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Recently, an expansion as a power series in 1/d has been presented for the specific entropy of a complete dimer
covering of a d-dimensional hypercubic lattice. This paper extends from 3 to 10 the number of terms known
in the series. Likewise, an expansion for the entropy, dependent on the dimer density p, of a monomer-dimer
system, involving a sum

∑
k ak(d)pk , has been offered recently. We herein extend the number of known expansion

coefficients from 6 to 20 for the hypercubic lattices of general dimensionality d and from 6 to 24 for the hypercubic
lattices of dimensionalities d < 5. We show that these extensions can lead to accurate numerical estimates of the
p-dependent entropy for lattices with dimension d > 2. The computations of this paper have led us to make the
following marvelous conjecture: In the case of the hypercubic lattices, all the expansion coefficients ak(d) are
positive. This paper results from a simple melding of two disparate research programs: one computing to high
orders the Mayer series coefficients of a dimer gas and the other studying the development of entropy from these
coefficients. An effort is made to make this paper self-contained by including a review of the earlier works.
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I. INTRODUCTION AND RESULTS

The dimer problem arose in a thermodynamic study of
diatomic molecules and was abstracted into one of the most
basic and natural problems in both statistical mechanics
[1–3] and combinatorial mathematics [4]. In more recent years,
dimers found interesting applications also in information [5]
and string theories [6,7].

Given a hyper-simple-cubic (hsc) lattice with number of
sites N in d dimensions, the dimer problem, loosely speaking,
is to count the number of different ways dimers (dominoes)
may be laid down in the lattice (without overlapping) to
completely cover it. Each dimer covers two nearest-neighbor
vertices. It is known [8] that the number of such coverings is
roughly exp(λdN ) for some constant λd as N goes to infinity.
Minc [9] gave a proof of the asymptotic relation (asymptotic
as d → ∞)

λd ∼ 1
2 ln(2d) − 1

2 . (1)

In a series of papers [10–13], one of the present authors found
a mathematical argument for a full asymptotic expansion

λd ∼ 1

2
ln(2d) − 1

2
+ c1

d
+ c2

d2
+ · · · (2)

and computed the first three terms in Table I, also making the
conjecture that no further terms would be computed. He was
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very wrong. One of the results of the present paper is the set
of coefficients from c4 to c10 reported in Table I. Viewing the
sequence of ci , we are certainly led to expect the sum in Eq. (2)
to be asymptotic and not convergent.

If we consider covering by dimers of a fraction of the ver-
tices denoted here by p = 2ρ [where ρ is the dimer density per
site and the vertices not covered by dimers are considered cov-
ered by monomers (checkers)] and as above study the number
of such coverings, we arrive similarly at a function λd (p) where

λd (1) = λd. (3)

Another common notation for λd is h̃d . One also studies

hd = max
0�p�1

λd (p). (4)

For λd (p) Friedland et al. [5,14] proved the asymptotic
relation (asymptotic as d → ∞)

λd (p) ∼ 1
2 [p ln(2d) − p ln(p) − 2(1 − p)ln(1 − p) − p].

(5)

Both this equation and Eq. (1) may be viewed as the mean
field approximations for the respective quantities. This was
mentioned in Ref. [13] and is briefly discussed at the end
of Sec. III. By a development similar to that in Ref. [13],
Federbush and Friedland [15] argued for an expansion

λd (p) = 1

2
[p ln(2d) − p ln(p) − 2(1 − p)ln(1 − p) − p]

+
∞∑

k=2

ak(d)pk (6)
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where, setting x(d) = 1
2d

, those authors computed the five
coefficients

a2(d) = 1
4x, a3(d) = 1

12x2, a4(d) = 1
24x2(−5x + 3),

a5(d) = 1
40x3(−39x + 20),

a6(d) = 1
60x3(−19x2 − 30x + 20).

The main result of this paper is the extension of known values

a7(d) = 1
84x4(1093x2 − 1008x + 231), a8(d) = 1

112x4(967x3 − 35x2 − 602x + 189),

a9(d) = 1
144x5(−66047x3 + 68712x2 − 23556x + 2856),

a10(d) = 1
180x5(−67721x4 + 18495x3 + 29565x2 − 15405x + 2232),

a11(d) = 1
220x6(5456221x4 − 6452710x3 + 2752860x2 − 524700x + 39710),

a12(d) = 1
264x6(887437x5 + 2477970x4 − 3847316x3 + 1824724x2 − 378004x + 31130),

a13(d) = 1
312x7(−614279535x5 + 794742624x4 − 392705664x3 + 95702984x2 − 11868441x + 621504),

a14(d) = 1
364x7(678357525x6 − 1192936836x5 + 869146005x4 − 339116960x3 + 75444460x2 − 9220393x + 497016),

a15(d) = 1
420x8(89365899701x6 − 124219633888x5 + 68478916835x4 − 19687487260x3 + 3185117250x2

− 281248772x + 10870055),

a16(d) = 1
480x8(−206929670185x7 + 330409603725x6 − 221634792330x5 + 83075676915x4 − 19146441210x3

+ 2751382878x2 − 231206020x + 8907885),

a17(d) = 1
544x9(−16388790941183x7 + 24197151077904x6 − 14547689415128x5 + 4724677127184x4 − 911997832372x3

