neighbors in G at time t and
expressing the dynamical rule considered, is satisfied. For
instance, in the linear threshold model [8,11,22], the dynamics
is defined by the rule

xt+1
i =

{
1 if xt

i = 1 or
∑

j∈∂i wjix
t
j � θi,

0 otherwise,
(1)

where wij ∈ R+ are weights associated with directed edges
(i,j ) ∈ E, θi ∈ R+ are thresholds associated with i ∈ V , and
∂i denotes the set of neighbors of i in G. The model is strictly
related to the zero-temperature limit of the random-field
Ising model [2,18] and to the bootstrap percolation process
[1,15,16]. The active nodes at time t = 0 are called the seeds
of the progressive dynamics.

A. The direct dynamical problem

A peculiar property of a progressive process defined on a
graph G is that any realization of the process is in one-to-one
correspondence with a directed acyclic subgraph of G. Let
us consider a set of seeds and, for each time step t , draw a
directed edge connecting the nodes activated at time t to their
neighbors activating at later times. The final result is a directed
acyclic graph (DAG) as shown in Fig. 1 for an illustrative case.
When the initial conditions are drawn from a distribution, the
probability that a node i is active is given by the probability
that the node is in the set of seeds plus the probability that
it is not a seed but gets activated during the dynamics. The
latter is the probability that i is reached by directed paths
from the seeds in the ensemble of DAGs associated with the
initial distribution. When the underlying graph is a tree and the
initial conditions are drawn from a product measure, i.e., with
probability Pr{x0 = x} = ∏

i p
xi

i (1 − pi)1−xi , the probability
ρi(t) that a node i is active at time t can be computed exactly

FIG. 1. (Color online) An example of the relation between the
progressive models and directed acyclic graphs (DAGs). A graph of
six vertices undergoes a LTM with two seeds (vertices marked in red).
The weights on all edges are equal to 1 and the threshold is equal
to 2 for every node. The result of the dynamics is the DAG on the
right. The directions of the edges in the DAG represent the causal
relations behind node activations.

by a simple recursive approach. For instance, in the LTM, it is
given by

ρt
i = pi + (1 − pi)

〈
Pr
{
xt

i = 1
∣∣x0

i = 0
}〉

= pi + (1 − pi)
∑

I ⊆ ∂i∑
�∈I w�i � θi

∏
�∈I

χ t
�i

∏
k∈∂i\I

(1 − χt
ki), (2)

with

χt+1
ji = pj + (1 − pj )

∑
I ⊆ ∂j \ i∑
�∈I w�j � θj

∏
�∈I

χ t
�j

∏
k∈∂j\({i}∪I )

(
1 − χt

kj

)
.

(3)

The quantity χt
ji is a cavity marginal expressing the probability

that node j is active at time t in the absence of node i.
Due to the nature of the process, assuming that node i is
absent is equivalent to assuming that it is inactive; therefore
the causal structure implied by Eqs. (2) and (3) is exact on
the tree. When the underlying graph has loops, the recursive
equation is not exact. In this case, the DAG corresponding to a
single dynamical evolution can present multiple directed paths
connecting node i to the same seed (see, for instance, Fig. 1).
In this case the decorrelation assumption behind (2) and (3)
is not correct because two paths reaching i from different
neighbors could originate in the same seed and therefore they
might be correlated. This argument shows that the activation
probability of a node estimated by (2) and (3) is always an
upper bound of the real one. Despite this limitations, the local
treelike approximation gives approximately correct results on
sufficiently sparse graphs.

This cavitylike approach to study the time-dependent
dynamics of progressive processes on graphs was recently put
forward, in slightly different contexts, by several authors. In
particular, Ohta and Sasa have used a very similar approach to
study the zero-temperature dynamics of the random-field Ising
model on the Bethe lattice [18], while Karrer and Newman [23]
and Noël et al. [24] developed a similar method for the
susceptible-infected model of epidemic spreading.
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B. Relation to the bootstrap percolation problem

In bootstrap percolation [1], the sites of an empty lattice
are first randomly occupied with probability q, and then
all occupied sites with less than a given number m of
occupied neighbors are successively removed until a stable
configuration is reached. As in standard percolation, in the
limit of infinitely large graphs, the average properties of the
model are characterized by the existence of a critical density qc

of initially occupied sites below which the stable configuration
of the system is the empty one. Taking p = 1 − q and
interpreting empty (occupied) sites as active (inactive) nodes,
the bootstrap percolation process can be mapped exactly
on a LTM with uniform weights wij = 1, ∀ (i,j ) ∈ E, and
thresholds θi = ki − m, ∀ i ∈ V , where ki is the degree of
vertex i. We consider the simple case of a regular random graph
with degree K and uniform thresholds equal to θ for all nodes.
Because of the homogeneity of the graph, one can assume all
marginals χt

ij to be identical, obtaining for χ = limt→∞ χt the
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FIG. 2. (Color online) Plot of ρT vs ρ0 obtained by solving the
time-dependent equations (2) and (3) and the bootstrap percolation
equations (4) and (5) on regular random graphs of degree K = 3 (a)
and K = 4 (b), for threshold θ = 2. On increasing the duration T =
5,10,20,50,100 of the dynamics, the curves obtained using (4) and
(5) get closer to the solution (from right to left) of the corresponding
bootstrap percolation equations. The insets highlight the regions close
to the activation transitions.

self-consistent equation

χ = p + (1 − p)
K−1∑
n=�θ	

(
K − 1

n

)
χn(1 − χ )K−1−n. (4)

The final density of active nodes when each node can be a seed
with the same probability p is given by

ρ = p + (1 − p)
K∑

n=�θ	

(
K

n

)
χn(1 − χ )K−n. (5)

