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SLE(κ, �ρ) is a variant of Schramm-Loewner Evolution (SLE) which describes the curves which are not
conformal invariant, but are self-similar due to the presence of some other preferred points on the boundary. In
this paper we study the left passage probability (LPP) of SLE(κ, �ρ) through field theoretical framework and find
the differential equation governing this probability. This equation is numerically solved for the special case κ = 2
and hρ = 0 in which hρ is the conformal weight of the boundary changing (bcc) operator. It may be referred
to loop erased random walk (LERW) and Abelian sandpile model (ASM) with a sink on its boundary. For the
curve which starts from ξ0 and conditioned by a change of boundary conditions at x0, we find that this probability
depends significantly on the factor x0 − ξ0. We also present the perturbative general solution for large x0. As a
prototype, we apply this formalism to SLE(κ,κ − 6) which governs the curves that start from and end on the real
axis.
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I. INTRODUCTION

The recent breakthrough in two-dimensional (2D) critical
phenomena, referred to Schramm-Loewner Evolution (SLE),
has provided us with a new interpretation of the traditional
conformal field theory (CFT) and Coulomb gas approaches.
According to Schramm’s idea [1] one can describe the inter-
faces of 2D critical statistical models via a stochastic growth
process in which statistical models fall into one-parameter
classes labeled by a diffusivity parameter, namely κ . The
examples of statistical models which are described by SLE are
the Ising model [2], the Potts model [3], the O(n) model [4], the
Abelian sandpile model (ASM) [5], etc., and some geometrical
models such as self-avoiding walks [6], percolation [7], loop
erased random walk (LERW) [8], watershed lines in random
landscapes [9], etc. This description focuses on some nonlocal
objects in the statistical models, in contrast to CFT in which
one deals with local fields. These nonlocal objects can be
interfaces of statistical models, be it the boundary of clusters
in the Ising model, or the boundary of avalanches in the ASM,
or loops in the O(n) model.

A very crucial step towards understanding SLE was taken
by Bauer et al. [10] to connect this theory to CFT. They found a
simple relation between the diffusivity parameter κ in SLE and
the central charge c in CFT. This connection helps to conjecture
CFT universality classes for less-known statistical models and
obtain the operator content of the CFT corresponding to SLE
observables. One way to extract κ from the statistical models
lies within using these observables such as crossing probability
and left passage probability (LPP) [11,12]. This makes it
crucial to investigate these mathematical quantities exactly.
The LPP of chordal SLE can be expressed in terms of κ within
Schramm’s formula [11]. This probability is the solution of a
differential equation obtained by conformal invariance of the
probability measure of the growing SLE curve.

SLE(κ, �ρ) is a variant of SLE(κ) in which there are some
more preferred points on the boundary, affecting the growth
process of the SLE curve. The relation of this generalization
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of SLE to CFT and its operator content and also its corre-
spondence to the Coulomb gas is widely studied [13–15].
Since in some models, one deals with the interfaces which
have some preferred points on the boundary of their domain,
analyzing the statistical observables for SLE(κ, �ρ) seems to be
crucial. The example which we have investigated in this paper
is the LPP of loop erased random walk (LERW) (with κ = 2
corresponding to c = −2 CFT) with a preferred point on the
boundary with conformal weight hρ = 0. This case fits the
problem of avalanche frontiers in the Abelian sandpile model
(ASM) in the presence of a sink point on the boundary in which
the grains (defined in the model) dissipate [5,16].

In the next section we briefly introduce SLE and its variant
SLE(κ, �ρ). Sections III and IV are devoted to the LPP of the
SLE(κ,κ − 6) and the more general case SLE(κ, �ρ). In Sec. V
we present the numerical solution for the case κ = 2 and hρ =
0. Section V is devoted to the perturbative analytic solution for
large x0 at which the boundary condition changes.

