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The problem of effectively adiabatic control of a collection of classical harmonic oscillators sharing the same
time-dependent frequency is analyzed. The phase differences between the oscillators remain fixed during the
process. This fact leads us to adopt the coordinates: energy, Lagrangian, and correlation, which have proved useful
in a quantum description and which have the advantage of treating both the classical and quantum problem in
one unified framework. A representation theorem showing that two classical oscillators can represent an arbitrary
collection of classical or quantum oscillators is proved. An invariant, the Casimir companion, consisting of a
combination of our coordinates, is the key to determining the minimum reachable energy. We present a condition
for two states to be connectable using one-jump controls and enumerate all possible switchings for one-jump
effectively adiabatic controls connecting any initial state to any reachable final state. Examples are discussed.
One important consequence is that an initially microcanonical ensemble of oscillators will be transformed into
another microcanonical ensemble by effectively adiabatic control. Likewise, a canonical ensemble becomes
another canonical ensemble.

DOI: 10.1103/PhysRevE.87.062106 PACS number(s): 05.20.−y, 02.30.Yy, 03.67.Ac, 05.20.Gg

I. INTRODUCTION

The parametric harmonic oscillator is an iconic mechanical
system with a number of highly interesting features that make it
a frequently used classroom example. Recently, the parametric
harmonic oscillator was analyzed with respect to the problem
of optimally draining the maximum energy from the oscillator
in minimum time [1–16]. The original motivation for these
efforts derived from the quest to cool physical systems closer
and closer to absolute zero. Accordingly, the treatment needed
to be at the level of density matrices and quantum control.

The approach in [17] considers a Heisenberg description for
which the dynamical algebra of the Harmonic oscillator can be
exploited. This dynamical algebra reduces the description of
the dynamics of the energy to a three-dimensional system of
ordinary differential equations. Specifically, the Hamiltonian
augmented by the Lagrangian and a position-momentum
correlation form a closed Lie algebra, so other observables
become irrelevant in regard to the time evolution of the energy.
The present work started with the observation that the con-
straint equations of the optimal control problem that result by
following only the expectation values of these three operators
in time hold as well for a collection of classical oscillators as
for the quantum oscillator. Thus the optimal control problem
is identical for the classical and quantum cases. This leads us
to explore this classical regime as a route to further insight.

The classical case does indeed lead to certain interesting
surprises. The most notable among these is the fact that one
classical oscillator [8] behaves very differently from two or
more classical oscillators sharing a frequency. While for a
collection of oscillators there is a lowest attainable energy set
by the final frequency, for a single oscillator there is no such
lowest energy; i.e., all of the energy in the oscillator may be
removed, albeit taking longer and longer times as the energy
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declines. The situation is different for two or more parametric
harmonic oscillators. If such a collection of oscillators with
different initial conditions is subjected to the same change in
their frequency, one has to expect that what takes energy out of
one oscillator might put energy into another oscillator due to
the phase shift between them. How much energy can be taken
out and by what control of the common frequency are two of
the open questions addressed in this paper. How this may be
achieved in the shortest possible time is another.

Time, in fact, is chiefly what one gains through the optimal
control. The adiabatic theorem [18] assures us that we can
extract the maximum work possible from the system no matter
how we change the frequency provided only that we do it
sufficiently slowly. The first and arguably biggest surprise
regarding the quantum optimal control [17] was that we can
achieve fast, effectively adiabatic processes. By effectively
adiabatic, we mean that the process starts and ends in the same
states as the adiabatic process would have. The minimum time
required depends on the initial and final frequencies as well as
the allowed range of intermediate frequencies but is at most a
time comparable to one oscillation [17]. This is much faster
than methods based on the adiabatic theorem. Subsequent au-
thors have shown that the time required can be made arbitrarily
short provided one uses imaginary frequencies ω [2,19]. Here
we again [17] restrict the problem we consider to only real
frequencies in a given range 0 < ωmin � ω � ωmax < ∞.

Indeed, we believe that one lesson learned by applying
optimal control to various physical processes is that more
restrictive controls can lead to more interesting answers that
reveal more of the physics of the problem. This has been seen,
for example, in the control of spin systems where everything
is easy for three-dimensional control of the magnetic field but
gets more interesting when one is restricted to two-dimensional
control [20–22] or even one-dimensional control [23]. With
the restrictive control we adopt, we find that trying to proceed
faster than the minimum time has a cost in work lost to parasitic
oscillations. This feature is lost when one adopts less restrictive
controls that allow zero time solutions.