+ 106422324240x2 − 7073226040x + 210678416),

a18(d) = 1
612x9(55311212276891x8 − 89669360611981x7 + 61471303146642x6 − 23833002227449x5 + 5824219780656x4

− 933123781978x3 + 97025317251x2 − 6063514389x + 176829104),

a19(d) = 1
684x10(3770925296332945x8 − 5844092886538362x7 + 3760855236979965x6 − 1340101438257204x5

+ 293876531465913x4 − 41181769780866x3 + 3649368222699x2 − 189574974180x + 4489042410),

a20(d) = 1
760x10(−16045042327489089x9 + 26850617367263509x8 − 19173445082939896x7 + 7825625528101485x6

− 2044727194575071x5 + 359651992720132x4 − 43125672212794x3 + 3440152700645x2 − 167626520550x

+ 3849436062).

For the hsc lattices of dimensionality d < 5, four more coef-
ficients ak(d) are available. They are listed in Table II. In Ref.
[15] it was conjectured that the series in Eq. (6) is convergent
for 0 � p � 1. Federbush in fact proved [16] that this series
converges for small enough p. Using also (i) the result by Heil-
mann and Lieb [17] that λd (p) is analytic for 0 < p < 1, (ii)
the conjecture that the ak(d) are all positive for integer values of
d in the case of the hsc lattices (which we have checked for inte-
ger values of d and k � 20; see also the Appendix), and (iii) the

TABLE I. Expansion coefficients cn of the dimer entropy λd ∼
1
2 ln(2d) − 1

2 + ∑
n

cn

dn in the case of the hyper-simple-cubic lattices.

c1 = 1/8 c6 = 20815/21504
c2 = 5/96 c7 = 9151/6144
c3 = 5/64 c8 = 39593/73728
c4 = 237/1280 c9 = −645691/61440
c5 = 349/768 c10 = −107753037/901120

theorem that for an analytic function represented in the vicinity
of the origin by a power series with positive coefficients, one of
the singularities nearest the origin lies on the positive real axis,
we can extend the analyticity domain of

∑
k ak(d)pk to a disk

of radius R < 1. The convergence of this series also at p = 1
is then a trivial consequence of the positivity conjecture for the
coefficients ak(d) and of the upper bound [9] λd (1) < ln(2d)!

4d
.

In this paper we assume the validity of the positivity con-
jecture, from which the convergence of the series

∑
k ak(d)pk

for 0 � p � 1 follows. Since for any r the partial sums∑r
k ak(d)pk are positive for integer values of d, the expansion

(6) gives good approximations of λd (1) also in low dimensions,
unlike the expansion (2), which is numerically useful only
for sufficiently large d. In the Appendix we shall further
discuss the positivity conjecture, while Sec. IV is devoted to
the numerical approximations.

It is interesting to point out some results of historic
importance for the dimer problem. The exact value of λ2
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calculated by Fisher [1] and Kasteleyn [2] is given by the
closed-form expression

λ2 ≡ h̃2 = 1

π

(
1

12
− 1

32
+ 1

52
− 1

72
+ · · ·

)
= G/π

= 0.291 560 904 0 . . . , (7)

with G Catalan’s constant. The technique used in the proof of
this relation had great influence in the field of exactly soluble
models.

The one-dimensional problem has an even more complete
solution [14]

λ1(p) = p

2
ln(2) − p

2
ln(p) − (1 − p)ln(1 − p)

− p

2
+

∞∑
k=2

(p/2)k

(k − 1)k
, (8)

so that λ1(1) ≡ h̃1 = 0 and h1 = ln 1+√
5

2 . Notice that in this
simple case, all the ak(1) are positive and rapidly vanishing as
k → ∞, so the series converges for 0 � p � 1.

Let us turn for the moment to consideration of a dimer gas
on our d-dimensional lattice. The gas of dimers is taken as
a hard-body system. Between each pair of dimers there is a
potential energy 0 if the dimers are disjoint and +∞ if they
overlap. For this gas we are interested into the coefficients of
the Mayer series [18] b1(d),b2(d), . . ..

Both the formalism in Ref. [13] used to derive Eq. (2) and
the formalism in Ref. [15] used to derive Eq. (6) take as inputs
the bi(d) and have as outputs the ci of Table I and the ak(d).
Federbush did not have as good an algorithm for computing to
high orders the bi(d) as in Refs. [19–21] and was not aware of
the already existing lower-order expansions [22–24] for small
lattice dimensionalities. This explains the many additional
terms computed in Eqs. (2) and (6) when the computations
of Ref. [21] were used as inputs. In Sec. II the technique
used in Refs. [20,21] to compute the bi(d) is discussed.
For the computations of the ai(d), with i = 1,2, . . . ,20, one
needed exactly the bi(d) for 1 � i � 20 and 1 � d � 10.
[Interestingly, these values in fact determine, for all d, the
bi(d) with 1 � i � 20. This will be shown in Sec. II and in an
independent way in Sec. III.]

