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Based on conventional Ito or Stratonovich interpretation, zero-mean multiplicative noise can induce shifts of
attractors or even changes of topology to a deterministic dynamics. Such phenomena usually introduce additional
complications in analysis of these systems. We employ in this paper a new stochastic interpretation leading to
a straightforward consequence: The steady state distribution is Boltzmann-Gibbs type with a potential function
severing as a Lyapunov function for the deterministic dynamics. It implies that an attractor corresponds to the
local extremum of the distribution function and the probability is equally distributed right on an attractor. We
consider a prototype of nonequilibrium processes, noisy limit cycle dynamics. Exact results are obtained for a
class of limit cycles, including a van der Pol type oscillator. These results provide a new angle for understanding
processes without detailed balance and can be verified by experiments.
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I. INTRODUCTION

The Langevin equation, or the stochastic differential equa-
tion in mathematics, is a more comprehensive description of
natural phenomena than purely deterministic equations [1-3].
The Langevin equation alone, however, cannot determine
a random process. Specifying a stochastic interpretation
is needed and leads to different consequences [1-5]. The
most widely applied stochastic interpretations are Ito’s and
Stratonovich’s. Based on these two interpretations, when
zero-mean multiplicative noise is introduced, the steady-
state distribution of the process in general does not “corre-
spond” to the deterministic counterpart: Shifts of attractors
or even topology changes are observed [6,7]. As a result,
additional difficulties are encountered in the analysis of
a system; e.g., calculating transition probability between
attractors, which is critical in applications [8—10], can be subtle
[11].

Intuitively, the word “correspond” implies that a stable
fixed point of the deterministic (part) dynamics is also a local
maximum of the steady state distribution. More precisely,
“correspond” means that the probability density function
does not decrease along the trajectories of the deterministic
dynamics and reaches maximum at the stable attractors. Based
on Liouvilles’s theorem, the probability density function for
Hamiltonian dynamics keeps constant along trajectories; thus
Hamiltonian dynamics has this correspondence property. A
well-known concept in engineering, the Lyapunov function,
does not increase along the trajectories of a deterministic
dynamics. Therefore, we can define the word “correspond”
as the steady state distribution multiplying negative one [12]
being a Lyapunov function of the deterministic counterpart
of the stochastic dynamics. Three questions arise here: First,
does a stochastic interpretation with such a correspondence
property exist? Second, if it exists, what are the new insights
provided by this interpretation? Furthermore, is there a real
process choosing this interpretation?
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The answer to the first question is positive based on a recent
framework [13—15]. A brief review of the framework is given
in the next section. Afterwards, we will apply analytically
this framework to a class of typical nonequilibrium processes:
noisy limit cycle dynamics. Recently, they raised much
research interest in physics [16-20] and other fields [21-23].
Rotationally symmetric and general planar limit cycles are
handled separately in Secs. IIl A and IIIB. A van der Pol
type oscillator with multiplicative noise is exactly solved.
The analysis of these explicit results provides new insights
of understanding processes without detailed balance.

II. ANEW STOCHASTIC INTEGRATION

The Langevin equation can be considered as a composi-
tion of a deterministic dynamics q = f(q) and a zero-mean
multiplicative noise N(q)&(¢) [1]:

q =1f(q) + N(@s (), (1)

where ¢, f are n-dimensional vectors and f is a nonlinear
function of the state variable q. The noise & () is k-dimensional
Gaussian white with the zero mean, (£(¢)) =0, and the
covariance (£(#)&€7(¢t")) = 8(¢t — t')I;. The notation §(t — t') is
the Dirac delta function, (---) is an average over the noise
distribution, and I is the k-dimensional identity matrix. The
element of the n x k matrix N(q) can be a nonlinear function
of q; then the noise considered in this framework can be a
general multiplicative noise. This matrix is further described
by N(qQ)N*(q) = 2¢ D(q), the constant € quantifying the noise
strength and D(q) being an x n positive semidefinite diffusion
matrix. Note that the noise may have less than » independent
components k < n, leading to the zero eigenvalue of D(q).
During the study of a biological switch [13—15], a dynamics
equivalent to Eq. (1) was discovered:

[S(q) + A(@]d = —Vé(q) + N(@E(®). 2)
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The term S(q) is a positive semidefinite matrix, where —S(q)q
denotes a frictional force; the term A(q) is an antisymmetric
matrix representing an embedded symplectic structure, and
—A(q)q is a rewritten form of the Lorentz force eq x B in
two- or three-dimensional cases and also a generalization
to higher dimensions; the scalar function ¢(q) is a potential
function, e.g., the electrostatic potential, lying at the core of
the discussion in this paper. The matrix N(q) is constrained
by the fluctuation-dissipation theorem [24,25]: N (q)]\7 (@ =
2¢S(q). In the Appendix, we briefly discuss the transformation
from Eqs. (1) to (2) and obtain a set of equations for a potential
function.

A corresponding Fokker-Planck equation (FPE) for (2)
[therefore for Eq. (1)] can be obtained with physical meaning
(a zero mass limit) [5]:

0:0(q,t) =V - [D(q) + O(q@)] - [Vo(q) + €V]p(q,1), (3)

where V in V¢(q) does not operate on p(q,?), D(q) is the diffu-
sion matrix, and the matrix Q(q) is antisymmetric and can be
calculated from the relation [S(q) + A(qQ)][D(q) + Q(q)] =
I,. Equation (3) has the Boltzmann-Gibbs distribution with
the potential ¢(q) as a steady state solution:

#(q)
p(q.i — 00) = —exp {——q , “
Z. €
where Z. = fd”q exp{—¢(q)/e} is the partition
function. The probability current density j(q,7) =
[71(q,?), ..., j.(q,2)]* is commonly defined as
Ji@.1) = fi(@p(q.1) — 3;[€ Dij(q)p(q. )], &)

where fi(q) = £i(q) + €[9; Dij(@) + 8; Qi (@], fi(q) is the
ith component of the vector valued function f(q) in Eq. (1),
and D;;(q) and Q;;(q) are the elements of the matrices D(q)
and Q(q) in Eq. (3). In steady state, the probability distribution
is given by Eq. (4). We have V - j(q,t — o0) = 0, but j(q,r —
00) is usually not zero. One can check that Q = 01is a sufficient
condition for j(q,t — oo0) = 0; but when Q(q) # 0, then
generally j(q.1 — 00) # 0, since 3;[Q;;(@)p(q.t — 00)] #
0. Therefore the framework encompasses the cases without
detailed balance. The term “detailed balance” means the net
current between any two states in the phase space is zero [26],
identical to that for Markov process in mathematics. The
dynamics studied in this paper corresponds to the nondetailed
balance cases discussed in Ref. [27] as well.

Equation (3) defines a new stochastic interpretation for the
Langevin equation (1), called A-type for short. The steady
state distribution of the Langevin equation is a Boltzmann-
Gibbs type with a potential function ¢(q). For the deterministic
dynamics, the time derivative of the potential function ¢(q)
along a trajectory is

d
@ _ V¢ -f(q) = -Vé(@ - [D(@) + (@] - Vé(q)

dt
=—-Vé(@) - D(q) - Vo(q) <0,

since the diffusion matrix D(q) is nonnegative and symmetric.
It means that the potential along the trajectory is nonincreasing
and has the local extreme values at fixed points, limit cycles,
or more complex attractors. Hence, the potential function
¢(q) serves as a Lyapunov function [28] for the deterministic
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dynamics ¢ = f(q). The probability density function (4)
multiplying negative one is also a Lyapunov function,

d 1 { ¢(q)}_ 1 { ¢(q)}d¢(q)
Xpy——— 1 = expy——

€ €z, €

<0
dt Z.

dl ~ ’

which means that A-type interpretation has the correspondence
property between deterministic and stochastic dynamics.