062106-11539-3755/2013/87(6)/062106(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.062106


K. H. HOFFMANN, B. ANDRESEN, AND P. SALAMON PHYSICAL REVIEW E 87, 062106 (2013)

One classical problem that our analysis sheds light on
concerns the various meanings of the term “adiabatic.” This
word was originally coined for the description of thermody-
namic processes for which its use is unambiguous and refers
to processes without heat transport. Early quantum theory,
however, wreaked havoc on the meaning of this word in
connection to changing parameters in a Hamiltonian. Quantum
adiabaticity thus means something rather different. It refers to
changing a quantum system in a way that keeps the occupation
numbers of each state constant. One surprising feature of
our optimal control is that it is effectively adiabatic in both
senses of the word. How such quantum adiabaticity should be
interpreted for the corresponding classical system is one of the
findings developed here.

II. COLLECTIONS OF PARAMETRIC HARMONIC
OSCILLATORS SHARING THE SAME FREQUENCY

In the present paper we analyze control problems for
a collection of N classical parametric harmonic oscillators
sharing the same frequency. This, on the one hand, extends the
work on one parametric harmonic oscillator [1–5,8,10–12,15],
and on the other hand, it builds a bridge to the control
of a collection of quantum mechanical parametric harmonic
oscillators. Our collection of classical oscillators will be
described by the set of 2N equations,

q̇n = pn, (1)

ṗn = −ω2qn, (2)

all sharing the same control ω2. Here qn and pn are the di-
mensionless position and momentum coordinates of oscillator
n. For concreteness the units are chosen such that h̄ = c =
m = 1, where c and m are the speed of light and the mass of
the oscillators, respectively. Based on these coordinates one
can set up the problem using control theory. Please note that
from here on all quantities are thereby dimensionless. Then,
in principle, the control problem can be solved following the
standard procedures, but it turns out that the natural coordinates
(1) and (2) are strongly interdependent and possibly lead to a
problem description of unnecessary complexity.

For problems involving the total energy E of the oscil-
lators we avoid this unnecessary complexity (and make the
desired connection to the quantum control problem) by again
exploiting the dynamic algebra [24] also present in the classical
version of the problem. We thus introduce

E(t) = 1

2

N∑
n=1

pn(t)2 + ω(t)2qn(t)2. (3)

The differentiation operator d
dt

acting on a term pn(t)2 leads to
terms of the type pn(t)qn(t) as does its application on qn(t)2.
It is thus not too surprising that the Lagrangian

L(t) = 1

2

N∑
n=1

pn(t)2 − ω(t)2qn(t)2 (4)

and the correlation

C(t) = ω(t)
N∑

n=1

pn(t)qn(t) (5)

are important coordinates needed in describing the dynamics
of the collection. A straightforward calculation shows that the
variables {E,L,C} form a closed set under time differentiation.
We find

Ė = ω̇

ω
(E − L), (6)

L̇ = − ω̇

ω
(E − L) − 2 ω C, (7)

Ċ = 2 ω L + ω̇

ω
C. (8)

Later, we will add a differential equation for the frequency ω

with a revised definition of the control, u = u(t) = ω̇/ω,

ω̇ = uω. (9)

This is necessary since our differentiations led to the presence
of ω̇ in (6)–(8), which is not compatible with the usual
formulations of optimal control theory.

We note that Eqs. (6)–(8) are a very remarkable result.
They allow us to treat optimal control problems which can
be cast in terms of the variables {E,L,C} by using a much
reduced variable set consisting of only those three variables.
This applies for any size N of the collection. In addition it
turns out to be exactly the same dynamics as obtained for the
expectation values for the quantum equivalents of the energy,
the Lagrangian, and the correlation, as is seen by comparing
to Eqs. (9)–(12) in [17].

We now seek to complement {E,L,C} by further vari-
ables such that one obtains a description equivalent to
{p1,q1, . . . ,pN,qN }. In order to do so we make the observation
that, for any pair (i,j ) of oscillators of the collection, a direct
calculation shows

d

dt
(piqj − pjqi) = −ω2qiqj + pipj + ω2qjqi − pjpi = 0.

(10)

This means that for any pair (i,j ) of oscillators the quantities
rij = piqj − pjqi are constants of the motion for arbitrary
control. As there are N (N − 1)/2 such rij , it is clear that
with increasing N there are soon more rij than there are
degrees of freedom for the N oscillator collection which is
completely described by the 2N variables {p1,q1, . . . ,pN,qN }.
Thus the rij cannot be independent of each other in general.
A further analysis shows that there are exactly 2N − 3
independent rij .