In Sec. III the machines in Refs. [13,15] to calculate the
ci and ak(d), respectively, are discussed; however, they are
too technical to delve deeply into all of the theory. Recently,
Federbush found another route from the bi(d) to expansions
for λd (p) that is simple enough for us to completely describe it
in this paper [25]. We close this section by specializing [26] the
expansion in Eq. (6) to d = 2 to see what such an expansion
looks like:

λ2(p) = 1

2
[p ln(4) − p ln(p) − 2(1 − p)ln(1 − p) − p]

+ 2

[
1

2 × 1

(
p

4

)2

+ 1

3 × 2

(
p

4

)3

+ 7

4 × 3

(
p

4

)4

+ 41

5 × 4

(
p

4

)5

+ · · ·
]

; (9)

this equation is determined by an infinite sequence of integers

1,1,7,41,181,757,3291,14 689,64 771,276 101,1 132 693,

4 490 513,17 337 685, . . . , (10)
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of which the first 23 integers are known from the calculations
of this paper. It is very natural to try to find a pattern in
the successive terms of this sequence so that a closed-form
expression for λ2(p) be realized, recalling that it exists for
λ2 ≡ λ2(1). Recently, we came across an early paper by
Rushbrooke et al. [27] computing by a somewhat different
method the first six coefficients in Eq. (6) for the square and the
diamond lattices and the first five for other three-dimensional
lattices.

The rest of the paper is organized as follows. In Sec. II
we recall how the Mayer expansion for the dimer problem is
related to the high-temperature (HT) low-field expansion of an
Ising system. Section III sketches how the expansion of Eq. (6)
is derived from the Mayer series. In Sec. IV we show how
simply the expansion (6) can lead to accurate estimates of the
p-dependent entropy λd (p). The Appendix contains additional
comments on the positivity conjecture and lists the coefficients
appearing in some generalizations of Eq. (6) to lattices other
than the hsc one. We have included in the Appendix a section
on the graphical expansion procedure for the Ising model,
which completes the exposition of Sec. II.

II. DIMERS AND THE ISING MODEL

It has long been known [1,2,22,23] that the number of
ways to place s hard dimers onto a lattice can be evaluated by
computing, to the same order s and on the same lattice, the HT
and low-field series expansion of the free energy of a spin-1/2
Ising model in the presence of a uniform magnetic field.
The dimer combinatorial problem can be simply formulated
in the language of statistical mechanics. A set of dimers
on an N -site lattice (N even) is described as a lattice gas
of molecules occupying nearest-neighbor sites, subject to a
nonoverlap constraint, in terms of a macrocanonical partition
function

�N (z) = 1 +
N/2∑
s=1

Zsz
s = 1 +

N/2∑
s=1

gN (s)zs. (11)

Due to the nonoverlap constraint Zs , the canonical partition
function for a fixed number s of dimers simply counts the
allowed dimer configurations so that gN (s) is precisely the
number of ways of placing s dimers over the links of the
lattice and z = exp (βμ) is the dimer activity. The chemical
potential μ, namely, the energy cost of adding one more dimer
to the system, is zero whenever there is room on the lattice
for adding one more dimer and infinite otherwise. Therefore,
the value of β = 1/kBT , with T the temperature and kB the
Boltzmann constant, is irrelevant and can be set to unity. Thus
z = 1 is the value of the activity describing the combinatorics
of a monomer-dimer system, i.e., of a dimer system that does
not cover completely the lattice, while z = ∞ describes the
complete coverings.

In the N → ∞ (thermodynamical) limit one gets

�(z) = lim
N→∞

[�N (z)]1/N = 1 +
∞∑

s=1

g(s)zs, (12)

from which a pressure (or macrocanonical potential) can be
defined in the usual way

P (z) = ln[�(z)] =
∞∑

s=1

bsz
s (13)

since β = 1. The dimer density per site ρ is expressed in terms
of the pressure by

ρ(z) = z
dP

dz
=

∞∑
s=1

sbsz
s. (14)

The series for ρ(z) can be inverted to get z as a power series in
the density and by substituting z = z(ρ) in Eq. (13), P can be
expressed as a power series in the density ρ, thus obtaining the
virial expansion. Equations (13) and (14) are called the Mayer
expansions of the dimer lattice gas.

The specific entropy sd (p) of a dimer system of density ρ

in d dimensions is

sd (p)/kB ≡ λd (p) = −ρ(z)lnz + P (z)

= 1
2 [p ln(2d) − p lnp] + O(p), (15)

which arises by setting z = z(p) and ρ = p/2 and observing
that on the hsc lattices z = p

2d
+ O(p2). Notice that one has

dλd

dp
= −ln(z)

2
. (16)

This structure was further specified in Refs. [5,14], as indicated
in Eq. (6). One can also easily check that by changing
the variable from z to p, the point z = 1 corresponds to a
stationary point of the entropy with respect to p, thus linking
the definition given above of hd in terms of λd (p) with the
definition used in Ref. [19] as P (z)|z=1. We now couple the
relation (15) with the expansions above for P (p) and z(p). We
write

z = p

2b1
[1 + F (p)] (17)

and then get from Eqs. (15) and (17)

λd (p) = P (p) − p

2
ln

(
p

2b1

)
− p

2
ln[1 + F (p)] (18)

or

λd (p) = P (p) − p

2
ln(p) + p

2
ln(2d) − p

2
ln[1 + F (p)] (19)

using b1 = d. Referring to Eq. (6), we may put Eq. (19) in the
form

λd (p) = 1

2
[pln(2d) − plnp − 2(1 − p)ln(1 − p) − p]

+
∞∑

k=2

ak(d)pk, (20)

where the ak(d) are suitably determined from the Mayer series
coefficients in a straightforward manner.

