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Critical properties of a superdiffusive epidemic process
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6Instituto de Fı́sica, Universidade Federal de Alagoas, 57072-900, Maceió, Alagoas, Brazil
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We introduce a superdiffusive one-dimensional epidemic process model on which infection spreads through a
contact process. Healthy (A) and infected (B) individuals can jump with distinct probabilities DA and DB over a
distance � distributed according to a power-law probability P (�) ∝ 1/�μ. For μ � 3 the propagation is equivalent
to diffusion, while μ < 3 corresponds to Lévy flights. In the DA > DB diffusion regime, field-theoretical results
have suggested a first-order transition, a prediction not supported by several numerical studies. An extensive
numerical study of the critical behavior in both the diffusive (μ � 3) and superdiffusive (μ < 3) DA > DB

regimes is also reported. We employed a finite-size scaling analysis to obtain the critical point as well as the
static and dynamic critical exponents for several values of μ. All data support a second-order phase transition
with continuously varying critical exponents which do not belong to the directed percolation universality class.
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I. INTRODUCTION

Over the last years epidemics propagation has been the
target of many studies based on statistical physics methods.
Different models have been proposed to investigate and
better understand the spreading process, including the
susceptible-infected-susceptible model (SIS) [1], the contact
process model (CP) [2], and the diffusive epidemic process
(DEP) [3,4].

The relevant dynamics of all the processes cited above
results from the competition between the infection of healthy
(inactive) individuals and the recovery of infected (active)
ones. These nonequilibrium systems have a statistically sta-
tionary active state (epidemic running) and an absorbing state
(epidemic over). By tuning a proper control parameter, a
transition from the metastable active state to the absorbing
state occurs. These epidemic processes have been studied using
both analytical techniques, such as mean-field theory (MF) and
renormalization group (RG), and computational methods that
rely on Monte Carlo (MC) simulations. Numerical methods
have consistently improved over the last years [5,6] due
to the unprecedented technological advances in scientific
computational facilities.

In this work, we generalize the DEP introduced by Kree
et al. [3] and Wijland et al. [4]. In the DEP, a population
is composed of individuals of two kinds A (healthy) and
B (infected), which spread out with diffusion constants DA

and DB , respectively. The phenomenology associated with the
absorbing state phase transition is studied for three diffusion
regimes, namely, DA > DB , DA = DB and DA < DB . This
model shows a transition from the metastable to the absorbing
state which, according to Wilson RG arguments, should be
first-order in the regime DA > DB . However, numerical simu-
lations seem to be consistent with a second-order (continuous)
transition [7–9].

In the discrete version of the DEP model, individuals can
move to the first neighbor sites with a different probability for

healthy and infected individuals. Here we propose to modify
the DEP model assuming that individuals may jump to sites
whose distance is �, with a Lévy-like probability P (�) ∝
�−μ. The exponent μ determines the typical size of jumps
leading to its short- or long-range nature. Values of μ � 3
correspond to the diffusion regime, while values of μ < 3
(Lévy flight equivalent) will lead to genuinely long-ranged
jumps. Therefore the value of the characteristic exponent μ

selects the equivalent Lévy flight class. Smaller values of this
exponent may favor the epidemic propagation [10,11] in the
same way they favor an animal’s search for food [12–15]. In
general, it is intuitive that Lévy flights increase the probability
for an individual to find new contacts in comparison to
diffusion [16].

Our goal here is to consider a superdiffusive epidemic
process (SDEP) aiming to shed new light on the debate
concerning the order of the phase transition when DA > DB .
Indeed DA and DB are not directly diffusion constants in
discrete modeling. Instead they are the probabilities that an
individual makes a jump in one time step. We find out that
the transition is second order for any value of μ and we
characterize its critical properties by computing the critical
point and the critical exponents. In particular, we will show that
the absorbing state phase transition, depicted by the present
model, exhibits continuously varying critical exponents.

This work is organized as follows. In Sec. II we describe
the SDEP model. In Sec. III we discuss our numerical results.
Finally, Sec. IV is devoted to the summary and conclusion.