Then a natural choice seems to be to choose the rij

on the first subdiagonal {ri,i+1} and those on the second
subdiagonal {ri,i+2} as the independent ones. We thus introduce
R1,2 = {ri,i+1} ∪ {ri,i+2}. It appears that with R1,2 being
of dimension 2N − 3 and {E,L,C} being of dimension 3
one should have a complete description of the collection.
However, it turns out that the three quantities {E,L,C} are not
independent of the R1,2; in fact the rank of the Jacobian of the
transformation from {p1,q1, . . . ,pN,qN } to {E,L,C} ∪ R1,2 is
2N − 1.

To understand this consider the following. From the set
R1,2 one can determine all rij due to the dependence of the
remaining ones on those in R1,2. Then one can square each
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one and sum them up over all possible pairs (i,j ),

X = 1

2

N∑
i=1

N∑
j=1

r2
ij = 1

2

N∑
i=1

N∑
j=1

(piqj − pjqi)
2. (11)

As a double sum of constants X is also a constant.
Structurally, X is a sum of terms of the kind pipjqiqj ,

where i and j are different, the same kind of terms one obtains
by squaring C. However, there will be also terms of the form
p2

i q
2
i , which in turn can be obtained by squaring E and L. Thus

one can expect that X might be written as a linear combination
of E2, L2, and C2. Indeed, one finds

X = E2 − L2 − C2

ω2
. (12)

Thus by knowing {E,L,C}, (any) one of the elements in R1,2

can be discarded. That leaves the question of which variable
should complement {E,L,C} ∪ R1,2 to get a description fully
equivalent to {p1,q1, . . . ,pN,qN }. A possible choice is to add
as variables the center of mass

Q =
N∑

n=1

qn (13)

and the overall momentum

P =
N∑

n=1

pn (14)

of the collection. For this couple of variables the dynamics is
found directly from (1) and (2) by summing over n,

Q̇ = P, (15)

Ṗ = −ω2Q. (16)

Note that as {E,L,C} is closed under time differentiation so
is {P,Q}. Even though each one of the two would be enough
to complement {E,L,C} and R1,2 reduced by one rij , it is
more convenient to use both and reduce R1,2 by two rij . A
choice keeping the symmetry between the oscillators is to
use R2,3 = {ri,i+2} ∪ {ri,i+3} instead of R1,2. Then {E,L,C} ∪
{P,Q} ∪ R2,3 is one set of variables which allows a complete
description of the collection equivalent to {p1,q1, . . . ,pN,qN }.

Armed with our new coordinates, we note that, except for
the overall movement of the center of mass of our collection
of oscillators, the reduced dynamics in terms of E, L, and C

captures the full motion of our collection.

III. THE MINIMUM ENERGY PROBLEM

The coordinate X in (12) plays a special role in two respects.
Since it can be expressed in terms of rij , it is constant. Since
it can be expressed in terms of E, L, and C, it can be used
to reduce the dimension of the space on which the dynamics
of interest in this problem and its control take place. This has
been exploited in [14,16].

Recently [25], X has been dubbed the Casimir companion,
and its close relationship to the Casimir operator has been
emphasized. The Casimir companion has been shown to be
generally useful for optimal control problems of quantum
systems with a dynamical symmetry. Its value uniquely
determines the von Neumann entropy of the system.

Our present concern, however, is to use the value of X to
find the lowest energy Emin

f that can be reached from an initial
state (Ei,Li,Ci,ωi). By the invariance of X, we must have

E2
i − L2

i − C2
i

ω2
i

= E2
f − L2

f − C2
f

ω2
f

, (17)

so

E2
f = ω2

f

ω2
i

(
E2

i − L2
i − C2

i

) + L2
f + C2

f , (18)

which shows that the lowest possible final energy will be found
for Lf = Cf = 0. We thus obtain

Emin
f = ωf

ωi

√
E2

i − L2
i − C2

i , (19)

which represents our solution to the minimum energy problem.
While this can be formulated as a control problem, the optimal
control is not determined, as in fact there are very many
controls that reach this energy. For example, the adiabatic
theorem guarantees that any time dependence ω(t) with
ω(0) = ωi and ω(tf) = ωf will come arbitrarily close if we
slow it down sufficiently, i.e., remap t = t̂/α and let α → ∞.
The question we ask below is how to achieve this lowest energy
in minimum time.