In view of the questions proposed in the introduction,
five remarks are in order: First, A-type integration enables
a straightforward use of the dynamical analysis for the
deterministic dynamics in the presence of noise. Therefore,
the calculation of the transition probability from one stable
fixed point q; to another one through a saddle point q; is gen-
erally formulated as proportional to exp[—|¢(q1) — ¢(q2)|/€].
Second, the Boltzmann-Gibbs distribution is valid for arbitrary
noise strength €, not merely under the weak noise limite — 0,
which is not held for conventional interpretations [29]. Third,
the potential function obtained here serves also a Lyapunov
function for the deterministic dynamics. The framework then
contributes possible new approaches for the largely unsolved
problem in engineering: constructing a Lyapunov function for
general nonlinear dynamics. In addition, the A-type stochastic
integration can be applied directly in the study of phase
reduction. For a conventional phase reduction method [16], A-
type integration does not lead to the noise-induced frequency
shift. The last point, there exist processes in nature choosing
A-type interpretation. A recent experiment [30] records the
trajectories of the Brownian motion of a colloidal particle near
a wall. It shows that A-type interpretation directly corresponds
to the experimental data [5].

III. EXACT RESULTS FOR LIMIT CYCLE DYNAMICS

Noise disturbed limit cycle dynamics is now attracting
considerable attention in the physics community [16-20]. A
direct reason is that ubiquitous real systems can be modeled
by them, e.g., from biological phenomena [21,22,31,32]
such as cell cycle to chemical reaction [33] and oscillating
electrical circuit [34]. The dynamics itself is a touchstone to
study nonlinear dissipative process in the absence of detailed
balance. Due to the difficulty arising out of nonlinearity and
stochasticity, approximated methods based, for example, on
phase reduction and weak noise perturbation are proposed
from former studies [16-19,35,36], but exact results are
rarely seen in the literature. Moreover, the existence of a
potential function for processes without detailed balance is
still suspected [20,23,37,38]; a specific argument is that, for a
limit cycle system with nonconstant velocity along the cycle,
the dual role potential (also the Lyapunov function) does not
exist. In this paper, we examine such an example. The van der
Pol oscillator [34] is a representative limit cycle dynamics;
here we consider a stochastic version with a multiplicative
noise ¢(q,t) = [¢1(q,?),82(q,2)]* (the superscript T denotes
the transpose of a matrix) and a higher order term A(q;):

41 = q2+ ¢1(q,t)

When h(q;) =0, the deterministic part of the dynamics
reduces to the van der Pol oscillator. A specific system we

(6)
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FIG. 1. (Color online) Upper panel: Trajectories (deterministic
dynamics) for the system Eq. (6) with h(q) = u’q} /4 — u’q}/16
(u = 1). Lower panel: Comparison of two systems, the van der Pol
oscillator h(q,) = 0 is represented by the dashed blue line. The red
line denotes the system in the upper panel.

would like to illustrate is h(g1) = p>q; /4 — u>q /16 [39]; we
can observe from Fig. 1 the deterministic dynamical behavior
of the system. It has a limit cycle without rotational symmetry
and a position-dependent velocity along the cycle.

A. Rotationally symmetric limit cycles

The construction of a potential function relies on two
relations: a potential condition [Eq. (A4)] and a generalized
Einstein relation [Eq. (A5)]. From these two equations, we
know the potential function is determined by the deterministic
dynamics f(q) and the diffusion matrix D(q). It can be proved
that the potential function is invariant under a coordinate
transformation (o : ¢ — u) of the deterministic dynamics:
#(q) = ¢[o~'(u)]. The dynamical components, the matrices
S, A, D, Q, vary in different coordinates, but a straightforward
formulation can be achieved by multiplying the Jacobian
matrix of the transformation.