II. SDEP MODEL

In the following, the SDEP model is defined on a regular
closed one-dimensional lattice. We assume that a given
individual may stay in two different states: A (healthy) and B

(infected). Each individual is located in a site of the lattice, and
there is no limit on the occupation number of a given site. The
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total number of individuals is conserved since an individual
never disappears or is created but can only get infected,
recover, or change its position, so that N = NA + NB is
constant no matter the total number of healthy (NA) and
infected (NB) individuals, which may vary. We then define
the intensive quantities ρA,B = NA,B/L and ρ = N/L where
L is the dimension of the lattice. The density ρ is fixed a
priori, while ρB varies during the dynamics in such a way that
ρ = ρA + ρB always.

According to the above rules, the present model belongs to
the class of SIS models on which the individuals become sus-
ceptible to be reinfected right after healing. In the more realistic
case of susceptible-infected-resistant-susceptible models, the
individuals become resistant to the infection during a certain
period of time after healing, before becoming susceptible
again.

Although the nonuniversal features of these two classes of
models depend on the details of the dynamical rules, they do
belong to the same universality class [17]. Therefore, the same
set of critical exponents describes the behavior in the vicinity
of the transition from the absorbing state, with no infected
individuals, to the stationary active state having a finite fraction
of infected individuals. Another class of epidemic models
considers the emergence of permanently resistent individuals
(susceptible-infected-resistant model). In this class of models,
the activity is concentrated in a propagation front, and the
transition from finite to infinite growth belongs to another
universality class which will not be addressed in the present
work [18].

We assume that a given jump (whose probability is different
for A and B individuals) has a size � � 1 where � is an integer
number having a Lévy-like probability, i.e.,

P (�) ∝ �−μ, (1)

with the coefficient μ varying from 1.1 to 8.
In the present model the evolution of an epidemic may be

characterized by a competition between a reaction and a decay
process of two diffusing chemical species, i.e.,

A + B
k1→ 2B and B

k2→ A, (2)

where A (B) stands for inactive (active) species. The parame-
ters k1 and k2 are the infection and recovery rates, respectively.

More precisely, we assume that the evolution of the system
follows three stages [7,19].

(1) Jump process: Each individual moves (or stays) inde-
pendently of the others. In a given time step, all individuals
of species A jump with probability DA, while individuals
of species B jump with probability DB . When an individual
makes a jump (left and right equally probable), the size � is
chosen according to the probability (1), independently of its
state (healthy or infected).

(2) Contamination process: The process only occurs when
individuals A and B are at the same site. In this case, the
presence of at least one individual B promotes the A → B

reaction process at rate k1.
(3) Recovery process: Each individual B can be transformed

into an individual A with a recovery rate k2.
The process is iterated until the statistically stationary active

state or the absorbing state is reached. It should be remembered
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FIG. 1. (Color online) The order parameter ρB as a function of
the density ρ for a lattice of size L = 640. Although DA > DB , all
curves clearly show a continuous phase transition to an absorbing
state for all values of the exponent μ considered.

that, when the system is finite, the steady active state is unstable
and a fluctuation can always bring the system to the absorbing
state. Only in the thermodynamic limit (L → ∞) may the
system remain permanently in the steady state. In real epidemic
processes the contamination probability is likely to increase
with the number of neighboring infected individuals. While
this feature may influence the nonuniversal location of the
transition point it has no impact on the universal set of critical
exponents governing the absorbing-state phase transition.

III. SIMULATION RESULTS AND DISCUSSIONS

We now present the numerical results for the one-
dimensional SDEP model for DA(DB) = 0.5(0.25) and k1 =
k2 = 1/2 [7,8,19,20]. Considering only this particular choice
of parameters, we implicitly assume that the qualitative behav-
ior only depends on the constraint DA > DB . We initialize the
system with a density of infected individuals ρB = ρ/2 (ρB

is the order parameter). The lattices have different sizes L =
80, 160, 320, and 640 and periodic boundary conditions. The
values of μ range from μ = 1.1 to 8.0. More specifically, we
took μ = 1.1, 1.5, 2.0, 3.0, 4.0, 6.0, and 8.0, as depicted in
Fig. 1.

The three lowest values of μ give rise to truly Levy flight
research for contacts (μ < 3), while the four largest values
(μ � 3) give rise to ordinary diffusion (indeed, when μ = 3
one has diffusion with infinite variance). The simulation is
iterated for a sufficiently long time to reach the steady or the
absorbing state. In particular, we ran 2 × 104 time steps for
μ < 3, and 2 × 103 time steps for μ � 3.