States satisfying L = C = 0 are called equilibrium states.
Such states are time invariant and minimize the energy on
any set of states with given values of X and ωf . The L = 0
condition can be interpreted as the equipartition of energy; the
C = 0 condition can be interpreted as a lack of correlations
at equilibrium. As we will see in Sec. VI, microcanonical and
canonical ensembles have L = C = 0.

IV. THE MINIMUM TIME PROBLEM

Consider a collection of oscillators which have the initial
frequency ωi and initially vanishing Lagrangian L and corre-
lation C. Our goal is to reach a state with frequency ωf < ωi

and again vanishing Lagrangian L and correlation C in the
minimal possible time. We also require that

ωmin = ωf � ω(t) � ωi = ωmax. (20)

Our optimal control problem is then to minimize the time

τ =
∫

dt (21)

subject to the constraints represented by the dynamical equa-
tions (6)–(9), the inequalities (20), the initial state (Ei,0,0,ωi),
and the final state (Ef,0,0,ωf ) = (ωf

ωi
Ei,0,0,ωf ).

The optimal control Hamiltonian [26] is

HC = −1 + Ẽu(E − L) − L̃(u(E − L) + 2ωC)

+ C̃(2ωL + uC) + ω̃uω, (22)

where the variables Ẽ,L̃, and C̃ are conjugate variables to
E, L, and C. Note that the optimal control Hamiltonian is
linear in the control u. To emphasize this, we group the terms
containing u and find

HC = [ω̃ω + (Ẽ − L̃)(E − L)]u + [−1 + 2ω(C̃L − L̃C)]

= σu + α, (23)
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where we have introduced the terms σ = σ (x,x̃) and α =
α(x,x̃) for the coefficients of HC viewed as a linear polynomial
in our control u. The Pontryagin maximality principle [26]
tells us that, at any instant, the value of the control must
maximize HC . Thus when the switching function σ is positive,
u must be as large as possible, and when σ is negative, u must
be as small as possible. Since away from the boundaries set
by the inequalities ωmin � ω(t) � ωmax the value of u is not
constrained, this amounts in our problem to jumps in ω. This
can be seen by considering the problem with |u(t)| � umax

and letting umax → ∞. Such jumps must terminate on the
boundary arcs ω(t) = ωmax or ω(t) = ωmin, which can be used
as segments of the optimal trajectory. In addition to jumps
and boundary arcs, the optimal control for such problems
can also have singular branches along which the switching
function σ vanishes identically over a time interval. The fact
that this does not occur for this problem has been shown
in [5,14,16,17]. The optimal control must therefore be of
the bang-bang type, jumping between extreme allowed ω’s
interspersed with constant ω branches.

V. A THREE-JUMP OPTIMAL CONTROL FOR THE
MINIMUM TIME PROBLEM

In this section we build up the optimal control including the
resulting trajectories for the minimum time problem. In a first
step we determine the dynamics for the {E,L,C,ω} variable
set. As we are dealing with a bang-bang control, the frequency
is either constant at one of its extreme values or jumps from one
extreme value to the other. So the control consists of constant
frequency arcs connected by jumps.

For constant frequency the dynamics of the system (6)–(9)
simplifies considerably. The energy E is constant and the point
(L,C) performs a counterclockwise rotation in the LC plane,
described here by the transition from state s� to s�+1:

s�+1 = W (ω�,t�)s�

=

⎛
⎜⎜⎜⎝

1 0 0 0

0 cos 2ω�t� − sin 2ω�t� 0

0 sin 2ω�t� cos 2ω�t� 0

0 0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

E�

L�

C�

ω�

⎞
⎟⎟⎠ . (24)

We call this a wait step.
A jump in the frequency goes beyond the dynamics given

in (6)–(9). From the continuity of
∑

n p2
n and

∑
n q2

n at a jump
we find, using Eqs. (3)–(5),

s�+1 = J (ω�+1,ω�)s�

= 1

2

⎛
⎜⎜⎜⎝

1 + r2 1 − r2 0 0

1 − r2 1 + r2 0 0

0 0 2r 0

0 0 0 2r

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

E�

L�

C�

ω�

⎞
⎟⎟⎠ , (25)

where r = ω�+1/ω�. The result of a bang-bang control can
now be easily expressed as the action of a sequence of matrices
W (ω�,t�) and J (ω�+1,ω�). The remaining problem is to find
the optimal number of steps and the appropriate times t�.

From our work on the quantum formulation of the control
problem [14,16,17] we know that a three-jump control with
two appropriately chosen wait times is optimal when the

frequency ratio r is not too large. For example, this is the case
when the ratio is obtained from the initial and final equilibrium
frequencies. However, for large frequency ratios r , controls
with more than three jumps may perform better [27].