The Mayer coefficients for the dimer system bs(d) on
a d-dimensional lattice are simply obtained from the HT
expansion of the free energy for the Ising model. To il-
lustrate the relationship between the Ising and the dimer
problems, recall the primitive [28] method of HT and low-field
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graphical expansion for the partition function ZN (β,h) =∑
m�0

∑Lmax
l=m γN (2m,l)tanh(h)2mtanh(β)l of a spin-1/2 Ising

model on a lattice of N sites. Here β = 1/kBT denotes the
inverse temperature and h = βH with H the uniform external
magnetic field. The expansion coefficient γN (2s,s) counts
all possible lattice configurations of graphs represented by
precisely s disconnected edges placed onto disjoint links of
the lattice and therefore coincides with the quantity gN (s)
in Eq. (12). The procedure of forming the specific free
energy fN (β,h) = 1

N
lnZN and then taking the thermody-

namical limit exactly parallels [23] the procedure leading to
Eq. (13), so one concludes that from the expansion f (β,h) =∑

m�0

∑Lmax
l=m f2m,l tanh(h)2mtanh(β)l , the Mayer expansion co-

efficients can be read as bs(d) = f2s,s(d).
Let us now recall that recently a significant extension of

the HT series for several models in the Ising universality class,
including the conventional spin-1/2 model, has been obtained
for a sequence of bipartite lattices, in particular the hsc lattices
of spatial dimensionality 1 � d � 10 and the hyper-body-
centered-cubic (hbcc) lattices of any dimensionality. In the
case of the hbcc lattice, this is true at least in principle because
the lattice dimensionality enters only in the power of the
embedding number (see below) and thus the computation
time increases very slowly with the dimensionality; so far
we have only performed the computations for d � 7. It is
also convenient at this point to give some simple details of
these calculations. It is most convenient to refer [20,21] to the
classical linked-cluster method [29] of graphical expansion.
At each order l of the HT expansion, the series coefficients
are expressed as the sum of an appropriate class of l-edge
graphs. Each graph contributes a ratio of two integers, the free
embedding number and the symmetry number of the graph,
times a product of bare vertex functions associated with the
vertices of the graph and depending on the magnetic field. The
embedding number counts the number of distinct ways (per
site of the underlying lattice) in which the graph can be placed
onto the lattice, with each vertex assigned to a site and each
edge to a link. This number depends on the topology of the
graph and on the dimensionality d of the lattice. The important
property is that, in the case of the hsc lattices (but not for the
hbcc lattices), for a generic graph with l edges, the embedding
number is a polynomial in d of degree l at most. The symmetry
number counts the automorphisms of the graph and depends
only on the topology of the graph. The great advantage of
the linked-cluster method comes from the recognition that the
huge variety of graphs that contribute at relatively high orders
of expansion to the computation of a physical quantity, e.g., the
magnetization, can be obtained by combining simpler graphs
in a smaller class [29], thus making it possible to trade the
computational complexity for algebraic complexity.

From the field-dependent free energy one can compute all
its field derivatives usually called (higher) susceptibilities. It
is clear at this point that on the hsc lattices, the computation
of these quantities through tenth order can be extended to a
generic d. It is sufficient to perform a simple interpolation of
the series coefficients using the computation on a sequence
of hsc lattices of dimensionalities 1 � d � 10 and based on
the fact that the lth-order expansion coefficient is a simple
polynomial [30] of degree l in d (with zero constant term).
Actually much more than this can be done. One can observe

[21] that the knowledge of the free energy gives access to the
HT expansions of the successive derivatives of the magnetic
field with respect to the magnetization ∂2p+1h/∂M2p+1 for
p = 0,1, . . . and that these quantities are expressed only in
terms of connected graphs having no articulation vertex, i.e.,
no vertex whose deletion would disconnect the graph. What
is decisive for our aims is the fact that the embedding number
onto a hsc lattice of an l-edge graph in this particular class
is a polynomial in d of degree �l/2� at most [30]. Here
�l/2� denotes the integer part of l/2. Therefore, in spite of
the fact that the HT expansion coefficients of the (higher)
susceptibilities at order l are polynomials in d of degree
l, the susceptibilities can be simply expressed in terms of
the successive derivatives of the magnetic field with respect
to the magnetization that, at the same expansion order, are
polynomials in d of degree �l/2� only. Thus one can conclude
that the exact dependence on d of the HT coefficients of
the higher susceptibilities can actually be determined up to
order 20, using only data for a sequence of hsc lattices of
dimensionalities 1 � d � 10, by an interpolation in d of the
series coefficients.

Let us finally stress that the elements of the coefficients
matrix f2m,l(d) of the HT and low-field expansion for the free
energy of the spin-1/2 Ising model can be linearly expressed
in terms of the expansion coefficients of the susceptibilities
and therefore they also are polynomials in d of degree l. This
property holds in particular for the Mayer coefficients bs(d) =
f2s,s(d) of the dimer gas. From Eq. (16) it follows that dλd

dp

can also be determined to order 20 for all d. More details
concerning the graphical expansion procedure can be found in
Sec. 3 of the Appendix.

