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It is a well-known fact that the statistical behaviors of level fluctuation and level correlation in the energy-level
spectra are the most efficient tool to characterize quantum chaos in nonintegrable quantum systems. The system of
interacting trapped bosons is a complex system where the low-lying energy levels are highly influenced by the level
repulsion. In this case, interatomic interaction is a dominating fact with strong level correlation between distant
levels. Here we numerically calculate the correlation function, number variance, and Dyson-Mehta least-square
deviation for the low-lying levels for a few thousand interacting trapped bosons, and our data show good analogy
with the Gaussian orthogonal ensemble (GOE) results with a signature of chaos. In the next part of our study, the
energy spectrum of these low-lying levels is considered as a discrete signal and the fluctuation of the excitation
energy is considered as discrete time series. Then we calculate numerically the height-height correlation function
for different order of momentum. In our study logarithmic correlation structure is found instead of multiscaling
structure, and we observe that spectral statistics are compatible with those of GOE.
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I. INTRODUCTION

The study of energy level fluctuations and level correlation
functions is one of the most important tools for understanding
of fluctuation measures in the spectra of complicated systems.
The pioneering work of Bohigas [1] showed that the complex
systems exhibit universal spectral fluctuation. It is well-
established fact that the generic quantum systems are either
integrable or chaotic depending on their spectral statistics.
In the integrable systems the level clustering is one of the
significant features, whereas in the chaotic systems level
clustering is suppressed due to level repulsion. Strong level
correlation in such systems is well described by the random
matrix theory.

The n-level correlation function Rn(E1,E2, . . . ,En) of
an infinite stationary spectrum with unit average spacing
determines all fluctuation measures. The spectral correlation
crucially depends on the so-called two-point correlation
function R2(E1,E2). Although the nearest neighbor spacing
distribution is often used to describe level correlation and
level repulsion; however, it depends on the n-level correlation
function in a complicated way. The other popular quantity is
the number variance �2, which can be easily derived from the
two-level correlation function and is widely used to describe
level clustering. For a stationary spectrum we define the
variable n(L), which counts the number of levels contained
in an interval of length L. The average of number statistics
is 〈n(L)〉 = L, and its variance �2(L) is a two-point measure
and is given by

�2(L) = 〈(n(E,L) − L)2〉. (1)

It can be verified that for integrable systems �2(L) = L,
whereas for Gaussian ensembles �2(L) increases logarithmi-
cally for large L. Both �2(L) and R2 have widely been used
for the nuclear data ensemble [1–3]. The other frequently used
quantity is the spectral rigidity or �3 statistics, which is again
based on the two-level correlation function [1–3]. It measures

the size of fluctuations of the staircase function around a best
fit straight line. Both �2 and �3 statistics are based on the
two-point correlation function. Comparison between RMT
predictions and numerical results for higher-order correlations
may provide new information for complex systems.

Recently a different approach has been proposed to study
the spectral fluctuation. Level fluctuation can be studied by
the Fourier power spectrum where the energy spectrum is
considered as a discrete signal while energy plays the role
of time and the fluctuations of the excitation energy are
considered as discrete time series. The appropriate statistical
tool for the time series analysis is δn statistics. It is well-
established fact that δn statistics exhibits a power law, and the
chaotic quantum systems are characterized by 1

f
noise, while

the integrable quantum systems exhibit 1
f 2 noise [4–7]. The

correlation structure of δn statistics for chaotic systems has
also been studied [8].

The statistical behavior and correlation properties of energy
spectrum in complex atoms, atomic nuclei, quantum billiards,
and chaotic complex quantum systems have been extensively
studied [3,9–20]. The level fluctuation in complex systems is
well described by the Gaussian orthogonal ensemble (GOE)
of random matrices. However, very recently the noninteracting
and weakly interacting many-bosons systems with an external
confinement have drawn special attention [15–20]. Weakly
interacting trapped bosons are especially interesting in the
context of a Bose-Einstein condensation (BEC) and exhibits
very complex energy spectrum [21,22]. Due to the presence of
external confinement the energy spectrum shows a transition
from a collective nature to a single-particle nature [23,24].
Apparently it appears that due to the presence of harmonic
potential and weak interaction the system will exhibit the
features of generic harmonic oscillator. However, from our
earlier studies of dynamic and statistical properties, we have
observed that the system of interacting trapped bosons is a
highly complex system due to the interplay of two energy
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scales [21,22]. The trap energy is characterized by h̄ω (ω is
the external trap frequency), and the interatomic interaction
is characterized by Nas (N is the number of bosons and as