A. Equilibrium states as initial and final states

In the case of interest here we start and end in equilibrium
states with L = C = 0. The time invariance of such states
leads to the requirement that a frequency jump is required
immediately at the beginning and the end of a time optimal
process. The states obtained by such jumps can then be
connected by a further jump separated by appropriate times
ti and tf .

With the above introduced jump dynamics we see that the
result of the initial jump from ωmax = ωi to ωmin = ωf starting
from the initial state si is

s1 = (E1,L1,C1,ω1)tr = J (ωf,ωi)(Ei,0,0,ωi)
tr

= (Ei(1 + r2)/2,Ei(1 − r2)/2,0,ωf)
tr. (26)

Similarly, by inverting the final jump step from ωmax = ωi to
ωmin = ωf we obtain the state preceding the final state sf ,

s(f−1) = (E(f−1),L(f−1),C(f−1),ω(f−1))
tr

= J (ωf,ω(f−1))
−1(Ef,0,0,ωf )

tr

= (Ef(1 + r−2)/2,Ef (1 − r−2)/2,0,ωi)
tr. (27)

B. Connecting two given states with isentropic processes

From our previous calculations on quantum oscillators we
already know that we will be able to connect s1 and s2 by
two wait steps with one intermediate jump step changing
the frequency from ωf to ωi. Note that for finding the
effectively adiabatic process that connects initial and final
equilibrium states s1 and s2 we need to consider only states with
C = 0. However, in this section, we generalize that problem
by considering two generic states s1 = (E1,L1,C1,ω1)tr and
s2 = (E2,L2,C2,ω2)tr and asking under what conditions can
two such states be connected by two waits and a jump. This
generalization gives us information about the structure of the
connection problem.

First, a wait step W (ω1,t1) is applied for a yet undetermined
time t1. Since in a wait step L and C rotate, we note that the
system has a time independent

A1 =
√

L2
1 + C2

1 = const. (28)

The state travels along an arc of a circle with radius A1 in the
(L,C) plane. Then a jump J (ω2,ω1) is applied, which leads
to a state which must lie on a circle to which the final state
belongs:

A2 =
√

L2
2 + C2

2 = const. (29)

Finally, the second wait W (ω2,t2) automatically reaches the
final state.

As we do not know yet the initial waiting time t1, we
parametrize the initial jump state by an angle φ1 = 2ω1t1:

sj1 = (E1,A1 cos φ1,A1 sin φ1,ω1)tr. (30)
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2

1

1

2

C
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L

2

1

1

2

C

FIG. 1. (Color) A projection of the trajectory of a wait-jump-wait control in the (L,C) plane leading from the initial state (green square)
with L1 > Lj1 to the final state (red circle) with Lj2 > L2. The black ticks along the trajectory indicate equal time intervals. The left and right
panels illustrate the choice between positive and negative C values for the jump point. For the values shown, C > 0 is clearly faster.

Likewise, the desired target state sj2 is parametrized as

sj2 = (E2,A2 cos φ2,A2 sin φ2,ω2)tr. (31)

Due to the jump conditions (25) the initial jump state sj1 is
connected to the final jump state sj2 by

sj2 = J (ω2,ω1)sj1. (32)

This vector equation applies componentwise; here we look
at the first element

E2 = E1

2

(
1 + ω2

1

ω2
2

)
+ A1

2

(
1 − ω2

1

ω2
2

)
cos(φ1). (33)

Solving for cos φ1 and reinserting the result into (30) leads to
only one possible solution for Lj1:

Lj1 = 2E2ω
2
1 − E1

(
ω2

1 + ω2
2

)
ω2

1 − ω2
2

. (34)

The corresponding Cj1 = ±
√
A2

1 − L2
j1 follows from (28).

Due to the symmetry between initial and final states we find

Lj2 = 2E1ω
2
2 − E2

(
ω2

2 + ω2
1

)
ω2

2 − ω2
1

(35)

and Cj2 = ±
√
A2

2 − L2
j2. The important point to understand

about this solution is that the connection of two given circles
in the (L,C) plane with two given frequencies ω1 and ω2 can
only proceed at two special points on the initial circle. Both
points have the same L value with opposite signs for C.