For planar rotationally symmetric limit cycle dynamics with
a constant diffusion matrix D = Dgyl,, we can transform the

deterministic part into polar coordinates (g = v/ q12 + q22,9):
4 = R(q)
. )
0 =v(q)

and provide an exact construction (some related results can
be seen in Ref. [40]) of the potential function (note that the
following result is represented in Cartesian coordinates):

1
b =7 / R(@)dq ®)
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and corresponding dynamical components:

S@ = R(@)’ (1 0)
Do[R(q)* + q¢*¥(g)*1\0O 1)
q¥(q)R(q) (O 1)
A(q) = : 9
@ Do[R(q)* + ¢*¥(g*1 \=1 O ©
q¥ @Dy (0 1
ow =702 (5 o)

Note that for the weak noise limit, when ¢ — 0, this con-
struction is still valid for the deterministic dynamics, and the
potential function serves as a Lyapunov function of the system
(see also Ref. [41]).

To illustrate, we examine a straightforward example:

Gi=-p+q(l—q —q)+ V2e& (1)
(10)
=g +a(l-q9—q9)+ V2e&5(1).

By transforming the deterministic part into polar coordinates

g =R(q)=q(1 -4

0=1v(q) =1
we can construct a potential function according to Eq. (8) with
the diffusion matrix D = I. A Mexican hat shape potential

function is then derived: ¢(q) = i(ql2 + 6122)(6112 + q22 —2). 1Its
corresponding Boltzmann-Gibbs steady state distribution is

(g7 + ) (ai +45 - 2)
4e

(11

1
pm(q’t — OO) = - exp
Z

}, (12)

where Z. = e/ fex3/2{1 + erf[1/(2/€)]}. Meanwhile,
we obtain

(1-q}—4})’ (1 o>,

S(q) =
RNV YRR

(1—47 —q3) (0 1)
Aq) = NG
TR TR G U

_ 1 0 —1)

In this specific case, the steady state distribution of the Ito
integration is identical to that of the A-type; see Fig. 2.
However, for general situations the distributions are different
even when the diffusion matrix is constant [42]. The reason
here is that V- Q(q) - Vps;s = 0, hence Eq. (12) is also a
solution of the Ito FPE [by comparing with A-type FPE
Eq. 3)1.

B. General planar limit cycles

More generally, we can extend this method to systems
without rotational symmetry through coordinate transforma-
tions (reversible smooth mappings, can be nonlinear) o of the
deterministic dynamics:

{621=f1(q) o {u=f1(u,v) polar {Q=p(q)P(q,9)
<> - <> . .
G=H@q) ot V= fo(u,v) polar! [0 =0(q,0)
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FIG. 2. (Color online) (a) Probability distribution function Eq. (12) with € = 1; (b) comparison with the distribution obtained from the Ito

simulation at g, = 0 (¢ = 1).

If the property P(g,0) > 0is satisfied, a potential function can
be constructed by

$a1an) U Gy ED G )= — / p(q)dq.

since  do(q1,q2)/dt = [d¢,(q)/dqlg = —p*(9)P(q.6) < O.
We list the protocol of this construction: First, for the
deterministic dynamics (gi,q»), find a transformation o :
(q1,92) = (u,v), calculate the dynamics under (u,v), that is,
i = fi(u,v) and v = fHr(u,v); Second, rewrite the obtained
dynamics in polar coordinates (u,v) — (gq,0), if the dynamics
can be expressed as the requested form above, a potential
function can be constructed as ¢,(q); Third, transform ¢,(g)
back to ¢(u,v), and finally to ¢(g1,q2).