is the s-wave scattering length). In our earlier study [21,22]
focus has been on a large set of energy levels, including both
low- and high-level statistics, while in the present article
the focus is on the lowest 100 levels. So the calculations
presented here can be understood as a stringent test of what
is just sketched in Refs. [21,22]: the fact that at low energies
the system is chaotic. The universal hypothesis of Bohigas,
Giannoni, and Schmit is also not followed by such a complex
system. A highly unusual property of our model is that here
the lowest energy levels are expected to behave statistically
according to the random matrix theory predictions. This
feature is in contrast to the standard lore of quantum chaos,
which states that only highly excited (semiclassical) quantum
energy levels reflect universal statistics inherited from the
chaotic classical dynamics, whereas the low-lying excitations
are system specific.

It is already observed both theoretically and experimen-
tally that the low-lying levels are highly influenced by the
interatomic interaction. These levels are highly correlated and
we observe them to be close with the GOE. Thus the study of
level repulsion, correlation function, and correlation structure
of the δn statistics of such a realistic system especially for
the low-lying levels may provide exciting information. In the
past, for example, for the nuclear data ensemble, a realistic
system, third and fourth order correlations in number statistics
have been studied successfully [25]. The key motivation of
our present work is to calculate the correlation properties
using higher-order moments (up to order 10) of the power
spectrum and get precise measures of level repulsion and
long-range order in the system of interacting trapped bosons.
The many-bosons system is solved by using a correlated
two-body basis function, and a van der Waals potential is taken
as the interatomic interaction. The use of a correlated basis
function together with the realistic interatomic interaction will
give the accurate results of level correlation and long-range
order.

In Sec. II we present the many-body formalism to calculate
the many-body effective potential and to compute the energy
levels. Section III deals with several statistical tools in level
correlation function, time series, correlation structure of δn

statistics, etc., also with corresponding results. Section IV
concludes the summary.

II. METHODOLOGY

For the purpose of the calculation of the energy levels of
condensate we solve the Schrödinger equation using our newly
adopted correlated potential harmonic expansion method
(CPHEM), which has already been established as a very
successful technique for the study of dilute BEC [26–28]. This
method basically uses a truncated two-body basis set which
keeps all possible two-body correlations. By considering a
realistic interatomic interaction we go beyond the uncorrelated
mean-field Gross-Pitaevskii (GP) theory [29,30]. We discuss
our many-body method bringing out the salient features below.

For a system of A = (N + 1) identical bosons interacting
via two-body potential V (�rij ) = V (�ri − �rj ), confined in an

external harmonic potential of frequency ω, the time-
independent quantum many-body Schrödinger equation looks
like [

− h̄2

2m

A∑
i=1

∇2
i +

A∑
i=1

Vtrap(�ri) +
A∑

i,j>i

V (�ri − �rj ) − E

]

×�(�r1, . . . ,�rA) = 0, (2)

where m is the mass of each boson, E is the energy of
the condensate, Vtrap(�ri) is the external trapping potential
and V (�ri − �rj ) is the two-body pair interaction. We use the
standard Jacobi coordinates defined as �ζi = ( 2i

i+1 )
1
2 [�ri+1 −

1
i

∑i
j=1 �rj ], i = 1,2, . . . .,N , and the center of mass through

�R = 1
N+1

∑N+1
i=1 �ri . Then the relative motion of the atoms is

described in terms of N Jacobi vectors (�ζ1, . . . ,�ζN ) as [26,31]
[

− h̄2

m

N∑
i=1

∇2
ζi

+ Vtrap + V (�ζ1, . . . ,�ζN ) − E

]

×�( �ζ1, . . . , �ζN ) = 0. (3)