We are now in the position to address the aforementioned
connectability question: From (28) and (29) we have |Lj1| �
A1 and |Lj2| � A2, and thus the two states s1 and s2 are
connectable iff∣∣∣∣∣2E2ω

2
1 − E1

(
ω2

1 + ω2
2

)
ω2

1 − ω2
2

∣∣∣∣∣ � A1 (36)

and ∣∣∣∣∣2E1ω
2
2 − E2

(
ω2

2 + ω2
1

)
ω2

2 − ω2
1

∣∣∣∣∣ � A2. (37)

We now turn to the question of which of the two jumping
points should be chosen to give the shorter process time. There
are first two simple cases: We note that the wait matrix W leads
to counterclockwise turns and that the jump matrix J does not
change the sign of C. If the initial L1 is larger than Lj1 and the
final L2 is smaller than the corresponding Lj2, then we choose
the jump point with positive Cj1. Such a situation is shown in
Fig. 1. An initial state at frequency ω1 = 3 with L1 = 1.58 is
rotated to Lj1 = 0.85, from which a jump takes it to ω2 = 5
with Lj2 = −1.42, from which the second rotation leads to
L2 = −2.64. Choosing the jump with C < 0 would have led
to a much longer duration.

Correspondingly, for the situation where the initial L1 is
smaller than Lj1 and the final L2 is larger than Lj2 we choose
the jumping point with the negative Cj1.

For the cases which are not yet covered we can use either
of the two principally possible jump points. In that case the
question is for which of the two the total time is longer. This is
decided by comparing the times spent on the two arcs between
(Lj1,Cj1) and (Lj1, − Cj1) on the initial circle and between
(Lj2,Cj2) and (Lj2, − Cj2) on the final circle. Let, for k = 1,2,
φk± = arg (Lk1 ± i|Ck1|). Then the angles of interest on the
initial or final circle are �φk = φk− − φk+ = 2(π − φk+), and
we find the following selection rule: If L1 > Lj1 and L2 > Lj2

and in addition �φ1/ω1 > �φ2/ω2, then Cj1 > 0; otherwise,
Cj1 < 0. If, on the other hand, L1 < Lj1 and L2 < Lj2 and in
addition �φ1/ω1 > �φ2/ω2, then Cj1 < 0; otherwise, Cj1 >

0. Figure 2 shows this situation. Here the negative jump point
leads to a considerably shorter process time, as can be seen
by counting the time ticks along the trajectory. The times can
be determined from the angles turned and the corresponding
frequencies.
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FIG. 2. (Color) A projection of the trajectory of a wait-jump-wait control in the (L,C) plane leading from the initial state (green square) to
the final state (red circle). The black ticks along the trajectory indicate equal time intervals. In the left panel the jump point with positive C is
used; in the right panel the negative C is used. The latter is clearly faster.

Table I presents an overview of the above decision rules.

C. Equilibrium states as initial and final states

We now apply the results of the previous section to the
special case we started with, namely, s1 and s2 given by (26)
and (27), respectively. In that case A1 = L1 and A2 = −L2, as
L2 is negative due to ωi/ωf > 1. The jump occurs for positive
Cj1 and Cj2 as L1 and −L2 are the largest possible L on the
respective circles. Then the angles φ1 and φ2 can be easily
determined, and the times t1 and t2 are

t1 = 1

2ωi
arccos

(
ω2

i + ω2
f

(ωi + ωf)2

)
,

(38)

t2 = 1

2ωf
arccos

(
ω2

i + ω2
f

(ωi + ωf)2

)
,

as expected from the quantum calculation.
Figure 3 shows the resulting trajectories in the (L,C) plane.

The initial and final equilibrium states are located at the origin.
The first frequency jump takes the oscillator collection to an
L > 0, C = 0 state, which is rotated counterclockwise to the
jump states, which are connected through the intermediate

TABLE I. The decision rules for selecting the positive or negative
jump point.

Case Jump point selection

L1 < Lj1, Lj2 < L2 C < 0
L1 < Lj1, Lj2 > L2, �φ1/ω1 < �φ2/ω2 C > 0
L1 < Lj1, Lj2 > L2, �φ1/ω1 > �φ2/ω2 C < 0
L1 > Lj1, Lj2 > L2 C > 0
L1 > Lj1, Lj2 < L2, �φ1/ω1 < �φ2/ω2 C < 0
L1 > Lj1, Lj2 < L2, �φ1/ω1 > �φ2/ω2 C > 0

jump. The second rotation then leads to an L < 0, C = 0
state, from which the final jump reaches the target equilibrium
at the origin.