As expected, Eqs. (4) and (5) can be mapped exactly on the
standard self-consistent equations derived for the bootstrap
and k-core percolation processes on regular random graphs
[1,15,16]. Figure 2 displays the behavior of the final density
ρT of active nodes as a function of the density ρ0 of seeds
in two interesting cases with θ = 2 and K = 3 [Fig. 2(a)]
and K = 4 [Fig. 2(b)]. If we stop the dynamics at a finite
number of time steps T , e.g., T = 5, the activation process is
smooth in both cases. On increasing T , the curves for K =
4 become much steeper than for K = 3. In the limit T →
∞, corresponding to the static bootstraplike calculation, the
two cases have completely different behavior: the activation
transition is continuous for K = 3 and discontinuous for K =
4 (see the insets of Fig. 2). This is exactly the well-known
critical phenomenon observed in bootstrap percolation models
on Bethe lattices [1,16]. In general, for θ = 1,K − 1 the whole
graph is activated (ρ∞ = 1) continuously at a finite density
ρc

0, whereas for 1 < θ < K − 1 the activation is abrupt. The
generalization of the calculations to other values of the weights
and thresholds as well as to nonregular uncorrelated random
graphs is straightforward.

III. LARGE DEVIATIONS OF PROGRESSIVE
DYNAMICS ON GRAPHS

In this section we consider the inverse problem of dynami-
cal evolution, i.e., the problem of finding the initial conditions
that give rise to a desired final state. If we focus on the
behavior of some macroscopic observable, such as the number
of activated nodes in the final state as a function of the number
of seeds, the inverse problem corresponds to investigating the
large-deviation properties of the dynamics.

A. The inverse dynamical problem

Because of irreversibility, the trajectory xT = {x0, . . . ,xT }
representing the time evolution of the system can be fully
parametrized by a configuration t = {t1, . . . ,tN }, where ti ∈
T = {0,1,2, . . . ,T ,∞} is the activation time of node i. We
conventionally set ti = ∞ if i does not activate within an
arbitrarily defined stopping time T . In general, if the number
of possible single-node trajectories is n, we can use a discrete
variable taking n states. Given a set of seeds S = {i : ti = 0},
the solution of the dynamics is fully determined for i /∈ S by
a set of relations among the activation times of neighboring
nodes, which we denote by ti = φi({tj }) with j ∈ ∂i. In terms
of activation times, the dynamical rule for the LTM translates
into ti = φi({tj }) with

φi({tj }) = min
{
t ∈ T :

∑
j∈∂i

wji1[tj < t] � θi

}
. (6)
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Admissible trajectories in this model correspond to vectors
t such that �i = 1[ti = 0] + 1[ti = φi({tj })] equals 1 for
every i.

In this static representation, one can introduce an energetic
term E(t) that gives different probabilistic weights to different
trajectories. The path probability associated with a configura-
tion of activation times is

P (t) = 1

Z
e−βE(t)

∏
i∈V

�i(ti ,{tj }j∈∂i) (7)

with Z = ∑
t e

−βE(t) ∏
i �i(ti ,{tj }j∈∂i). The large-deviation

properties of the dynamical process can be studied by eval-
uating the static partition function for the dynamic trajectories
with an opportunely defined energetic term. Notice that the
value chosen for T will affect the “speed” of the propagation:
a lower value of T will restrict the optimization to “faster”
trajectories, at the (possible) expense of the value of the
energy.

The most general form of energy function we consider
is E(t) = ∑

i Ei(ti) where Ei(ti) is the “cost” (if positive, or
“revenue” if negative) incurred by activating vertex i at time
ti . In the following, we set Ei(ti) = μi1[ti = 0] − εi1[ti < ∞],
where μi is the cost of selecting vertex i as a seed, and εi is
the revenue generated by the activation of vertex i. Variants
with arbitrarily signed parameters μi and εi are also possible.
Trajectories with small energy will have a good trade-off
between the total cost of their seeds and the total revenue
of active nodes. For ε = 0, the Boltzmann weight reproduces
the dynamics of direct propagation from randomly drawn sets
of seeds discussed in the previous section. In this case, it can be
shown that the equations become equivalent to those presented
in (2) and (3) for direct propagation analysis. On the other hand,
in the case ε > 0, the causal representation of the dynamics as
a DAG is not sufficient to solve the optimization problem as
this now implies a backward propagation of information from
time t = ∞ to time t = 0.

B. Derivation of the belief-propagation equations

The representation of the dynamics as a high-dimensional
static constraint-satisfaction model over discrete variables
(i.e., the activation times) defined on the vertices of a graph
makes it possible to apply the cavity method [25] and to
develop efficient message-passing algorithms, such as belief
propagation (BP) and max-sum (MS). As usual in combina-
torial optimization, the variables and their constraints can be
represented by means of a factor graph. However, in the static
representation of the dynamics, every constraint �i depends
on the values of all activation times in the neighborhood of
node i; therefore nearby constraints �i and �j share the
two variables ti and tj , leading to the appearance of short
loops in the corresponding factor graph. In order to eliminate
these systematic short loops, we employ a dual factor graph
in which variable nodes representing the pair of times (ti ,tj )
are associated with edges (i,j ) ∈ E, while the factor nodes
are associated with the vertices i of the original graph G and
enforce the hard constraints �i and the contribution Ei from
i to the energy. Figure 3 gives an illustrative example of such
a dual construction. Whenever the original graph is locally a

i j

k

ti tj

tk

Hij

ti tj( )

i j

k

(a) (b) (c)

FIG. 3. Dual factor graph representation for the spread optimiza-
tion problem. (a) Original graph. (b) Naive factor graph formulation,
including small loops. (c) Dual factor graph formulation, with
variables nodes (ti ,tj ) and (ti ,tk) and factor nodes �i,�j ,�k . The
factor �i must ensure, additionally to the dynamical constraint for
vertex i, that ti components of (ti ,tj ) and (ti ,tk) coincide.