To characterize the critical properties of SDEP, we first
analyze the behavior of the order parameter. In Fig. 1, ρB is
plotted as a function of the constant density ρ for a lattice
of size L = 640. All curves, corresponding to the different
values of μ, clearly indicate a continuous phase transition
to an absorbing state at a critical point ρc(μ). Completely
similar results can be found with the other values of L, whose
numerical data strongly indicate a second-order transition. We
remark that the critical points corresponding to μ < 3 (Levy
flights) as well as μ > 3 (diffusion) are very close, while
the case μ = 3, which corresponds to diffusion with infinite
variance, is intermediate.
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FIG. 2. (Color online) Set of auxiliary functions g(L,L′,ρ) versus
the density ρ for several pairs (L,L′). From the intersections we
can estimate the critical point ρc and the critical exponent β/ν for
each value of μ. In this panel we only show the two extreme cases
(a) μ = 1.1 (ρc = 2.72, β/ν = 0.72) and (b) μ = 8.0 (ρc = 4.72,
β/ν = 0.34).

Afterwards, we perform a finite-size scaling study to obtain
the critical point and the critical exponents β/ν, 1/ν, and 1/z,
defined below, corresponding to different values from μ. It is
well known that the finite-size scaling relation

ρB(ρ,L) = L−β/νf [(ρ − ρc)L1/ν], (3)

obeyed for the order parameter in the vicinity of a second-order
transition, implies that the set of auxiliary functions [21–23]

g(L,L′,ρ) = ln[ρB(L,ρ)/ρB (L′,ρ)]

ln[L/L′]
(4)

intersect at the same point (ρc,β/ν) when plotted against ρ.
Indeed, this is true only in the thermodynamic regime, i.e.,
for lattices sizes L and L′ very large. For finite sizes there are
finite-size scaling corrections [7]. Figure 2 shows plots of the
auxiliary functions g(L,L′,ρ) for μ = 1.1 and μ = 8.0 and
different values of L and L′. In the case μ = 1.1 (μ = 8.0) all
functions intersect at the critical point ρc = 2.72 (ρc = 4.72)
and critical exponent β/ν = 0.72 (β/ν = 0.34). The critical
points and critical exponents associated to other values of μ

are listed in Table I. It should be remarked that the four values
μ � 3, corresponding to diffusion, give the same value for β/ν

within the error bars.
We performed additional calculations to check the accuracy

of the estimated critical points and exponents β/ν. It is well
known that at the critical point (ρ = ρc) the scaling relation
ρB(L,ρc) ∝ L−β/ν holds. Figure 3 shows log-log plots of

TABLE I. Present estimates of the critical point and exponents
of the one-dimensional epidemic process with power-law distributed
flights for several values of the characteristic exponent μ ranging
from superdiffusion (μ < 3) to normal diffusion (μ � 3).

μ ρc β/ν 1/ν 1/z

1.1 2.72(1) 0.72(2) 0.65(6) 2.7(2)
1.5 2.88(1) 0.64(3) 0.65(6) 2.5(3)
2.0 3.17(1) 0.53(4) 0.69(7) 1.4(9)
3.0 3.93(1) 0.32(2) 0.48(2) 0.63(8)
4.0 4.38(2) 0.34(4) 0.51(1) 0.48(2)
6.0 4.65(2) 0.36(3) 0.50(4) 0.48(5)
8.0 4.72(2) 0.34(4) 0.50(4) 0.50(1)

ρB against L. Linear interpolations give directly the critical
exponents β/ν (see Table I) associated to the seven values of
μ, which are in very good agreement with those obtained from
the scale-invariant point of the auxiliary functions g(L,L′,ρ).
Further, a log-log plot of ρB(L,ρ)Lβ/ν against L [9] shall
be roughly constant at the critical point. In Fig. 4 we show
our results for μ = 1.1 (μ = 8.0) with estimates ρc = 2.72
(ρc = 4.72) and β/ν = 0.72 (β/ν = 0.34). Indeed, the data
corresponding to ρ > ρc curve upward while those for ρ <

ρc curve downward, thus giving additional support for the
accuracy of our estimated critical parameters.