II. SLE

SLE theory describes the critical behavior of 2D statistical
models by focusing on their geometrical features such as their
interfaces and classifying them to the one-parameter classes
SLEκ . These domain walls are some nonintersecting curves
which directly reflect the status of the system in question and
are supposed to have two properties: conformal invariance and
the domain Markov property. For good introductory review see
Refs. [14,17]. There are three kinds of SLE: chordal SLE in
which the random curve starts from zero and ends at infinity,
dipolar SLE in which the curve starts from and ends at the
boundary, and radial SLE in which the curve starts from the
boundary and ends in the bulk. In this paper we deal with
chordal and dipolar SLEs.

A. Chordal SLE

Let us denote the upper half plane by H and γt as the SLE
trace grown up to time t . SLEκ is a growth process defined via
conformal maps which are solutions of stochastic Loewner’s
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equation:

∂tgt (z) = 2

gt (z) − ξt

, (1)

in which the initial condition is g0(z) = z and the driving
function ξt is proportional to a one-dimensional Brownian
motion Bt , i.e., ξt = √

κBt in which κ is the diffusivity
parameter defined above. Define τz as the time for which for
fixed z, gt (z) = ξt and the hull as Kt = {z ∈ H : τz � t}. It is
notable that the complement Ht := H\Kt is simply connected
so that one can conclude that every point which is separated
from the infinity by the SLE trace will be involved in Kt . The
map gt (z) is well defined up to time τz. This map is the unique
conformal mapping Ht → H with gt (z) = z + 2t

z
+ O( 1

z2 ) as
z → ∞ known as hydrodynamical normalization.

There are three phases for SLE traces. For 0 < κ � 4 the
trace is non-self-intersecting and it does not hit the real axis;
in this case the hull and the trace are identical: Kt = γt .
This is called the “dilute phase.” For 4 < κ < 8, the trace
touches itself and the real axis so that a typical point is surely
swallowed as t → ∞ and Kt �= γt . This phase is called the
“dense phase.” Finally for κ � 8 the trace is space filling. There
is a connection between the first two phases: for 4 � κ � 8 the
frontier of Kt , i.e., the boundary of Ht minus any portions of
the real axis, is a simple curve which is locally a SLEκ̃ curve
with κ̃ = 16

κ
, i.e., it is in the dilute phase [18]. The crucial

question about the connection between SLE and CFT has been
addressed by M. Bauer et al. [10] in which it was shown that
the bcc operator in CFT corresponding to the change of the
boundary condition at the point from which the SLE trace starts
or ends is the operator having a null vector at the second level
with conformal weight h1(κ) = 6−κ

2κ
and the central charge

c = (3κ−8)(6−κ)
2κ

. This observation helps us to construct the CFT
correspondence of the observables in SLE as we will see in
the following sections.

B. SLE(κ, �ρ)

SLE(κ, �ρ) is a generalization of SLE. As above, we consider
the upper half plane. The parameter κ , as was defined above,
identifies the local properties of the model in hand, and the
parameters �ρ ≡ (ρ1,ρ2, . . . ,ρn) have to do with the boundary
condition changes (bc) imposed on the points on the real axis
x1,x2, . . . ,xn (except the origin from which the curve starts).
For example, for the dipolar setup of SLE on the upper half
plane in which the planar curves start from the origin and
end on a point on the real axis (we name it x∞), we have
n = 1 and ρ = κ − 6 [19]. The stochastic equation governing
SLE(κ, �ρ) is the same as formula (1) but the driving function
has a different form:

dξt = √
κdBt + ρ1

ξt − gt (x1)
dt + ρ2

ξt − gt (x2)
dt + · · ·

+ ρn

ξt − gt (xn)
dt. (2)

For review see [14,17]. In determining the operator content
of CFT corresponding to SLE(κ, �ρ), the important feature is
that the conformal weight of the bcc operator corresponding
to boundary changing in xi , denoted by hρi

, is related to ρi via

FIG. 1. The schematic picture of a triangle involving the points
ξ0, x∞ and x + iy.

the simple relation hρi
(κ) = ρi (ρi+4−κ)

4κ
, (i = 1,2, . . . ,n) [20].

We will use this in the following sections.