tree, the dual factor graph is such as well. This property allows
one to employ the cavity method. Since the variables appearing
in the dual graph are pairs of times (ti ,tj ), the full distribution
can be parametrized in terms of cavity marginals Hij (ti ,tj ) for
pairs of times. Let us consider the path probability in (7) and
marginalize over all variables but j to compute the probability
Pj (tj ) that node j is activated at time tj . On an infinite tree we
have

Pj (tj ) ∝
∑

{ti }i∈∂j

e−βEj (tj )�j (tj ,{ti})
∏
i∈∂j

Hij (ti ,tj ), (8)

where the cavity marginal Hij (ti ,tj ) denotes the probability
that nodes i and j are activated at times ti and tj in the absence
of the constraint �j and energetic term Ej . It satisfies the
recursive relation

Hij (ti ,tj ) ∝ e−βEi (ti )
∑
{tk}

�i(ti ,{tk})
∏
k

Hki(tk,ti), (9)

where k ∈ ∂i\j . On a general graph, (9) defines the belief-
propagation equations which are valid under the hypothesis
of fast decay of correlations with the distance or the replica
symmetric (RS) assumption [25]. Under this assumption, the
statistical properties of the system are described by a unique
Gibbs state (i.e., replica symmetry), and the BP equations
admit a unique solution.

Given a solution of (9), the marginal probability that
neighboring nodes i and j are activated at times ti and tj
is Pij (ti ,tj ) ∝ Hij (ti ,tj )Hji(tj ,ti). Equations (9) allow one to
access the statistics of atypical dynamical trajectories (e.g.,
entropies of trajectories or distribution of activation times),
but it involves a number of terms which is exponential in the
vertex degree. An equivalent but tractable expression can be
obtained as follows. For 0 < ti < ∞, Eq. (9) can be expressed
as

Hij (ti ,tj ) ∝ e−βEi (ti )
∑

θ1 � θi − wji1[tj � ti − 1]
θ2 < θi − wji1[tj < ti − 1]

Q
ti
ij (θ1,θ2), (10)

where Q
ti
ij is the two-dimensional convolution of func-

tions f
ti
k (θ1,θ2) = ∑

tk
δ(θ1,wki1[tk < ti − 1])δ(θ2,wki1[tk �

ti − 1])Hki(tk,ti) for k ∈ ∂i \ j .
In the limit β → ∞, with a proper rescaling of the

messages, (9) gives the max-sum equations and algorithm,
which can be used to find explicit solutions at minimum
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energy. In this limit, the optimization of the dynamics of the
LTM correspond to the spread maximization problem, which
is computationally hard even to approximate in the worst
case [26].

IV. RESULTS ON ENSEMBLES OF RANDOM GRAPHS

On ensembles of (infinitely large) random graphs, the
solution of the BP equations (9) can be computed at any
finite β using a population dynamics method in the single-link
approximation [25].

A. Homogeneous solution on random regular graphs

For random regular graphs (RRG) and considering a
completely homogeneous setup (i.e., uniform weights wij = 1
∀ (i,j ) ∈ E, uniform thresholds θi = θ , ∀ i ∈ V , uniform
costs μi = μ, ∀ i ∈ V , and uniform revenues εi = ε, ∀ i ∈ V ),
the replica symmetric cavity marginals are expected to be
uniform; therefore the population dynamics can be replaced
by a self-consistent equation for a single representative BP
marginal H (t,s). Since all incoming links are assumed to
have the same set of messages, one can group equal messages
together, introducing a multinomial distribution and obtaining
the following system of nonlinear equations:

H (0,s) ∝ e−βμpK−1
0 , (11a)

H (t,s) ∝
∑

n− + n+ + n0 = K − 1
n− < θ − 1[s < t − 1]

θ − 1[s � t − 1] � n− + n0

(K − 1)!

n−!n+!n0!
p

K−1−n−n0
t m

n−
t H (t − 1,t)n0 for 0 < t � T , (11b)

H (∞,s) ∝ e−βε
∑

n−�θ−1−1[s<T ]

(
K − 1

n−

)
[H (T ,∞) + H (∞,∞)]K−1−n− mn−∞ , (11c)

where we defined the cumulative messages pt = ∑
t ′�t H (t ′,t)

and mt = ∑
t ′<t−1 H (t ′,t). The normalization constant is just

the sum of all messages. The system of equations could be
further simplified from O(T 2) messages to O(T ) by exploiting
the fact that H (t,s) = H (t,sgn(t − s + 1)).

The behavior of (11) can be studied by varying μ, ε, β,
and T for any given assignment of K and θ . We consider
the representative cases K = 3,θ = 2 and K = 4,θ = 2 in the
(ε,μ) plane at fixed T and β = 1; then we will comment on
the effects of varying T and β. As for the direct dynamics
in Sec. II B, we shall consider as observables the density of
seeds ρ0 and the final density (at time T ) of active nodes
ρT . For ε = 0 and T → ∞, we recover known results for the
static properties of bootstrap percolation [1,15,16] in Sec. II B.
Although for finite T both cases present a continuous behavior
at ε = 0, the two activation mechanisms are qualitatively
different and this difference is amplified in the large-deviation
regime.