III. DERIVATION OF EXPANSIONS

As mentioned in the Introduction, we have a second route
for deriving λd (p) and λd expansions. The key initial step
is the computation of the quantity J̃i(d) from the quantities
bi(d). The J̃i(d) depend on the set of bn(d) with n � i. The
computations are given in Ref. [31] as

J̃1 = 0.

We first find J̃ L
r , with J̃ L

1 = 0, and from r = 2 on, inductively
defined by

J̃ L
r = 1

L

{
Sr −

[
exp

(
L

r−1∑
i=1

J̃ L
i xi

)] ∣∣∣∣∣
r

}
, (21)

where

Sr =
r∑

p=0

({
exp

[
L

∑
i

bi

(
x

2d

)i]}∣∣∣∣∣
p

× 1

(r − p)!

(
−1

2(L − 1)

)r−p
(L − 2p)!

(L − 2r)!

)
. (22)

The symbol | with the subscript j indicates the j th coefficient
in the formal power series in x. The J̃r are determined from
the J̃ L

r by taking L to infinity. We may also inductively go
from the J̃i to the bi by the same formulas.
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This set of relations was implicitly used in Ref. [13], but
not explicitly written down there. Just as the bi(d) are the
cluster expansion coefficients of a dimer gas, the J̃i(d) are the
cluster expansion coefficients of a certain polymer gas [13]
and these coefficients of the two gases are related by the
development surrounding Eqs. (21) and (22). This is a clean
calculation that requires no hard proof. The J̃i(d) can be
proved [11] to be of the form

J̃s(d) = cs,r

dr
+ cs,r+1

dr+1
+ · · · + cs,s−1

ds−1
(23)

with r � s/2.
Whereas our first development was basically for each

d individually, we will see as with this last equation that
the dependence on d is in the fundamentals of this second
development. The present treatment allows us to get results
relating the series for different d. As an example, suppose
we know the J̃i(d) for 1 � d � 10 and i � 20. Then one may
derive J̃i(d) for i � 20 and all d. (One has enough information
to compute all the cs,r for i � 20.) The same statement holds
for the bi(d) since one may go between the set of bi(d) with
i < n and the set of J̃i(d) with i < n, as mentioned above.

So far all the results dealt with in this section have been
true and rigorously proven. We now turn to the further
development, certainly true, but for which we do not yet have
a rigorous proof. We work for a given d and take as known the
J̃i(d) [which as above could be calculated from the bi(d)]. We
then compute αi(d) by iterations, from αi = 0, of

αk = (J̃kp
k)

1(
1 − 2

∑
i=2 iαi

)2k

(
1 − 2

∑
i=2

iαi

/
p

)k

.

(24)

In iterating we take the mapping from the right-hand side of the
equation to the left-hand side of the equation to be a mapping
of formal power series in p. It is proven in Ref. [16] that
there is an m > 0 such that each of the sequences of formal
power series converges to a convergent power series of radius
of convergence �m. (Even if the power series in λd (p) [see
Eq. (6)] has a radius of convergence �1, as we assume, we do
not know if m can be chosen as 1.) Then λd (p) is given by

λd (p) = Q1 + Q2, (25)

Q1 = 1
2 [p ln(2d) − plnp − 2(1 − p)ln(1 − p) − p], (26)

Q2 =
∑
i=2

αi −
∑
k=2

1

k

(
2
∑
i=2

iαi

)k

+ 1

2
p

∑
k=2

1

k

(
2
∑
i=2

iαi

/
p

)k

. (27)

Here Q2 may be developed as a power series in p

Q2 =
∞∑
2

ak(d)pk, (28)

where ak(d) is a polynomial in powers of 1
d

with powers
satisfying k/2 � r < k [as the powers in Eq. (23)] (see
Refs. [15,16]). So, for example, if we know ak(d) for k � 20
and d � 10, then we can deduce ak(d) for k � 20 and all d.

To determine ak only the values of ak(d), d = 1, . . . ,�k/2�,
are needed; the remaining 10 − �k/2� values were used to
give consistency checks for each k < 20. This is a consistency
check on both the computation of the bi(d) and of the theory
since as we mentioned above the development of Eqs. (24)–
(28) has not been yet made rigorous.

We can deduce the series for λd [Eq. (2) above] basically
by setting p = 1 in Eq. (25). It is important to note for this that
each power of 1

d
gets a contribution from only a finite number

of ak(d). Specifically the 1/ds get contributions from those
ak(d) for which k/2 � s < k. For example, if we know ak(d)
for k � 20, then we can deduce the terms in λd up to 1/d10.

To get at the theory [of the formal argument leading to
Eqs. (25)–(28), our second development of the λd (p) and λd

expansions], we recommend to the reader starting by reading
Ref. [13] or Sec. 5 of Ref. [15]. We now give a slightly hand-
waving summary of the introductory portion of this theory up
to the derivation of the mean field formulas (1) and (5) above.

We work on a periodic d-dimensional lattice with a number
of sites N . A difunction is a translation-invariant periodic
function on pairs of distinct vertices. We associate with dimers
the difunction f , which is 1 if the two vertices are nearest
neighbors and 0 otherwise. We call a sequence X1,X2, . . .

of pN distinct vertices a p-sequence. We let
∑

denote the
sum over all p-sequences. We note that the number of distinct
dimer coverings that cover a fraction p of the vertices can be
represented as

1

2(pN/2)

1

(pN/2)!