III. LPP OF SLE (κ,ρc = κ − 6)

In this section we consider the probability of the event that
a point (x,y) lies within the hull of a dipolar SLE at t = ∞,
i.e., is separated from the infinity. We name this probability
P (w,w̄,ξ0,x

∞) in which w = x + iy is the detection point,
w̄ is its complex conjugate, ξ0 is the point from which the
SLE trace starts, and x∞ is the point on the real axis at which
the curve ends. This probability has been calculated for the
chordal case [11]. Figure 1 schematically shows the situation.
To proceed, we introduce the coordinates θ and φ, indicated
in the figure as follows:

z − ξ0 = reiθ = R
sin φ

sin(φ + θ )
eiθ ,

z − x∞ = rei(π−φ) = R
sin θ

sin(φ + θ )
e−iφ, (3)

x∞ − ξ0 = R, z − z̄ = R
sin φ

sin(φ + θ )
(riθ − r−iθ ).

According to Eq. (2), the driving function obeys the following
equation for this case [19]:

dξt = √
κdBt + κ − 6

ξt − gt (x∞)
dt, (4)

which shows that the driving function acquires a drift term.
Suppose that the curve is grown up to time δt . Let us
uniformize the domain H\γδt to H by a hydrodynamically
normalized Loewner map gδt . Using conformal invariance and
martingale property [15], one can conclude that the ensemble
average [21] of the LPP for the mapped points [denoted by
Pδt (wδt ,w̄δt ,ξδt ,x

∞
δt ) in which the points are evolved according

to Eqs. (1) and (4)] is the same as the original LPP [at
t = 0 in the domain H denoted by P (w,w̄,ξ0,x

∞)], i.e.,
δP ≡ E[Pδt − P ] = 0 in which E[ ] denotes the ensemble
average. Then one can write (δt → dt)

P (w,w̄,ξ0,x
∞) = E

[
P

(
w + 2dt

w − ξ0
,w̄ + 2dt

w̄ − ξ0
,ξ0

+ dξ0,x
∞ + 2dt

x∞ − ξ0

)]
. (5)
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After some Ito calculations one obtains[
2

w − ξ0
∂w + 2

w̄ − ξ0
∂w̄ + ρc

1

ξ0 − x∞ ∂ξ0 − 2

ξ0 − x∞ ∂x∞

+ κ

2
∂2
ξ0

]
P (w,w̄,ξ0,x

∞) = 0. (6)

It is obvious that this equation has the symmetry under
transformation ξ0 → ξ0 + a, Re[w]→ Re[w] + a, x∞ →
x∞ + a. So we can replace ∂x∞ = −∂ξ0 − ∂x , (x = Re[w]).
To solve the above equation, we need to predict the more exact
form of P from its CFT counterpart. This reduces Eq. (6) to a
single variable differential equation.

A. CFT Background

In this subsection we study the CFT interpretation of LPP
of SLE(κ,κ − 6). Suppose that, in CFT corresponding to the
underling model, Ô is the operator which detects the left
passage, i.e., the left passage probability is the expectation
value of this operator. As we have boundary conformal field
theory (real axis) with two boundary changing operators (one
in ξ0 and another in x∞), the LPP can be written as

P (w,w̄,ξ0,x
∞) = 〈Ô(x,y)Ô(x,−y)ψ(ξ0)ψ(x∞)〉

〈ψ(ξ0)ψ(x∞)〉 . (7)

In this equation, the operator Ô(x,−y) is the image of Ô(x,y)
with respect to the real axis. ψ is the boundary changing
operator for the CFT corresponding to underling SLE whose
conformal weight is h1(κ) = 6−κ

2κ
with second level null vector:(

κ

2
L2

−1 − 2L−2

)
ψ = 0 (8)

in which Ln’s are the generators of the Virasoro algebra
satisfying

[Ln,Lm] = (n − m)Ln+m + c

12
n(n2 − 1)δn+m,0. (9)

In this equation c is the central charge of the CFT model in
hand. Equation (8) leads to the following equation for the
mentioned correlation function [22]:(

κ

2
L2

−1 − 2L−2

)
f (w,w̄,ξ0,x

∞) = 0 (10)

with

f (w,w̄,ξ0,x
∞) ≡ 〈Ô(x,y)Ô(x, − y)ψ(ξ0)ψ(x∞)〉

= 1

(ξ0 − x∞)2h1(κ) P (w,w̄,ξ0,x
∞),

(11)

L−1 = ∂

∂ξ0
,

L−2 =
∑

i

(
hi

(zi − ξ0)2
− 1

zi − ξ0

∂

∂zi

)
.