B. Case K = 3,θ = 2

For random initial conditions (ε = 0), the density ρT of
active nodes in the final state is a continuous function of ρ0.
Figure 4(a) shows that under optimization the curves develop a
gap in the possible values of ρ0 and ρT obtained by varying μ.
This means that (for sufficiently large ε and β) a value μ∗ exists
at which both ρ0 and ρT undergo a discontinuous transition,
with coexistence and hysteresis phenomena [see Fig. 4(b)]. As
β increases the minimum density of seeds admitting full spread
(ρT = 1) gradually approaches the values obtained by the MS
algorithm (the zero-temperature limit of the BP equations).
The total marginal computed from (11) gives the probability
P (t) that a node gets activated at time t . The activation time
distribution P (t) is displayed in Fig. 4(c) for T = 100. While

for ε = 0 it always decays exponentially, for ε > 0 it develops
a power-law shape when μ is increased towards the region in
which optimization is effective. This means that in order to
optimize the dynamics, one can decrease the number of seeds
at the cost of generating an activation process that proceeds at
a slower pace. The longer the allowed duration T , the smaller
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FIG. 4. (Color online) (a) Parametric plot of ρT vs ρ0 obtained by
solving the belief-propagation equations in the single-link approxima-
tion on regular random graphs of degree K = 3, for threshold θ = 2,
duration T = 20, and ε = 0,0.1,0.4,1. The vertical arrow indicates
the minimum density of seeds (ρ0 ≈ 0.253) necessary for the total
activation obtained by the max-sum algorithm on finite graphs of size
|V | = 10 000. (b) Curves ρT (μ) for ε = 0 (black dashed line) and
0.4 (red full line). The latter are obtained by following the upper and
lower branches of the solution across the transition. (c) Activation
time probability P (t) obtained by computing the total BP marginals
in a dynamics of duration T = 100, for ε = 0.4 and different values
of μ.
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for T = 20 in random regular graphs of degree K = 3 and thresholds
θ = 2. The curves are obtained in the single-link approximation using
a damping procedure to improve the convergence. Black crosses
indicate the location of the thermodynamic phase transition (crossing
of the free-energy branches) between a full spread (F.S.) and a low
spread (L.S.) phase. The upper and lower curves �1 and �2 in the same
plot indicate the spinodal lines, obtained for increasing values of the
damping factor α from 0 to 0.9. (c) shows the hysteresis phenomenon
observed in the density of activated nodes ρT as a function of the
chemical potential μ for ε = 0.4. The same phenomenon for ε = 0.75
is shown in (a), where we see that the lack of convergence for α = 0
is cured by improving the damping to α = 0.9.

the minimum density of seeds required to reach full spread
under optimization, but the larger the tail of the distribution.

A tentative phase diagram in the (μ,ε) plane, corresponding
to the solution of (11) with T = 20,β = 1, is displayed in
Fig. 5. The results are only partially correct because the BP
equations do not converge for all values of the parameters. On
increasing ε from 0, the transition is still continuous, until we
encounter a tricritical point C = (μ∗,ε∗) where the activation
transition becomes discontinuous with the appearance of a
coexistence phase that grows with ε > ε∗ ≈ 0.2. For moder-
ately small values of ε (e.g., ε = 0.4 in the bottom panel of
Fig. 5), the BP equations converge to their fixed points, and
the behavior of the system can be correctly studied for all
values of μ. We used a cooling and annealing scheme in μ at
fixed ε that allowed us to follow the upper (high ρT , low μ)
and lower (low ρT , high μ) branches of the curve ρT (μ) even
into the coexistence region. The coexistence phase is limited
by two spinodal lines l1 and l2 departing from (μ∗,ε∗) and
indicating the location where the two branches of solutions
terminate. It is possible to locate the discontinuous phase
transition by comparing the free energy of the two solutions
in the coexistence region (black crosses). The meaning of the
spinodal lines becomes evident on looking at the bottom panel
of Fig. 5, in which we show the behavior of the solutions across
the coexistence region for ε = 0.4 [see also Fig. 4(b)].

Surprisingly, the spinodal line l2 (open symbols) seems to
present a nonmonotonic behavior with ε. This result is just a
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FIG. 6. (Color online) Convergence time (number of iterations)
of BP equations for K = 3, θ = 2 in the single-link approximation
at ε = 0.4 as a function of μ and damping factor α = 0.9. Different
symbols and colors correspond to different values T of the length of
the dynamics. At each value of T we reported two different curves
(open and full symbols) corresponding to experiments performed
increasing or decreasing the values of μ (in this way following the
two branches of solutions).

nonphysical artifact of the lack of convergence of the iteration
procedure used to compute the fixed points of (11). In order
to improve convergence also for large values of ε, we used
a “damped” update rule, in which at each iteration, every
message is replaced by a linear combination of its old and
new values, i.e., H old(t,s) ← αH old(t,s) + (1 − α)H new(t,s)
with α ∈ [0,1]. On increasing the damping factor α, the
convergence properties of (11) are improved and the line l2
correctly moves smoothly towards larger values of μ (the red
line with downward triangles). In the central panel of Fig. 5
we show the effect of nonconvergence on the curves ρT (μ) for
α = 0,0.25,0.5,0.9. The top panel reports the same plot as the
bottom one, namely, ρT (μ), for a larger value of ε where the BP
equations do not converge without damping. The improvement
obtained with a damping factor α = 0.9 is evident.

A more sophisticated way of stabilizing the solution scheme
for the BP equations (11) is that of using a population of
Npop � 1 messages. Solving (11) using population dynamics
is very time consuming, but on RRGs the results with Npop �
103–105 are in agreement with the results obtained using the
damped BP equations.

Figure 6 displays the number of iterations tconv necessary
to reach the fixed point of (11) as a function of μ for
ε = 0.4 with damping factor α = 0.9. In the region where
the optimization of the dynamical process is effective, the
convergence time grows continuously until it diverges. For
small values of T (e.g., T = 20) there is no divergence. At
larger T the BP equations stop converging at values of μ that
decrease with increasing T . The dependence on T at fixed
values of μ is reported in Fig. 7 for ε = 0.4. On the contrary,
the lack of convergence appears abruptly at the spinodal line
(independently of the damping factor α) when μ is decreased
from large positive values (Fig. 6).