∑ pN∏
i=1
i odd

f (Xi,Xi+1). (29)

The numerical factors before the sum are divided by the
number of different p-sequences that correspond to the same
choice of dimers. The sum is over N!

[(1−p)N]! p-sequences.

We let f0 be the difunction of constant value 2d
N−1 . Here f

and f0 have the same normalization in the sense that if one
fixes its first component and sums over the second, one gets
the same answer for both functions. Replacing f in Eq. (29) by
f0 and using the Stirling formula gives the mean field answer

exp(λmf N )

for the number of our dimer covers, where λmf is as in Eq. (5).
We write

f = f0 + V (30)

with

V = f − f0. (31)

Expansions in powers of V may be converted into the
expansions of this paper.

IV. NUMERICAL ESTIMATES

It is interesting at this point to get some feeling about
the accuracy of the estimates of hd and h̃d ≡ λd (1) that
can be obtained from the expression (6) for λd (p) when a
sufficiently large number of coefficients ak(d) are known. For
the evaluation of both hd and h̃d a first orientation comes
from truncating the expansion

∑∞
k=2 ak(d)pk at order k = r

and plotting the result vs some power of 1/r . Let us first
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consider the quantity h̃d . Assuming that the series converges
for p = 1 and that the coefficients ak(d) are all positive, then its
successive truncations must provide an increasing sequence of
lower bounds of the limit. First, we can check that the approxi-
mation of truncating the expansion at the highest known order
is always consistent with the known upper bounds. However,
in the cases of d = 2 and 3 the values thus obtained, i.e.,
h̃2 = 0.2865 . . . and h̃3 = 0.44916 . . ., respectively, appear to
be still too small. Therefore, one should properly extrapolate
the sequences Sr = 1

2 [ln(2d) − 1] + ∑r
2 ak(d) of the truncated

expressions. Of course, the best way to do this depends on the
behavior of the sequences. It is very encouraging to notice that
for all values of d, the sequences are smooth and their behavior
is well approximated by the simple ansatz Sr = a + b/rα

and so one has a ≈ h̃d . This procedure is very successful.
We observe that α increases with d and ranges from α ≈ 1
for d = 2 to α ≈ 2.6 for d = 6. In dimensionality d = 2,
this ansatz gives a good fit of the last 4–10 terms of the
sequence and the extrapolated value a = 0.2915(20) agrees
with the exactly known value h̃2 = 0.291 560 . . . in Eq. (7),
within the estimated error. The uncertainty we have written is
very conservative, although somewhat arbitrary. It is obtained
both allowing for the spread of values resulting from small
variations of the exponent α in the functional form used
for fitting and from a comparison with other extrapolations
obtained, for example, by evaluating the series

∑r
k=2 ak(d)pk

for p = 1, by Padé or differential approximants [32], and
adding the result to the expression 1

2 [ln(2d) − 1]. Analogously,
for d = 3 the sequence Sr is well fitted by the ansatz a + b/n1.3

and leads to the estimate h̃3 = 0.4499(2). This value is not
far from the estimate h̃3 = 0.4479 obtained by a Monte
Carlo calculation [33] or from h̃3 = 0.453(1) obtained [34]
by extrapolating a much shorter expansion and it is also
completely consistent with the known bounds [9,14,35,36]
0.440 075 842 � h̃3 � 0.457 546 930 8.

Proceeding along the same lines, we can determine the
values of h̃d for any value of d. We notice that the apparent
precision of the results improves rapidly as d grows, while
the differences between the extrapolated values and the
highest-order truncations of the series (as well as the estimated
uncertainties) decrease rapidly. The final estimates are always
completely consistent with the known bounds. Our estimates of
λd (1) for d = 2, . . . ,8 are reported in Table III. Note that eval-
uations of these quantities appear rarely [37] in the literature.

The computation of hd requires only a quite short com-
ment. Unsurprisingly, the sequences of truncated expansions∑r

k=2 ak(d)pk evaluated for p < 1 show a faster convergence
than for p = 1. The estimates of hd thus obtained agree well,
within their uncertainties, with those already listed in Table VII
of Ref. [19], which have been obtained by resumming via Padé
approximants the expansion of P (z) for z = 1. Therefore, the
reader is referred to this source.

A. Series expansion for hd for d large

As d goes to infinity, hd tends to h̃d . One can compute the
rate with which the former approaches the latter by performing
an expansion in 1√

d
.

To compute hd one looks for a stationary point of Eq. (6).
By setting y = 1/

√
2d , the stationarity equation can be

written as

(1 − pst)
2 − psty

2 exp

(
−2

∑
k=2

kakp
k−1
st

)
= 0. (32)

This equation can be solved for large d. Knowing ak up to
k = 20, one can solve iteratively the equation up to order y42.
Here we shall report only the first few terms

pst = 1 − y + 1
2y2 + 3

8y3 − y4 + 201
128y5 − 5

2y6 + 7003
1024y7

− 22y8 + · · · . (33)

At second order in y, it agrees with the value of pst associated
with the lower bound for hd found in [5,14]

pst = 4d + 1 − √
8d + 1

4d
. (34)