The above sum is over each field in the correlation function
Eq. (7) except ξ0. So f satisfies the equation[

κ

4
∂2
ξ0

− hORe

(
1

(z − ξ0)2

)
+ 1

z − ξ0

∂

∂z
+ 1

z̄ − ξ0

∂

∂z̄

+ 1

x∞ − ξ0

∂

∂x∞ − h1(κ)

(x∞ − ξ0)2

]
f = 0. (12)

In this equation hO is conformal weight of Ô. It is notable
that this equation can be written in terms of x∞ in which one
exchanges the rule of ξ0 and x∞. The chordal case can be
obtained in the limit x∞ → ∞. In this limit we have f =
P (w,w̄,ξ0,x

∞) in Eq. (10) and

[
κ

4
∂2
ξ0

−hORe

(
1

(z − ξ0)2

)
+ 1

z − ξ0

∂

∂z
+ 1

z̄ − ξ0

∂

∂z̄

]
f = 0.

(13)

Comparing Eq. (12) with the equation of LPP of the chordal
case [14], one obtains hO = 0. Substituting f from Eq. (10)
into Eq. (12), it easy to check that the equation governing P

is the same as Eq. (6). It is known that the global conformal
symmetry can fix four point functions up to a function of the
crossing ratios [22]. In this case, letting hO = 0 we have

P = y(2/3)h1(κ)(x∞ − ξ0)(2/3)h1(κ)[(x − x∞)2 + y2](−1/3)h1(κ)

× [(x − ξ0)2 + y2](−1/3)h1(κ)g(κ,η,η̄)

= (ηη̄)(−1/3)h1(κ) g(κ,η,η̄) ≡ 1
2 (η + η̄) h(κ,η,η̄) (14)

in which η is the crossing ratio, i.e., (w−ξ0)(w̄−x∞)
y(x∞−ξ0) and η̄ is its

complex conjugate and g(κ,η,η̄) and h(κ,η,η̄) are functions of
crossing ratios which should be determined. So the finding of
P reduces to finding h. Let u ≡ Re[η] = x(x−x∞)+y2

yx∞ (we set
ξ0 = 0). After some calculations one obtains

4u∂uP + κ

2
(u2 + 1)∂2

uP = 0. (15)

In terms of θ and φ, u is equal to cot(θ + φ). The solution of
this equation, with the boundary conditions P = 1 for θ = π

and P = 0 for θ = 0, is

P = 1

2
+ �

(
4
κ

)
√

π�
(

8−κ
2κ

) 2F1

(
1

2
,
4

κ
,
3

2
,− cot2(θ + φ)

)
× cot(θ + φ). (16)

This result can be derived directly from the chordal case (the
x∞ → ∞ limit, or equivalently φ → 0). In the chordal case
[19]

Pchordal = 1

2
+ �

(
4
κ

)
√

π�
(

8−κ
2κ

) 2F1

×
[

1

2
,
4

κ
,
3

2
,−

(
x − ξ0

y

)2]
x − ξ0

y
. (17)

The corresponding probability for the dipolar SLE can be
obtained using the map ϕ = x∞w

x∞−w
. Under this map, x + iy →

x∞(xx∞−x2−y2)
(x−x∞)2+y2 + i

x2
∞y

(x−x∞)2+y2 . The probability that the point
x + iy is swallowed by a SLE curve in the dipolar case
is equal to the probability of the left passage of the same
point in the chordal setup, i.e., the left passage probability
of the mapped point ϕ(x + iy). Using this point, one can
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write

Pdipolar(x + iy) = Pchordal[ϕ(x + iy)] = 1

2
+ �

(
4
κ

)
√

π�
(

8−κ
2κ

) 2F1

×
[

1

2
,
4

κ
,
3

2
,−

(
(x − ξ0)(x∞ − x) − y2

y(x∞ −ξ0)

)2]

× (x − ξ0)(x∞ − x) − y2

y(x∞ − ξ0)
, (18)

which is exactly the same as Eq. (16) (setting ξ0 = 0).