VI. SPECIAL CONFIGURATIONS AND ENSEMBLES

In this section we discuss a number of special collections of
parametric harmonic oscillators sharing the same frequency.
We also show that already two classical oscillators are enough

2 1 1 2
L

2

1

1

2

C

FIG. 3. (Color online) The projected trajectory of a three-jump
control in the (L,C) plane. The initial and final equilibrium states
are located at the origin. The first frequency jump takes the
oscillator collection to an L > 0, C = 0 state, which is rotated
counterclockwise to the jump states, which are connected through
the intermediate jump. The second rotation then leads to an L < 0,
C = 0 state, from which the final jump reaches the target equilibrium.
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to represent the full complexity of the dynamics of N oscilla-
tors or of an ensemble of quantum oscillators. We also verify
Hertz’s theorem [28] that a microcanonical ensemble at one
energy is transferred into another microcanonical ensemble
at a different energy by a reversible adiabatic process. It is
reassuring to see that this holds also for effectively adiabatic
processes.

First, we turn to collections of few oscillators with special
properties.

A. Effectively single-oscillator configurations

We define effectively single-oscillator configurations to be
N oscillators with X = 0. Recall from Eq. (11) that X is
the sum of the squares of all rij ’s. Thus X = 0 implies that
rij = 0 for all i and j . But rij = 0 means that the vectors
(qi,pi) and (qj ,pj ) are parallel. This forces configurations of
oscillators to lie on one line through the origin. They are all
in phase or shifted by π . Physically, that is not surprising
as the {E,L,C} representation does not distinguish between
oscillators passing through the origin from opposite sides. For
these configurations the optimal control of Ref. [8] for one
oscillator applies rather than the three-jump controls we have
been discussing. These configurations can reach E = 0, albeit
in infinite time.

B. Equilibrium configurations

These states are characterized by the equilibrium conditions
L = C = 0. For one oscillator, it means sitting at (q,p) =
(0,0). For more oscillators the possible parameter space gets
large; we restrict ourselves to configurations with oscillators
all at the same energy.

Consider two oscillators with the same energy:

q1 = d sin(ωt + ϕ1), (39)

p1 = dω cos(ωt + ϕ1), (40)

q2 = d sin(ωt + ϕ2), (41)

p2 = dω cos(ωt + ϕ2), (42)

where ϕ1 and ϕ2 are the respective phase shifts. So both
oscillators are on the same energy shell but have a relative
phase shift. Using trigonometrical rules, we obtain E, L, and
C as

E = d2ω2, (43)

L = d2ω2 cos(ϕ1 − ϕ2) cos(2ωt + ϕ1 + ϕ2), (44)

C = d2ω2 cos(ϕ1 − ϕ2) sin(2ωt + ϕ1 + ϕ2). (45)

It is now easy to see from (44) and (45) that a relative phase
shift ϕ1 − ϕ2 = π/2 or 3π/2 leads to L = C = 0.

If ϕ1 − ϕ2 = π , one sees that L and C have the same
amplitude as E, which implies X = 0 and the effectively
single-oscillator behavior we saw above. This situation of
in-phase evolution is in a sense orthogonal to the equilibrium
situation when ϕ1 − ϕ2 = π/2 or 3π/2.

For three oscillators, again restricting ourselves to configu-
rations of oscillators on the same energy shell, we have, up to
an arbitrary overall phase shift, eight possible configurations
of high symmetry leading to L = C = 0. The simplest is the

equilateral triangle. All others are obtained from it by noting
that the equilibrium conditions are not sensitive to rotations by
π . Similarly, for N oscillators having the same energy, we have
2N possible configurations up to an overall phase shift. These
configurations are found by starting from the regular N -gon
and adding π to the phase of some subset of the vertices.

Similar solutions can be found for the equilibrium con-
ditions, dropping the same ellipse requirement for small
displacements off the energy shell. Larger displacements,
however, yield no solution.

C. A representation theorem

Examining Eqs. (43)–(45), it becomes apparent that for
a collection of oscillators of any size one can determine a
two-oscillator collection with the same {E,L,C} behavior. To
see this, we determine E0, L0, and C0 at a certain time t0 and
frequency ω0 for the collection to be represented. Then from
(43)–(45) we find that with d = √

E0/ω0, cos(ϕ1 − ϕ2) =√
L2

0 + C2
0/E0, and tan(2ω0t0 + ϕ1 + ϕ2) = C0/L0 the same

initial conditions are set at t0. Thereafter, the two oscillators
as well as the collection to be represented will always have the
same E, L, and C if subjected to the same control.