Substituting Eq. (33) into Eq. (6) to get hd and p = 1 into
Eq. (6) to get h̃d , one finds

hd − h̃d = y − 1
4y2 − 11

24y3 + · · · , (35)

hd = 1

2
(ln 2d − 1) + 1√

2d
− 11

48
√

2d3
+ O(d−2), (36)

in which we wrote only the first three terms out of the 40
terms we computed. Using 40 terms, this series expansion
agrees with the difference hd − h̃d computed numerically up
to 2 × 10−6 for d = 7 and 10−15 for d = 20. From d = 40 up

TABLE III. Our estimates of h̃d = λd (1) for the hyper-simple-cubic lattices of dimensions d = 2,3, . . . ,8 with the known rigorous lower
and upper bounds [15] defined by (1/2)ln(2d) − 1/2 � λd (1) � ln[(2d)!]/4d . While these rigorous bounds are valid for all d , for d = 2 we
have simply reported the first eight digits of the exact value and for d = 3 we have reported the tighter bounds from Refs. [9,14,35,36].
The nonrigorous lower bounds (LB) are simply obtained by assuming the validity of the positivity conjecture for the coefficients ak(d) and
truncating our expansions at the highest available order.

λd (1) Lower bound Nonrigorous LB Our estimate Upper bound

λ2(1) 0.29156090 0.286521 0.2915(20) 0.29156090
λ3(1) 0.44007584 0.449164 0.4499(2) 0.45754694
λ4(1) 0.53972077 0.576517 0.57666(3) 0.66278769
λ5(1) 0.65129254 0.679434 0.67949(2) 0.75522063
λ6(1) 0.74245332 0.765301 0.765315(2) 0.83280061
λ7(1) 0.81952866 0.838785 0.838789(1) 0.89968648
λ8(1) 0.88629436 0.902947 0.902949(1) 0.95849563
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to d = 9000 the precision is only 10−16. The terms given in
Eq. (36) give hd with an error less than 3 × 10−3 for 7 � d <

100 and 2 × 10−5 for 100 � d < 10000. In particular, from
Eqs. (33) and (35) one gets

lim
d→∞

hd − h̃d

pst(d) − 1
= −1. (37)

ACKNOWLEDGMENTS

We would like to thank David Bridges for a helpful
comment on the convergence of the expansion of the density-
dependent dimer entropy.

APPENDIX

1. Conjecture that the coefficients ak are positive
in the case of the hsc lattices

We proved that the coefficients ak(d) are positive integers
for k � 20 and d � 1 by locating in the complex d plane their
real roots and counting the complex ones to make sure that
none is missing. It is interesting to note that for 1 < d < 2
or 2 < d < 3 the ak(d) can be negative and that there are
roots approaching 1 and 2 as k gets large. As we have already
noticed, based on the conjecture that the ak(d) are positive,
the computed values of ak(d) provide a lower bound of λd

(see Table IV). For d = 2 in the case of hd , this lower bound
0.662 798 966 is smaller than the estimate 0.662 798 972(1)
obtained in Ref. [19] by Padé approximants. For d � 3 these
lower bounds reproduce within the error the Padé estimates of
Ref. [19].

2. Generalization of the positivity conjecture
to other bipartite lattices

There is some evidence that the positivity conjecture can be
extended to other bipartite lattices. Let us recall what is known
about other lattices. The lower bound λd has been computed
from the Mayer coefficients bn on other lattices using the
formula

λd = −1

2
p ln

(
p

q

)
− (1 − p)ln(1 − p) − p

2

+ q

2

∑
k=2

Ck

(
p

q

)k

k(k − 1)
, (A1)

with q the lattice coordination number. The notation ak =
q

2
Ck/q

k

k(k−1) extends that used for the hypercubic case. From
Eqs. (16) and (A1) it follows that

z = p

q
exp

⎡
⎣−

∑
k�1

Ck+1 − 2qk

k

(p

q

)k

⎤
⎦ , (A2)

corresponding to Eqs. (9) and (21) in Ref. [27], in which the
first few coefficients for the square lattice and for some of the
lattices discussed below were computed.

Let us now report the available data for other bipartite
lattices. In the case of the tetrahedral lattice (q = 4), taking
the Mayer coefficients bn from Refs. [23,24], we obtain the
following set of coefficients Ck: 1, 1, 1, 1, 31, 253, 1261,
4897, 16 201, 49 501, 161 239, 643 969, 3 006 823, 14 104 861,
60 942 421, 237 903 169, 854 124 745, and 2 955 594 097.

In the case of the hbcc lattices, the bn for n � 24 have been
computed in Ref. [19] for d = 3, . . . ,7. The coefficients Ck

computed from them are all positive. In Table V we list the
coefficients Ck(d) for hbcc lattices of dimensionalities d =
3,4,5. The coordination numbers of these lattice are q = 2d .
For the hexagonal lattice [38] with q = 3, the coefficients Ck

are 1, 1, 1, 1, 11, and 85.
Let us now turn to the case of nonbipartite lattices. For the

triangular lattice (q = 6) the coefficients up to C6 are listed in
Ref. [38], while higher-order ones are obtained from Ref. [23]:
1, −3, −11, 1, 91, 141, −1651, −16 143, −87 329, −295 063,
−72 533, 8 092 033, and 76 819 835. For the fcc lattice
(q = 12), from Ref. [23] we obtain 1, −7, 19, 41, −779, 3557,
46 327, 118 529, and −557 909. These data imply that the
positivity conjecture for the Ck has to be restricted to bipartite
lattices.