IV. LPP OF SLE(κ,ρ)

In this section we apply the CFT formalism developed in the
previous section to the SLE(κ,ρ) [n = 1 in Eq. (2)] curves. Let
us consider a curve growing from origin to infinity, conditioned
by a change in the value of fields on the boundary which
correspond to a scaling operator on this point with the weight
hρ = ρ(ρ+4−κ)

4κ
[20]. The left passage probability equals a five

point function in the corresponding conformal field theory:

P (x,y,ξ0,x0) = 〈Ô(x,y)Ô(x,−y)ψ(x0)ψ(ξ0)ψ(∞)〉
〈ψ(x0)ψ(ξ0)ψ(∞)〉 . (19)

So the problem reduces to the calculation of three-point and
five-point functions which satisfy the boundary conditions. As
above, we define f (x,y,ξ0,x0) the numerator of the right-hand
side of Eq. (19). We have

P (x,y,ξ0,x0) = (x0 − ξ0)hρ f (x,y,ξ0,x0). (20)

Using the null vector equation for ψ and after some calcula-
tions we obtain the following equation for P :{

κ

2
∂2
ξ0

+ 2

z − ξ0
∂ + 2

z̄ − ξ0
∂̄ + 2

x0 − ξ0
∂x0 + κhρ

x0 − ξ0
∂ξ0

+
1
2hρ[κ(hρ + 1) − 8]

(x0 − ξ0)2

}
P = 0. (21)

Using global conformal invariance, one can fix f up to a
function of crossing ratios and prove that

P = [(x − ξ0)2 + y2]−1/3h1+1/6hρ [(x − x0)2 + y2]1/3h1−1/2hρ

× (x0 − ξ0)−1/3h1+1/2hρ y1/3h1+1/6hρ g(η1,η2) (22)

in which we have considered two independent crossing ratios
η1 ≡ (z−ξ0)(z̄−x0)

y(x0−ξ0) and η2 ≡ (z−ξ0)
y

= limx∞→∞ (z−ξ0)(z̄−x∞)
y(x∞−ξ0) and

as before, g(η1,η2) is a function of crossing ratios to be
determined. It would be more convenient to work with the
dimensionless variables a ≡ x−ξ0

y
and b ≡ x−x0

x0−ξ0
. It is not

difficult to check that P can be written in the following form:

P (x,y,ξ0,x0) =
{

1 + b

a(1 + a2)

[
1 +

(
ab

1 + b

)2]}1/3h1

×
(

a3(1 + a2)

(1 + b)2
[
1 + (

ab
1+b

)2]3

)1/6hρ

g(a,b).

(23)

From the above formula, one realizes that all coefficients can
be absorbed in g and so P would be a function of a and b, i.e.,
P (x,y,ξ0,x0) = P ( x−ξ0

y
, x−x0
x0−ξ0

). Combining Eqs. (21) and (23)

and writing the derivatives in terms of a and b, the following
differential equation for P is obtained:[

λa2∂2
a + λb2∂2

b + λab∂a∂b + λa∂a + λb∂b + λ
]
P = 0, (24)

where

λa2 = κ

2
, λb2 = κ

2

(
b(1 + b)

a

)2

,

λab = −κ
b(1 + b)

a
, λa = −κhρ

1 + b

a
+ 4

a

1 + a2
,

λb = 2(1 + b)

[
1

1 + a2
−

(
1 + b

a

)2
]

(25)

+ κ(hρ + 1)b

(
1 + b

a

)2

,

λ = hρ

2
[κ(hρ + 1) − 8]

(
1 + b

a

)2

with the boundary conditions

region: x < 0, y → 0+(a → −∞) ⇒ P → 0,

region: x > 0, y → 0+(a → +∞) ⇒ P → 1, (26)

region: x0 → ∞(b → −1) ⇒ P → Pchordal.