Once the potential function (Lyapunov function) ¢(q)
for the deterministic dynamics q = f(q) is obtained, there
are different ways to construct the dynamical components;
one particular setting is provided in Ref. [41] [the binary
operator of two n-dimensional vectors is defined as X x y =
(Xi¥j — XjYi)uxn, and the result is an n x n matrix]:

Vo -t Vo xf
S(q)=—%l’ A@ =~ Z”f( ’
~ £.f (Vo x f)?
D(q)—_[V¢.fl+(v¢-f)(v¢-V¢)] o
Vo x
Q(Q)=W'

Back to the example in Eq. (6) with [£1(q,?),5(q,1)]°
= N@) - [£:(0).&(0]" and h(g)) = g} /4 — g7 /16. The
deterministic part is a Liénard equation similar to the van
der Pol oscillator (0 < u < 2; see Fig. 1) [39]. Through a
nonlinear coordinate transformation c~': u =¢; and v =
g — g1 + ,uql3 /4, we obtain the dynamical system and its
representation in polar coordinates:

G =54 —g*qcos’6

V=—U 4MU

_ 3
i=pu—5u+v i
0 =—1—pcos@sind’

where p(q) = (4 — qz)q and P(q.,0) = weos?6/4 >0 (u >
0). Therefore, we can provide an exact construction of potential

function for Eq. (6) (see Fig. 3):

1 2
o(q) = Z[q% + <612 — g + %q?) }

2
"
X |:q12 + (tp — ngr + Zq?) - 8:|- (15)

We note that the potential function Eq. (15) has the minimal
value at the stable limit cycle g; = g — &g +v/4 — g and
a local maximum value at the unstable fixed point (0,0); see
Fig. 3. Expressions for other dynamical components can be
constructed through Eq. (14). We use the representation below

with (u = q1,v = g2 — g1 + ng; /4) and J(q) the Jacobian

matrix J(Q) = 3(u,v)/3(q1,92) = . 320 1

1

s =44 4_(:22;0,,22))%2 @@,

A= TSR ) (o).
D(@) = Wﬁ‘—fvz)uqrv(q)—f,

00 = I (O ) s

(16)

The result obtained can be understood as the following:
The stochastic dynamics Eq. (6) with a position-dependent
diffusion matrix D(q) given in Eq. (16) has the explicitly con-
structed potential function ¢(q) [Eq. (15)] and a corresponding
Boltzmann-Gibbs steady state distribution [Eq. (4)]. For the
matrix Q(q), one can check 9;[Q;;(q)ps(q)] # 0, leading to
the absence of detailed balance. The stochastic integration
used is the A-type [see Eq. (3)] different from the traditional
Ito’s or Stratonovich’s [5]. A clear difference can be viewed
in Figs. 4(a) and 4(b): For Ito integration, the structure of the
limit cycle disappears after the noise is introduced; but for the
A-type, the limit cycle can be directly recognized.

The construction is valid for arbitrary noise strength. A
criterion to roughly measure the stability of a deterministic
dynamics under the perturbation of noise is A¢ /€. In the case
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FIG. 3. (Color online) Potential function Eq. (15): The red lines denote the limit cycles. The graphs are drawn below a preset upper bound

value 1, the phase variables are g; and ¢. (a) u = 1; (b) u = 1.5.

of the limit cycle in Fig. 3(a), the A¢ is the potential difference
between the unstable point at (0,0) and the limit cycle, and
the value is about 5. When noise is small, A¢/e = 5 > 1, the
system behaves like a deterministic system; see Fig. 4(b). For
A¢/e ~ 1/2, we can see from Fig. 4(c) the influence of the

0.05

0.03
0.025
0.02
0.015
0.01

0.005

deterministic dynamics becomes weak. When noise is large
A¢/e ~ 1/100 < 1, the distribution trends to be uniform and
the dynamical behavior is nearly random; see Fig. 4(d).