The above results show that, when the infinite time
limit of the direct dynamics presents a continuous activation
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FIG. 7. (Color online) Convergence time of the BP equations as
a function of T for different values of μ in random regular graphs
with K = 3, θ = 2, and ε = 0.4.

transition, the optimization of the spreading process is possible
and effective. One could also verify how rare the optimal
trajectories are by computing their entropy and comparing
it with the entropy of random trajectories. We did this in Fig. 8
where we plot the entropy s of the initial conditions that lead
to a full spread as a function of the density of seeds. The
result for N = 30 is obtained by explicit enumeration, whereas
for larger systems (N = 50,100) we used a generalization of
the cavity method that allows us to fix a global constraint
(the number of seeds) by introducing an additional set of
messages that flow over a spanning tree superimposed on
the original graph (see [27], Appendix B). The curves for
the limit of infinite random regular graphs are obtained by
computing the entropy, in the cavity approximation, from the
fixed-point solution of (11). These quantities for nontypical
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FIG. 8. (Color online) Entropy per site S/N of the solutions of the
full spread problem on regular random graphs of degree K = 3 and
threshold θ = 2, for N = 30,50,100,∞ vs seed density ρ0. For each
N the upper line corresponds to the normalized binomial distribution
(i.e., per site entropy of seeds in the absence of optimization) and
the lower one to the entropy per site of fully spreading seeds. Inset:
Probability P of randomly selecting a fully spreading set of seeds for
the same set of parameters.

trajectories are compared with the entropy curves associated
with a random choice of initial conditions with fixed density
of active nodes ρ0, which is given by a binomial sampling
of initial seed nodes. When the curves deviate from the
binomial, the probability of choosing randomly an optimal
set of seeds becomes exponentially small (inset in Fig. 8).
In the infinite system, this event is governed by a zero-one
law.

C. Case K = 4,θ = 2

In this case, the discontinuous behavior is already present at
ε = 0 in the limit of large T . For T = 20 the curve of ρT vs ρ0

in Fig. 9 is very steep but continuous; however, the underlying
dynamics is qualitatively different from that of K = 3,θ = 2
as discussed in Sec. II B. The plot of ρT vs ρ0 in Fig. 9(a)
shows that almost no improvement in the density of activated
nodes ρT is obtained by increasing ε > 0. Indeed, for ε > 0,
the BP equations converge as long as μ is smaller than the
critical value corresponding to the abrupt transition for ε = 0;
then they stop converging in the region where optimization is
expected to be effective [see also Fig. 9(b)]. Remarkably, the
MS algorithm (supplemented by a reinforcement method [28])
finds full spread solutions that are considerably better than the
best BP results (the arrow in Fig. 9).

The activation probability P (t) is very different from that
in the previous case. For random seeds (ε = 0) the shape of
P (t) is not monotonically decreasing, but it develops a second
peak that moves towards large times when ρ0 approaches
(from above) the critical value corresponding to the abrupt
activation transition. At finite T , the existence of such a peak is
a precursor of the discontinuous transition that occurs only for
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FIG. 9. (Color online) (a) Parametric plot of ρT vs ρ0 obtained
by solving (11) in the single-link approximation on regular random
graphs of degree K = 4, for threshold θ = 2, duration T = 20, and
ε = 0,0.2,0.5. No improvement with respect to the random case
(ε = 0) is obtained by performing optimization (ε = 0.2,0.5). The
vertical arrow indicates the minimum density of seeds (ρ0 ≈ 0.094)
necessary for the total activation obtained by the max-sum algorithm
on finite graphs of size |V | = 10 000. (b) Curves ρT (μ) for ε = 0
(black dashed line) and 0.5 (red full line). For ε = 0.5 the BP
equations do not converge in a region of values of μ close to
the discontinuous transition. (c) Activation time probability P (t)
obtained by computing the total BP marginals in a dynamics of
duration T = 100, for ε = 0 and different values of μ (for ε = 0.5
we obtain exactly the same behavior).
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T → ∞. In this limit, the position of the second peak diverges
as ρ0 approaches the critical point from above. Figure 9(c)
shows the behavior of P (t) for ε = 0. As long as the BP
equations converge, for ε > 0 the behavior is the same as
that observed for ε = 0, with a second peak that appears
and gradually moves towards larger times when increasing
μ and approaching the threshold of full activation. The peak
identify a “critical mass” of nodes whose dynamical properties
are strongly correlated and that are activated almost at the
same time. The fact that P (t) does not change for ε > 0 is a
clue that a large fraction of variables are strongly correlated
already at ε = 0. The lack of convergence could be due to
the onset of long-range correlations responsible for the abrupt
activation for ε = 0 (and T = ∞). It also suggests that there
are regions of the parameters in which we expect the space of
trajectories to display a complex geometrical structure (e.g.,
clustering phenomena [29,30]) that cannot be captured by the
simple replica symmetric [25] cavity assumption employed
here.

Since the effect of the optimization is that of selecting
trajectories that allow to postpone as much as possible of this
sudden activation, the possibility of controlling the trade-off
between the total propagation time T and the number of seeds
ρ0 required to achieve a certain ρT is a potentially useful
feature of the proposed message-passing algorithms.