It is notable that in the limit b → −1, Eq. (24) becomes

4a∂aP + κ

2
(a2 + 1)∂2

aP = 0, (27)

which is exactly Eq. (15) in which a = u|x∞→∞, so the
requirement of the last line of Eq. (26) is confirmed.

V. NUMERICAL RESULTS FOR LOOP ERASED
RANDOM WALK

In this section we present the result for the loop erased
random walk (LERW) model in the presence of a boundary
condition changing at x0 whose conformal weight in its
corresponding CFT, hρ , is zero. One of the most important
examples of this case is the Abelian sandpile model (ASM)
with a sink on the boundary [16,23]. This model corresponds
to c = −2 CFT and the frontier of the avalanches of sinkless
ASM has been numerically proved to be LERW with κ = 2 [5].
When the model contains a sink at which the grains dissipate,
the statistical properties of the avalanche frontiers may change.
In this model the boundary condition changing (bcc) operator
corresponding to the change from open to close boundary
condition is the twisting operator μ with the conformal weight
−1
8 . It has been proved that in the scaling limit, the operator

corresponding to a sink on the boundary results from operator
product expansion (OPE) of two twist operators, which is
Ĩ = − : θ̄ θ : (z) with the conformal weight 0 in which θ and
θ̄ are Grassman variables, living in the ghost action in c = −2
CFT. This operator is the logarithmic partner of the identity
operator I [16].

For this case we set κ = 2 and hρ = 0 in Eq. (24) and obtain[
a2∂2

a + b2(1 + b)2∂2
b − 2ab(1 + b)∂a∂b + 4a3

1 + a2
∂a

− 2(1 + b)
1 + b(1 + a2)

(1 + a2)
∂b

]
P = 0 (28)
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FIG. 2. (Color online) The 3D result of PDE Eq. (28).

with the same boundary conditions like Eq. (26). To solve this
equation we have used the finite difference method. We have
considered a 104 × 104 lattice and analyzed the solutions up to
the distance 500 from the origin. Due to the singular behavior
of Eq. (28) near a = 0 and b = −1, one should mesh the space
near these lines more exact (smaller) than the other points. The
numerical solution has been indicated in Fig. 2 in which the
overall shape of LPP has been sketched in terms of both a and
b variables. Figure 3 shows the contour plot of P (a,b) in terms
of a and b in which the amount of each contour is indicated in
the graph. It is obvious in both graphs that the solution tends
to unity in the rightmost part of the graph and to zero in the
leftmost region. To be more exact, we have shown the LPP in
terms of a for fixed values of b in Figs. 4 and 5. In Fig. 4 the
result for b = −1 and the exact result of the chordal case have
been sketched and compared. The agreement of results shows
the reliability of our numerical solution. The solution for the
other values of coordinate b have been shown in Fig. 5. As

FIG. 3. (Color online) The contour plot of the numeric solution
of PDE Eq. (28).

FIG. 4. (Color online) The result of PDE Eq. (28) along a axis in
b = −1.

can be seen in this figure, by enlarging b, the graphs widen.
This widening follows from a simple relation, i.e., P (a,b) =
P (λa,−1) in which λ is the rescaling parameter and depends
on the coordinate b. This parameter has been reported in
Table I.

The other important case is the variation of LPP in terms of
θ for the fixed x0 and radius, i.e., r =

√
x2 + y2 = const. To

investigate this dependence, we note that b = −1 + α a√
1+a2

in which α = r
x0

. Figure 6 shows LPP for various amounts
of α. The interesting feature of this figure is that the LPP
does significantly change for large values of α (x0 � r) in
which x0 → ξ0 and for other values of α it does not change
significantly. The direct consequence of this result is that the
LPP depends mainly on x0 − ξ0 and the dependence on x0 − x

is small.
Now we can fix a and observe the dependence of LPP on the

b coordinate. This dependence has been shown in Fig. 7. The

FIG. 5. (Color online) The LPP for various b.
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TABLE I. The amounts of λ in terms of b.