The correlation length critical exponent ν can be estimated
by exploring the scaling relation [24]

� = ∂lnρB(L,ρ)

∂ρ
∝ L1/ν, (5)

which holds at the critical point ρ = ρc. Figure 5 shows this
power-law dependence on the system size for all explored
values of μ. The estimated values for 1/ν can be found in
Table I. It should be remarked that the four values μ � 3,
corresponding to diffusion, give the same value of 1/ν = 0.50
within the error bars.

Figure 6 shows the data collapse using the estimated critical
point and critical exponents. In the panels, we show our results
for μ = 1.1 and μ = 8.0. In the first case, collapse occurs for
ρc = 2.72, β/ν = 0.72, and 1/ν = 0.65, while in the second
for ρc = 4.72, β/ν = 0.34, and 1/ν = 0.50. The collapse of
all data from distinct chain sizes over a single curve confirms
the accuracy of all critical parameter estimates.
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FIG. 3. (Color online) Density of infected individuals ρB against
system size L at the critical point. The fit ρB (L,ρc) ∝ L−β/ν directly
gives β/ν for the seven values considered for μ.
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FIG. 4. (Color online) Scaled order parameter ρBLβ/ν versus
system size L where we use the best estimate for β/ν previously
obtained. Data remain roughly constant at ρ = ρc, while they curve
upward for ρ > ρc and downward for ρ < ρc. In this panel, we show
our results for (a) μ = 1.1 (our estimates were ρc = 2.72, β/ν =
0.72) and (b) μ = 8.0 (our estimates were ρc = 4.72, β/ν = 0.34).
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FIG. 5. (Color online) Having defined � as the derivative of
lnρB (L,ρ) with respect to ρ at the critical point, we show � against
the system size L in a log-log plot. The linear interpolation directly
gives 1/ν for each of the seven values of μ (to avoid superposition
we plotted data in two different panels).
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FIG. 6. (Color online) Data collapse of the order parameter data
for (a) μ = 1.1 (ρc = 2.72, β/ν = 0.72, 1/ν = 0.65) and (b) μ = 8.0
(ρc = 4.72, β/ν = 0.34, 1/ν = 0.50).

The critical dynamics can also be characterized by a
dynamical critical exponent. In Fig. 7 we show the scaling
relation of a typical relaxation time τ ∝ Lz [8], which directly
gives the critical dynamical exponent z. Here, τ is the
infection lifetime close to the inactive-active phase transition
(at the critical line ρ = ρc). There are, however, several
distinct definitions for the measure of the typical lifetime τ

in a simulated dynamical process. In particular, whenever
the order parameter is close to criticality but still falling
into the absorbing state, lifetime is successfully measured
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FIG. 7. (Color online) Lifetime τ versus system size L at the
critical point. The best fit for τ ∝ Lz gives z (and therefore 1/z) for
each of the seven values of μ. The three largest values of μ give a
value of 1/z close to 0.5, which is the value expected for ordinary
diffusion.
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FIG. 8. (Color online) Critical density ρc (above) and critical
exponents (below) as functions of μ. The three smallest values of μ

correspond to Lévy flights, while the four largest values correspond to
diffusion. All critical parameters are roughly constant in the diffusive
regime μ � 3 with a little discrepancy only for 1/z corresponding to
μ = 3 (diffusion with infinite variance). The critical point ρc seems
to converge for large μ.

by [21]

τ =
〈∫ ∞

0 tρB(t)dt∫ ∞
0 ρB(t)dt

〉
. (6)

Now consider lattices of size L = 200, 400, 600, 800, 1000,
and 2000. For μ < 3, the simulation was iterated for a number
of steps which ranges from 8 × 105 (for L = 400) to 105

(for L = 2000), while for μ � 3 it ranges from 2 × 103

(for L = 200) to 5 × 102 (for L = 1000). Table I shows the
exponents 1/z for all the explored values of μ. From there we
can see that 1/z is close to 0.5 for the three largest values of
μ, confirming that long-range processes are irrelevant in this
regime.

Finally, Fig. 8 summarizes our results concerning the values
of critical point and critical exponents for the SDEP model as a
function of μ. This figure shows that ρc converges to a constant
value for large values of μ, where the process reduces to DEP in
the DA > DB regime [7] (indeed our process exactly reduces
to DEP only when μ → ∞).