The fact that the lack of convergence of the single-link
BP equations is here very different from that observed in the
case of continuous activation processes can be understood also
from the plot of the convergence time of the single-link BP
equations in Fig. 10, which turns out to be almost independent
of T . The nonconvergence persists if we consider a population
of Npop � 1 messages in the single-link approximation and,
for the same range of parameter values, it occurs also when
solving BP equations on single instances of graphs. In Fig. 11,
we show the phase diagram in the (μ,ε) plane for T = 20,β =
1. Already at very small values of ε the BP equations stop
converging in a region of values of μ that grows with ε. The
open symbols show that no improvement is obtained using the
damping procedure.
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FIG. 10. (Color online) Convergence time (number of iterations)
of BP equations for K = 4, θ = 2 in the single-link approximation
at ε = 0.5 as a function of μ for different values of T .
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FIG. 11. (Color online) (b) Phase diagram as a function of ε

and μ for T = 20 in random regular graphs of degree K = 4 and
thresholds θ = 2. Full spread (F.S.) and low spread (L.S.) regions are
marked. The curves represent the lines at which BP stops converging
in the single-link approximation. The damping procedure (results for
α = 0.9) does not improve the convergence. The inset highlights the
behavior for very small values of ε. (c) In this region we can still
observe the BP equations converging at some nonzero ε. (a) The
behavior of the density of activated nodes ρT as a function of the
chemical potential μ for larger values of ε where the BP equations
stop converging in a finite interval of values of μ (shaded area).

D. Erdős-Rényi random graphs

To relax the assumption of complete homogeneity of the
graphs, we also considered Erdős-Rényi (ER) random graphs,
whose degree distribution is a Poisson distribution of average
z. In this case we take a population of Npop = 103–105

cavity marginals to perform the population dynamics in the
single-link approximation. At each update iteration, a degree
value k is drawn from the degree distribution of the random
graph under study and k messages are chosen randomly
from the populations. One of the k messages is replaced by
the value computed using the remaining k − 1 messages as
input of the BP equations. The update rule is iterated until
convergence. Since evaluating the convergence of the whole
population of messages is computationally demanding, we
assumed a convergence criterion based on a global observable.
More precisely, we required that the difference between the
computed values of the average activation time τ = ∑

t tP (t)
before and after a sweep of updates over the whole population
is smaller than a fixed tolerance value (we fixed this value to
be 10−3). The results, for average degree z = 5 and threshold
values θi = �(ki + 1)/2�, are shown in Fig. 12. For ε = 0.2,
the BP equations converge in the whole range of values of
μ and we obtain a slight optimization of the trajectories
compared to the random case (ε = 0). With increasing ε,
convergence issues are possible. However, on given instances
of ER random graphs, one can successfully use the MS
algorithm, which is able to activate the full system with a
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FIG. 12. (Color online) (a) Parametric plot of ρT vs ρ0 obtained
by solving the BP equations in the single-link approximation on
Erdős-Rényi random graphs of average degree z = 5 (minimum
degree kmin = 1 and maximum degree kmax = 16), with thresholds
θi = �(ki + 1)/2�, duration T = 20, and ε = 0,0.2. (b) Curves ρT (μ)
for ε = 0 (black dashed line) and 0.4 (red full lines). (c) Activation
time probability P (t) obtained by computing the total BP marginals
in a dynamics of duration T = 20, for ε = 0 (black circles and
diamonds) and 0.2 (red squares and triangles) and different values
of μ = 0.8,1.0.

density of seeds much lower than the values obtained using
the single-link BP approach (see the arrow in Fig. 12).

V. CONCLUSIONS

The study of inverse dynamical problems on large graphs
provides an exciting application of message-passing algo-
rithms. The use of single-time cavity marginals for the study
of progressive dynamics from randomly distributed seeds is
fairly general and it can be straightforwardly applied to models
with stochasticity. On the contrary the powerful two-times
cavity method developed for the inverse dynamical problem
is limited to deterministic settings, such as the LTM, that
already include a series of relevant real-world problems. The
analysis of large deviations in stochastic progressive models,
such as the independent cascades model or the susceptible-
infected epidemic model, can be achieved coupling the current
representation with the stochastic optimization approach based
on a multilevel message-passing construction proposed in [31].
The present analysis paves the way for the derivation of effi-
cient message-passing algorithms for the study of dynamical
optimization problems. In fact, the zero-temperature limit of
the BP equations provides a max-sum algorithm that can be
used to find optimal configurations of seeds ensuring a desired
final state, with applications to the design of cost-efficient viral
marketing campaigns in social networks and optimal vaccina-
tion strategies against epidemic spreading. On the one hand the

fact that a max-sum algorithm takes into account all dynamical
constraints makes it more powerful than any centrality-based
heuristics usually considered, but its distributed nature makes
it much faster than centralized optimization methods based on
linear programming and simulated annealing.
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APPENDIX A: BP EQUATIONS IN THE CAVITY-TIMES
REPRESENTATION

Recent works concerning the zero-temperature dynamics of
the random-field Ising model [18] and the susceptible-infected
model of epidemic spreading [23] have suggested that in the
absence of optimization, i.e., when the seeds are randomly
drawn, the dynamics can be correctly analyzed using only
single-time cavity marginals. In fact, when εi = 0, ∀ i ∈ V ,
the two-times formalism that we introduced can be reduced
to the set of equations (3) for χi�(t) = Pr−�{xt

i = 1}, i.e., the
probability that node i is active at time t in the absence of the
neighbor �.