b λ(b) ∓ 0.02

10 0.98
20 0.93
50 0.83
100 0.62
150 0.53
200 0.44
250 0.39

LPP decreases linearly with b and with the slopes depending
on the lattice size. The important feature of this graph is the
singular behavior in b = −1 for all amounts of a. For large
values of a, it manifests itself in an immediate change of
slope and for small values, in a sharp pick around b = −1.
This signals a change of behavior, when one of the parameters
x − ξ0 or x0 − ξ0 changes sign. In other words when x0 →
ξ0 or x → ξ0 we see a singular behavior as expected in
Eq. (23).

A. Perturbative equation for large x0

In this subsection we perturbatively analyze Eq. (28) in
the large x0 limit (equivalent to b → −1). Let us define χ ≡

y(x0−ξ0)
(x−x0)2+y2 = a(1+b)

(1+b)2+a2b2 . In the limit x0 → ∞, χ becomes ε =
1+b
a

which is a small quantity and we take it as the perturbation
parameter. To the first order of ε, Eq. (28) can be written as[

∂a2 + ε∂a∂b + 2aε

1 + a2
∂b + 4a

1 + a2
∂a

]
P = 0. (29)

We expand P in terms of ε. To the first order of ε, P is

P = P0(a) + y(x0 − ξ0)

(x − x0)2 + y2
P1(a) + O(χ2)|x0→∞

= P0(a) + εP1(a) + O(ε2). (30)

The above ansatz is the only answer satisfying the following
conditions: in the limit x0 → ∞ or y → ∞ it retrieves the

FIG. 6. (Color online) The LPP for various rates of x0.

FIG. 7. (Color online) The LPP in terms of b for various rates of
a. A singular behavior is seen in b = −1.

ρ-free solution [LPP of SLE(κ,ρ = 0)] as expected. Sub-
stituting this into Eq. (29), to the leading order we obtain
(∂bP0 = ∂bP0 = 0)

∂2
aP0 + 4a

1 + a2
∂aP0 + ε

(
∂2
aP1 + 4a

1 + a2
∂aP1 − 2

1 + a2
P1

)
= 0. (31)

From the above we can conclude that P0 is exactly the solution
of Eq. (15), i.e., Eq. (16). So P1 should be the solution of the
following equation:

∂2
aP1 + 4a

1 + a2
∂aP1 − 2

1 + a2
P1 = 0. (32)

The general solution of Eq. (32) is

P1 = A2F1

(
3 − √

17

4
,
3 + √

17

4
,
1

2
,−a2

)
+ B 2F1

×
(

5 − √
17

4
,
5 + √

17

4
,
3

2
,−a2

)
a. (33)

FIG. 8. The plot of 2F1( 5−√
17

4 , 5+√
17

4 , 3
2 ,−a2) in terms of a.
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The boundary conditions of P imply that lima→∞ 1
a
P1(a) =

lima→−∞ 1
a
P1(a) = 0 and lima→0

1
a
P1(a) = finite, from which

we conclude that A = 0. The plot of 2F1( 5−√
17

4 , 5+√
17

4 , 3
2 , −

a2) has been presented in Fig. 8. Due to the insufficient
precision, the determination of B is beyond our analysis.
Therefore to first order of ε we suffice to present the general
solution of Eq. (29):

P = 1

2
+ 1

π

(
a

1 + a2
+ arctan(a)

)
+ B(1 + b)2F1

×
(

5 − √
17

4
,
5 + √

17

4
,
3

2
,−a2

)
. (34)

VI. CONCLUSION

In this paper we have calculated the left passage probability
for SLE(κ,ρ). As an example we have analyzed the exact
solution for ρ = κ − 6. For general ρ we have obtained the
differential equation and numerically solved it for the case
κ = 2 and hρ = 0. We also obtained perturbative result for
large x0 (x0 is the point on the real axis at which the boundary
conditions change) up to one undetermined parameter.
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