It is worth emphasizing that the critical density is a
nonuniversal parameter and, as such, it depends on the details
of the local dynamical rules. As a result, it varies with the jump
exponent μ even in the regime of normal diffusion μ > 3.
Actually, any decrease of the jump exponent μ favors the con-
tamination process by increasing the effective neighborhood
of a given individual, thus leading to smaller values of the
critical density. However, the critical exponents have a more

universal character. The critical exponents are constant in the
diffusive region μ � 3 with a little discrepancy only for 1/z

corresponding to μ = 3 (diffusion with infinite variance) due
to the presence of strong corrections to scaling. This result
confirms that the universality class of SDEP is the same of DEP
when the jump (power-law) process is equivalent to a normal
diffusion. In the regime of anomalous diffusion, μ < 3, the
critical exponents develop a dependence on the jump exponent
μ, with the static critical exponents approaching the MF values
as the jumps become longer-ranged.

IV. SUMMARY AND CONCLUSION

In this work, we introduce a one-dimensional superdiffusive
epidemic process and analyze its critical behavior. The model
considers a population distributed in a linear chain where first-
neighbor jumps, typical of standard diffusion, are replaced by
power-law-distributed ones. Depending on the characteristic
exponent governing the jumping distribution, it turns out that
one can switch from short- to long-range behavior. The SDEP
model coincides with DEP when the power-law exponent μ is
large, giving rise to Lévy flights for small values of μ.

We considered the case DA > DB , i.e., the case in which
healthy individuals have a larger mobility with respect to
infected ones. We find out that our data, according to previous
numerical simulations [7,8,19,21] and in contrast with some
field-theoretical predictions based on RG arguments [4],
strongly support a second-order transition from the steady
to the absorbing state. To determine the critical properties,
we employ a finite-size scaling analysis. We estimate the
critical point ρc and the critical exponents β/ν, 1/ν, and z

for different values of μ. Remarkably, the critical exponents
vary continuously as a function of the characteristic exponent
governing the long-range jumps in the regime leading to
anomalous diffusion.

The present model shows that the critical density con-
tinuously decreases when the characteristic exponent of the
jump distribution decreases, i.e., when the jumps become
longer-ranged. This is in agreement with the general belief
that, in modern society, long-distance transportation systems
play an important role in the process of epidemic spreading. An
effective control at major hubs, aiming to restrict the mobility
of infected individuals, can effectively decrease the strength
of the contamination process.

It is important to recall that we considered the contami-
nation probability of a susceptible individual independent of
the total number of neighboring infected individuals. In real
situations, the contamination probability will be an increasing
function of the local density of infected individuals. Although
this aspect does not influence the critical exponents reported
here, the actual critical density shall decrease. Therefore,
reducing the number of contacts during the outbreak of an
epidemic process also contributes to its control. As a final
comment, real epidemics mainly occur in two dimensions.
While the values of the critical density as well as of the
critical exponents in two dimensions are expected to differ
from the here reported values for one dimension, their overall
dependence on the exponent μ governing the jump distribution
will remain unaltered.
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It is interesting to note that the absorbing state phase transi-
tion depicted by the contact process model with nondiffusing
particles interacting via a power-law decaying contamination
rate also displays continuously varying exponents [25–30].
In this class of models, the critical exponents asymptote
those for the directed percolation universality class in the
regime of effectively short-range interactions. The similarity
between models with long-range interactions and models
with Levy-like exchanges has been emphasized in previous
literature [31]. However, in the regime of normal diffusion,
the presently introduced model exhibits an absorbing state
phase transition that belongs to a universality class distinct
from the usual directed percolation. As such, the introduction
of anomalous diffusion results in a new scenario. Although
continuously varying exponents are observed in both classes
of models, the critical exponents are quite distinct for the
same value of the exponent governing the long-range process.
In particular, the critical exponent governing the divergence of

the correlation length in the present model seems to have two
distinct values associated with the particle’s jumping regime
(diffusive or superdiffusive). On the other hand, it diverges
when the interaction process among nondiffusing particles
becomes longer-ranged [29]. An extended MF approach
including the effect of long-range infections has evidenced
three distinct regimes for the critical exponents in the CP
model with nondiffusing particles. It would be interesting to
have future contributions along this line aiming to establish the
corresponding regimes for the superdiffusive contact process.
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