In order to show the equivalence, it is convenient to
introduce a different representation of the dynamic rule. For
each directed edge (i,�), the variable ti� represents the time at
which node i would be activated in the absence of node �, and
for i /∈ S, it satisfies the iterative equation

ti� = min∑
j∈∂i\� wji1[tj i<t]�θi

t , (A1)

whereas ti� = 0 ∀ � ∈ ∂i if i ∈ S. As happens for the activation
times {ti}, also the equations for the cavity times admit a
unique solution for a given choice of S, which is in one-to-one
correspondence with the solution of the single-ti model. For
convenience, let us define

fi({tk}k∈∂i) = min

{
t :
∑
k∈∂i

wki1 [tk < t] � θi

}
, (A2a)

fij ({tk}k∈∂i\j ) = min

⎧⎨
⎩t :

∑
k∈∂i\j

wki1 [tk < t] � θi

⎫⎬
⎭ ,

(A2b)

when i is not a seed, ti� satisfies the iterative equations ti� =
fi�({tk}k∈∂i\�). In order to optimize the trajectories and
average over the initial conditions, we introduce the messages
Ĥi�(ti�,t�i), defined over the cavity times, that represent the
joint probability that i and � would be activated at times
respectively ti� and t�i in the absence of the other. The messages
satisfy the following BP equations:

Ĥi�(ti�,t�i) ∝
∑

{tki ,tik}k∈∂i\�

∏
k∈∂i\�

Ĥki(tki ,tik)

{∏
k∈∂i

δ(tik,fik({tk′i}k′∈i\k))e−εi δ(fi ({tki }k∈∂i ),∞) +
∏
k∈∂i

δ(tik,0)e−μi

}

=
∑

{tki }k∈i\�

δ(ti�,fi�({tki}k∈∂i\�))e−εi δ(fi ({tki }k∈∂i ),∞)
∏

k∈∂i\�
Ĥki(tki ,fik({tk′i}k′∈∂i\k)) + δ(ti�,0)

∏
k∈∂i\�

Ĥki(tki ,0)e−μi .
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When εi = 0 ∀ i, the hypothesis that the messages {Ĥi�(ti�,t�i)} do not depend on the backward cavity times {t�i} is self-consistently
satisfied, and the BP equations can be easily reduced to single-time quantities Ĥi�(ti�). To show this, we assume on the right-hand
side that Ĥki(tki ,y) = Ĥki(tki) and we get the result that Ĥi�(ti�,t�i) does not depend on the second argument, i.e.,

Ĥi�(ti�) ∝
∑

{tki }k∈∂i\�

{δ(ti�,fi�({tki}k∈∂i\�)) + δ(ti�,0)e−μi }
∏

k∈∂i\�
Ĥki(tki). (A3)

This implies that the hypothesis is self-consistent and will be verified at every iteration if it is verified at the initial one (e.g., if
the messages have uniform initialization).

We need now to consider time-cumulative quantities, such as the probability χi�(t) = ∑
ti��t Ĥi�(ti�) that node i is active at

time t in the absence of node �. Let us first define the following sequence of increasing sets Ut :

Vt =
⎧⎨
⎩{tki} :

∑
k∈∂i\�

wki1[tki < t] � θi ∧
∑

k∈∂i\�
wki1[tki < t − 1] < θi

⎫⎬
⎭ , Ut =

⎧⎨
⎩{tki} :

∑
k∈∂i\�

wki1[tki < t] � θi

⎫⎬
⎭ ,

Ut+1 = Ut ∪ Vt+1, Ut ∩ Vt+1 = ∅, 1[Ut ] =
∑

0<t ′�t

1[Vt ′ ] =
∑

0<t ′�t

δ(t ′,fi�({tki}k∈∂i\�)).

Let us compute the time-cumulative quantities

χi�(t) =
∑
ti��t

Ĥi�(ti�) ∝
∑

{tki }k∈∂i\�

⎧⎨
⎩

∑
0<ti��t

δ(ti�,fi�({tki}k∈∂i\�)) + e−μi

⎫⎬
⎭

∏
k∈∂i\�

Ĥki(tki)

= e−μi +
∑

{tki }k∈∂i\�

1

⎡
⎣ ∑

k∈∂i\�
wki1[tki < t] � θi

⎤
⎦ ∏

k∈∂i\�
Ĥki(tki)

= e−μi +
∑

{tki }k∈∂i\�

∑
{xk=0,1}

∏
k∈∂i\�

δ(xk,1[tki < t])1

⎡
⎣ ∑

k∈∂i\�
wki1[tki < t] � θi

⎤
⎦ ∏

k∈∂i\�
Ĥki(tki)

= e−μi +
∑

{xk=0,1}
1

⎡
⎣ ∑

k∈∂i\�
wkixk � θi

⎤
⎦ ∏

k∈∂i\�

∑
tki

Ĥki(tki)δ(xk,1[tki < t])

= e−μi +
∑

{xk=0,1}
1

⎡
⎣ ∑

k∈∂i\�
wkixk � θi

⎤
⎦ ∏

k∈∂i\�

{
xk

∑
tki<t

Ĥki(tki) + (1 − xk)
∑
tki�t

Ĥki(tki)

}

= e−μi +
∑

{xk=0,1}
1

⎡
⎣ ∑

k∈∂i\�
wkixk � θi

⎤
⎦ ∏

k∈∂i\�
{xkχki(t − 1) + (1 − xk)[1 − χki(t − 1)]} .

Denoting by pi = e−μi /(1 + e−μi ) the probability of choosing i as a seed, setting the initial conditions χi�(0) = pi ∀ i and fixing
the normalization factor (1 + e−μi )−1 = 1 − pi , we obtain

χi�(t + 1) = pi + (1 − pi)
∑

{xk=0,1}
1

⎡
⎣ ∑

k∈∂i\�
xkwki � θi

⎤
⎦ ∏

k∈∂i\�
{xkχki(t) + (1 − xk)[1 − χki(t)]}, (A4)

from which we can compute finally the density of active
nodes ρ(t) = 1

N

∑
i ρi(t) [see also (2)]. Apart from the obvious

differences in the details of the dynamical update, the single-
link version of (A4) (assuming all χki identical) is substantially
equivalent to Eq. (4) in [18].

We remark that the two-times joint probability introduced
in our BP formulation is more than a technical artifact;
on the contrary, it is quite crucial to allow information to
flow backwards in time when optimizing over the final state
(εi > 0).