D. Microcanonical ensemble

States in statistical mechanics are distributions in the phase
space of one copy of the system. We now consider what
effectively adiabatic moves do to a microcanonical distribution
of one oscillator. By Hertz’s theorem [28] a truly adiabatic
process would carry this ensemble to another microcanonical
distribution. Note that the special configurations discussed in
the previous section could be viewed as finite realizations of
such an ensemble, whereas the full distribution is what results
in the thermodynamic limit as the number of oscillators tends
to infinity. By the discussion in the previous section, we note
that a distribution uniform around the ellipse will satisfy the
equilibrium conditions L = C = 0.

The key observation we make here is that in effectively
adiabatic moves, all the states on the initial ellipse end up at
states on the same final ellipse. This follows easily from Ef =
ωf
ωi

Ei. The second key observation is that effectively adiabatic
moves also preserve the phase shift between two oscillators on
the same ellipse.

This is illustrated in Fig. 4, where we track the movement
of two oscillators from the initial to the final ellipse. It can also
be shown directly by evaluating r12 from (42):

r12 = p1q2 − p2q1 = −d2ω sin(ϕ1 − ϕ2) = E

ω
sin(ϕ1 − ϕ2),

(46)

where the last equality used (43). As r12 is a constant of the
motion, we find

Ei

ωi
sin

(
ϕi

1 − ϕi
2

) = r12 = Ef

ωf
sin

(
ϕf

1 − ϕf
2

)
. (47)

Using again Ei
ωi

= Ef
ωf

, we thus finally obtain sin(ϕi
1 − ϕi

2) =
sin(ϕf

1 − ϕf
2).

It follows that a uniform distribution on the initial ellipse
is transformed into a uniform distribution on the final ellipse;
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FIG. 4. (Color) Two oscillators of the same energy but with a phase difference, marked as open blue circles in (a), are followed through
the three-jump move in this (q,p) phase diagram. The blue ellipse represents all possible states with the initial energy and frequency, and the
red circle shows all possible final states at the final frequency. (a) Initial state. (b) Initial wait moves (thick black lines). (c) Jump to the final
frequency (green circles). (d) Wait move at the final frequency (thick black lines). (e) Jump back to the initial frequency (green ellipses). (f)
Wait move at the initial frequency (thick black lines). (g) Jump to the final frequency and final state on the red circle (whole trajectory marked
with a thick black line). (h) A uniformly distributed set of initial points on the blue ellipse ends up as uniformly distributed final states on the
red circle; i.e., a microcanonical ensemble is transformed into another microcanonical ensemble.

i.e., a microcanonical ensemble is transformed into another
microcanonical ensemble.

E. Canonical ensemble

Effectively adiabatic moves carry canonical ensembles to
canonical ensembles. This fact is of some significance in
connection with quantum heat engines [1]. To see this, we
start with the central fact of the previous section: uniform
distributions on an energy slice at E = Ei are carried to
uniform distributions at energy E = Ef = ωf

ωi
Ei. Now we

start with the distribution at Ei having probability mass
p(Ei) ∝ exp(−Ei/kTi). Since all of this probability transfers
to Ef = ωf

ωi
Ei, the resulting distribution has

p(Ef) ∝ exp(−Ei/kTi)

= exp

(
− Ef

k ωf
ωi

Ti

)
= exp(−Ef/kTf), (48)

which is canonical with final temperature Tf = ωf
ωi

Ti.

VII. CONCLUSIONS

This paper sets out to examine the classical counterpart to
the optimal control of a shared frequency among an ensemble
of noninteracting harmonic oscillators [1–5,8,10–12,15]. After
some considerations regarding possible choices of coordinates
for the problem, we are led to using the coordinates E,L, and
C with the interesting feature that the same treatment applies
to a classical or a quantum ensemble. We deviate from most
authors on the subject by requiring our shared frequency to
be in a limited range ωmin � ω � ωmax that reveals features
missing in the less restrictive treatments.

Considering the problem of reaching the minimum energy
in minimum time, we again find that the minimum energy
is determined by the time-invariant Casimir companion X

and that fast effectively adiabatic processes exist between any
two states of the ensemble. We characterize the three-jump
processes in this class and find conditions for two states to be
connectable using a three-jump control.

We also show that such effectively adiabatic processes
indeed have the features expected for infinite time adiabatic
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switching in classical systems such as preserving microcanon-
ical and canonical ensembles. We also prove a representation
theorem that shows that any collection of quantum or classical
harmonic oscillators can be represented by two classical
oscillators.

The classical collection of oscillators does show one feature
not present in the quantum case. Provided the collection of
oscillators is in phase, the collection acts as effectively one os-
cillator whose control is quite different [8], primarily because
such control can be tailored to the phase of the oscillator.
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