Note that when approaching the limit cycle (4 — u* —
v?) — 0, the force induced by the potential gradient goes

0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

FIG. 4. (Color online) Comparison of probability distribution functions (i = 1): (a) Result of Ito simulation with € = 1, the structure of
the limit cycle cannot be recognized from the distribution; (b) result of A-type integration with € = 1, A¢ /e ~ 5, the limit cycle can be seen
with uniformly distributed probability density; (c) A-type distribution with noise strength € = 10, A¢/e ~ 1/2; (d) A-type distribution with
larger noise € = 500, A¢ /e =~ 1/100, the region within the limit cycle is almost flat.
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to zero; the Lorentz force matrix A(q) goes zero in the
same order and changes its sign at the limit cycle (since
0 < p < 2); the friction matrix S(q) goes to zero in a higher
order. The dynamics at the limit cycle is no longer dissipative
but conserved in this limit, reaching a stable cycle. Thus the
potential should be equal on limit cycles where the system is
conserved. We note that this is consistent with the definition of
a Lyapunov function [28]. The particle is moving repeatedly
along the cycle, the same as a conserved system moving
along the Hamiltonian. The speed of the particle can be
nonconstant. The singularity problem for this construction has
been discussed in Ref. [41]. Previous works focus more on
the diffusion matrix, ignoring the important role played by the
friction matrix S(q) and the Lorentz force matrix A(q).

IV. CONCLUSION

Applying a new stochastic interpretation (A-type), we
have exactly constructed a potential function (also Lyapunov
function) for a class of limit cycles with noise, from rota-
tionally symmetric to more general systems, where a specific
example is a van der Pol type oscillator. These systems
have been analyzed through the explicitly obtained dynamical
components S(q), A(q), and ¢(q): Near the limit cycle, the
strength of the magnetic field A(q) has the same order with
that of the potential gradient V¢(q), and the friction S(q)
goes to zero faster than that of the potential gradient. In
the limit case, the dynamics is conserved at the limit cycle.
Nevertheless, the diffusion matrix can be finite at the limit
cycle. Using A-type integration, the steady state distribution
of a system is the Boltzmann-Gibbs type. A correspondence
between stochastic and deterministic dynamics is achieved.
This property cannot be held by using the traditional Ito’s
or Stratonovich’s integration. The framework is available for
arbitrary noise strength. The stability of a limit cycle can be
roughly measured by the ratio between potential depth and
noise strength. Since new measuring techniques for Brownian
motion are available, the theoretical results here may be
experimentally verified.
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APPENDIX: EQUATIONS FOR POTENTIAL FUNCTION

Based on the dynamical equivalence between Egs. (1) and
(2), we can replace q in Eq. (2) with the right-hand side of
Eq. (1):

[S(@ + A@] [f(@ + N@E(D)] = =Vd(@) + N @& 0.
(Al)

By an assumption that the deterministic and stochastic dynam-
ics in Eq. (A1) are equal separately, we obtain

[S(@) + A(@]f(q) = —Vo(q), (A2)

[S(@) + A(@]N(@) = N(q). (A3)
Intuitively, this assumption on separation is plausible: The
noise function is not differentiable but the deterministic forces
are usually smooth, hence two very different mathematical
objects; in addition, the stochastic and the deterministic forces
have different physical origins. Replacing Eq. (A2) with an
equivalent form, we obtain a potential condition (A4). The
generalized curl operator is identical to the use in Eq. (14).
Plugging Eq. (A3) into the fluctuation-dissipation theorem,
N (q)N '(q) = 2¢5(q), wereach a generalized Einstein relation
Eq. (AS):

V x{[S(@) + Al@]f(@)} =0,
[S(q) +A@]D(QLS(q) — A(@)] = S(q).

In principle, the potential function ¢(q) can be derived
by solving the n(n —1)/2 partial differential equations
(under proper boundary conditions) [Eq. (A4)], together
with the n(n 4 1)/2 equations given by Eq. (AS5). Here
we have n? unknowns in [S(q) + A(q)] and n? equations.
It can also be calculated numerically through a gradient
expansion [13].

In the one-dimensional case, A =0, let ¢ = kg T, if the
friction y is aconstant, then S = y/kp T, and Eq. (A5) reduces
to SD =yD/kgT = 1, which is the Einstein relation [43].
Equation (A5) is a generalized form of the Einstein relation
in two ways: The diffusion matrix can be nonlinear dependent
of the state variable, and the detailed balance condition can be
broken (A(q) # 0).

(A4)
(AS5)
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