APPENDIX B: RELATION TO THE DYNAMIC CAVITY
EQUATIONS

Inspired by previous works combining dynamical mean-
field theories (such as the dynamical replica theory and gener-
ating functional approaches) with the cavity method [32–34],
several authors have recently introduced a general formalism
to study nonequilibrium dynamical processes on sparse graphs
under the name of the dynamic cavity method [35–37].
The dynamic cavity method has also strong mathematical
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similarities with the application of the cavity analysis to the
path-integral representation of quantum spin systems [38,39].

It is easy to show that in the absence of optimization
(εi = 0, ∀ i ∈ V ), the belief-propagation equations presented
in the main text can be viewed as a simplified version,
valid only for microscopically irreversible processes, of the
dynamic cavity equations. To this end, we adopt a formulation
similar to that used by Neri and Bollé [35] by considering
the path probability P (xt |ht ) of a trajectory xt = {x0, . . . ,xt }
with xt = {xt

1, . . . ,x
t
N } in the presence of an external field

ht = {h0, . . . ,ht }. The path probability can be written in terms
of the marginals computed on a cavity graph in which node i

is removed as

P (xt |ht ) = P(i)
(
xt |ht + ut

(i)

) t∏
s=1

W
[
xs

i

∣∣xs−1; hs
i

]
p0
(
x0

i

)
, (B1)

where ut
(i) is an auxiliary external field acting over the neigh-

bors of i and introduced to keep track of the directed influence
of i over them throughout the dynamics. For simplicity we
have taken a factorized distribution over the initial conditions.
By summing (B1) over all possible trajectories of all nodes
j �= i, we get the local marginal Pi(xt

i |ht ) that satisfies the
equation

Pi

(
xt

i

∣∣ht
)

=
∑
yt

∂i

P(i)
(
yt

∂i

∣∣ht + ut
(i)

) t∏
s=1

W
[
xs

i |ys−1
∂i ; hs

i

]
p0
(
x0

i

)

=
∑
yt−1

∂i

P(i)
(
yt−1

∂i

∣∣ht−1 + ut−1
(i)

) t∏
s=1

W
[
xs

i

∣∣ys−1
∂i ; hs

i

]
p0
(
x0

i

)
,

(B2)

where yt

∂i
is the joint trajectory of the neighbors of i up

to time t , and the last passage comes from the fact that
the dynamics is parallel and the transition probability for
variable i at time t depends only on the states of neighbors
at time t − 1. Exploiting the treelike assumption, we can
express the cavity marginal for the neighbors of i in factorized
form,

P(i)
(
yt−1

∂i

∣∣ht−1 + ut−1
(i)

) ∝
∏
j∈∂i

P(i)j
(
yt−1

j
|ht−1

j + ut−1
(i)j

)
. (B3)

In the present case, we have hs
j = −θj and us

(i)j = wijx
s−1
i for

all times s > 0, while the transition probability is given by the
deterministic update rule as follows:

W
[
xs

i = 0
∣∣ys−1

∂i ; hs
i

] = 1

[∑
k∈∂i

wkiy
s−1
k < θi

]
, (B4)

W
[
xs

i = 1
∣∣ys−1

∂i ; hs
i

] = 1

[∑
k∈∂i

wkiy
s−1
k � θi

]
. (B5)

For a given directed edge (i,j ), thus the local field can be
univocally parametrized in terms of the variable in the removed
node, leading to the following set of recursive equations for
the cavity marginals P(�)i(xt

i |ht
i + ut

(�)i) ≡ Pi�(xt
i,x

t
�):

Pi�

(
xt

i,x
t
�

) ∝ p0
(
x0

i

) ∑
{xt−1

j }j∈∂i\�

t∏
s=1

W
[
xs

i

∣∣xs−1
∂i ; −θi

]

×
∏

j∈∂i\�
Pji

(
xt−1

j ,xt−1
i

)
. (B6)

A path probability is now a vector of O(4t+1) variables,
but further reduction is possible because the dynamics is
microscopically irreversible. The full sequence of t + 1 binary
values taken by xt

i = {x0
i , . . . ,x

t
i } can be encoded in a single

integer ti = {0, . . . ,t} representing the time at which the
variable i flips from 0 to 1 (with the convention ti = 0 for a
seed). With this parametrization, Pij (xt

i,x
t
j ) becomes Qij (ti ,tj )

and the dynamic cavity equations (B6) take the form

Qi�(ti ,t�) ∝ p0(δti ,0)
∑

{tj }j∈∂i\�

1

⎡
⎣∑

j∈∂i

wji1[tj < ti − 1] < θi

⎤
⎦ 1

×
⎡
⎣∑

j∈∂i

wji1[tj < ti] � θi

⎤
⎦ ∏

j∈∂i\�
Qji(tj ,ti)

= e−ci δti ,0
∑

{tj }j∈∂i\�

1

⎡
⎣∑

j∈∂i

wji1[tj < ti − 1] < θi

⎤
⎦ 1

×
⎡
⎣∑

j∈∂i

wji1[tj < ti] � θi

⎤
⎦ ∏

j∈∂i\�
Qji(tj ,ti),

(B7)

where we represented the initial factorized distribution in
terms of weights over the seeds, i.e., p0(δti ,0) = e−μiδti ,0/(1 +
e−μiδti ,0 ). It is easy to check that (B7) corresponds to the BP
equations derived in the main text for the cavity messages
Hi�(ti ,t�) in the case in which all εi = 0. From the above
derivation it is also evident that optimization could be included
by introducing in the dynamic cavity equation an additional
local energy term −∑

i

∑
s�t εiδxt

i ,1 in order to account for
optimization over the trajectories, which in the activation time
representation becomes

∑
i εiδti ,∞.

It could be in principle possible to relax the assumption
of complete irreversibility, using probability distributions over
time-dependent paths, but the optimization of fully reversible
dynamics is currently numerically infeasible and it requires
additional separate ideas to overcome current computational
limitations.
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