On a Bethe lattice [39,40] the entropy is given by Eq. (A1)
with Ck = 1 for all k. Notice that on any lattice Ck = 1 for
k < r , where r is the length of the smallest nontrivial loop on
the lattice, because the diagrams contributing to such Ck cannot
distinguish between the given lattice and a Bethe lattice of the
same coordination number. A stronger form of the positivity
conjecture is that Ck � 1 for bipartite lattices.

3. Graphical expansion procedure for the Ising model

To make Sec. II more readable, we have included in this
section some technical details on the graphical procedures
used in the computation of the Ising model HT expansions.

TABLE IV. Real roots of ak(d) for k � 10.

k = 10 − 0.65502486055142554 0.99997855862379883
k = 11 1.0000010707811947 1.6603775954637132
k = 12 − 0.12473442164710268 1.0000008060184913 1.5835444714309055
k = 13 0.99999998817575145
k = 14 1.0000000363954472 1.628126162558255
k = 15 1.000000000099149 1.9594209128425236
k = 16 0.99999999993591589
k = 17 0.99999999999934955 2.0071302031011769 2.4952449117198663
k = 18 1.0000000000002549 1.9889667170409254
k = 19 1.0000000000000033 1.9993853767904753
k = 20 0.99999999999999901 2.0009898597900763 2.6230186617839066
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TABLE V. Coefficients Ck(d) in Eq. (A1) with k = 2, . . . ,24 for the hyper-body-centered-cubic lattices of dimensionalities d = 3,4,5.

Ck d = 3 d = 4 d = 5

C2 1 1 1
C3 1 1 1
C4 37 151 541
C5 241 1001 3601
C6 1651 21241 290851
C7 13861 276445 4136581
C8 109873 4138275 185447641
C9 850465 61222177 3766174561
C10 6620401 903139171 134478272521
C11 51657541 13527055301 3251891481301
C12 403327651 201952069177 105463232417731
C13 3151118881 3041256137921 2794164743354401
C14 24647038963 45839858214697 86840903677417891
C15 192950685061 69396577375846 2421252466929163141
C16 1510882839217 10530703348244851 73870429278903327001
C17 11833222518145 160247978490447425 2123026721471921771521
C18 92728596423613 2444106838568935375 64306694719829414761621
C19 727194198560401 37359234126615235321 1883895461127373802533921
C20 5707071682914097 572176086489368008851 56961277210166888567226841
C21 44820667959807601 8779078842662089743601 1690242630478526669835704401
C22 352227866459521537 134925544759538198882283 51146624643545703193238849401
C23 2769671081569110445 2076868645293925124133493 1531526780518608097927545101821
C24 21790699297032926587 32014374542692855556562921 46435767644223061358549293433371

For simplicity, the whole graphical expansion procedure can
be split into three steps. First, one has to list all graphs
entering into the calculation up to the maximum order Lmax of
expansion. To begin with, one forms the simple, topologically
distinct, one-vertex-irreducible graphs with l � Lmax edges.
One can further restrict these graphs to the subset of the
bipartite graphs since only these can be embedded onto the
bipartite hsc or hbcc lattices. This is the only memory intensive
part of the procedure because there are many graphs [20,21,41]
(approximately 3 × 105 graphs at order 20 and over 5 × 107

at order 24), but it took only a few hours. In a second step, the
lattice embedding numbers and the symmetry numbers of these
graphs are computed; one vertex of these graphs is marked in
all possible ways and the graphs are decorated to have also
multiple lines. This is the subset of the graphs from which the
expansion of the magnetization can be reconstructed.

In the case of hsc lattices of high dimensionality, the most
time-consuming part of this procedure is the computation of
the embedding number for each graph. In the case of the
hbcc lattices the timings are much smaller than for the hsc
lattices and very slowly dependent on d, but unfortunately the
expansion coefficients are not polynomials in d. One begins
by appropriately ordering the graph vertices and then the first
of them is placed at the lattice origin. The possible positions of
the second vertex can be counted by exploiting the symmetries
of the hypercube. After fixing the first two points of the

embedding, the possible positions of the remaining vertices
are restricted to relatively few configurations by the constraints
given by the distances from the first two points and the count
can go on in a relatively easy way. On the hsc lattices, the
timings for computing the magnetization expansion of the d-
dimensional Ising model at order Lmax increase exponentially
with the order of expansion and the lattice dimensionality d:
roughly as O(5.5Lmax 2.5d ). In particular, the computation for
the ten-dimensional Ising model at order 20 took 42 days of
single-core time on a quad-core desktop computer with a CPU
clock frequency of 2.8 GHz. Actually, less time was used since
the calculation was appropriately distributed on the four cores
of the computer. Using more extensive computer resources, it
would be possible to compute only a few more orders, for not
too high lattice dimensionalities.

The next step implements the algebraic vertex renormal-
ization, namely, the procedure of reconstruction [29] of the
magnetization from the one-vertex-irreducible graphs having a
single marked vertex. By integrating the magnetization exactly
with respect to the field one finally obtains the free energy
in terms of the bare vertices (up to a standard constant of
integration). This step of the calculation is based on codes
written in the PYTHON language and is fast. The free energy
thus computed is model independent: Eventually one has to
specialize the precise form of the bare vertex functions to the
particular model of interest.
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