The hyperspherical harmonic expansion method (HHEM) is an
ab initio tool in many-body physics [31], where the expansion
basis of the many-body wave function is the hyperspherical
harmonics (HH). HHEM is a complete many-body approach
that includes all the possible correlations. But its application
to a typical BEC containing a few thousands to few millions
of bosons seems to be an impossible task due to the large
degeneracy of the HH basis, and consequently HHEM is
restricted only to three-particle systems [31,32]. Thus for
the spinless bosons, we decompose � in two-body Faddeev
components as

� =
A∑

i,j>i

�ij (�rij ,r). (4)

Here �ij is a function of two-body separation (�rij ), and the
global hyperradius r is given by, r2 = r2

ij + ρ2
ij , while ρij is

defined as the hyperradius and φ as the hyperangle such that

r sin φ =
√∑N

i=1 ζ 2
i = ρij and rij = r cos φ. �ij is symmetric

under Pij for bosons and satisfies the Schrödinger equation:

[T + Vtrap − ER]�ij = −V (�rij )
A∑

k,l>k

φkl, (5)

where T = − h̄2

m

∑N
i=1∇2

ζi
is the total kinetic energy. Operating∑

i,j>i on both sides of Eq. (5), we get back the original
Schrödinger equation. In this approach, we assume that when
(ij ) pair interacts, the rest of the bosons acts as inert spectators.
Thus the total hyperangular momentum quantum number as
well as the orbital angular momentum of the whole system
is contributed by the interacting pair only. We expand (ij )-
th Faddeev component, �ij , in the complete set of Potential
harmonics (PH) basis appropriate for the (ij ) partition:

�ij = r−( 3N−1
2 )

∑
K

P lm
2K+l(�

(ij )
N )ul

K (r). (6)

�
ij

N denotes the full set of hyperangles in the 3N -dimensional
space corresponding to the (ij )-th interacting pair, and
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P lm
2K+l(�

ij

N ) is called the PH basis having the analytic expres-
sion:

P l,m
2K+l

(
�

(ij )
N

) = Ylm(ωij ) (N)P
l,0
2K+l(φ)Y0(D − 3); D = 3N,

(7)

where Ylm(ωij ) is the spherical harmonics and ωij = (ϑ,ϕ).
The function (N)P

l,0
2K+l(φ) is expressed in terms of Jacobi

polynomials, and Y0(3N − 3) is the HH of order zero in
the (3N − 3) dimensional space, spanned by {�ζ1, . . . ,�ζN−1}
Jacobi vectors [31]. Thus the contribution to the grand orbital
quantum number comes only from the interacting pair, and
the 3N dimensional Schrödinger equation reduces effectively
to a four-dimensional equation. The relevant set of quantum
numbers are three: orbital l, azimuthal m, and grand orbital
2K + l. K is the hyperangular momentum quantum number.
The full set of quantum numbers are

l1 = l2 = · · · = lN−1 = 0, lN = l, (8)

m1 = m2 = · · · = mN−1 = 0, mN = m, (9)

n2 = n3 = · · · = nN−1 = 0, nN = K. (10)

Taking the projection of Schrödinger equation on a particular
PH, a set of coupled differential equations is obtained [26,28]:[

− h̄2

m

d2

dr2
+ h̄2

mr2
{L(L + 1) + 4K(K + α + β + 1)}

−E + Vtrap(r)

]
UKl(r) +

∑
K ′

fKlVKK ′ (r)fK ′lUK ′l(r) = 0,

(11)

where L = l + 3A−6
2 , UKl = fKlu

l
K (r), α = 3A−8

2 , and β =
l + 1/2. fKl is a constant and represents the overlap of the PH
for interacting partition with the sum of PHs corresponding
to all partitions [33]. The potential matrix element VKK ′ (r) is
given by

VKK ′ (r) =
∫

P lm∗
2K+l(�

ij

N )V (rij )P lm
2K ′+1

(
�

ij

N

)
d�

ij

N · (12)

We disregard the effect of the strong short-range correlation in
the PH basis. In the experimental BEC, which is extremely
diluted, the average interparticle separation is assumed to
be much larger than the range of two-body interaction. For
the present study we consider a few thousand 87Rb atoms
in the JILA trap [29,34]. Throughout our calculation we

choose aho =
√

h̄
mω

as the unit of length (oscillator unit), and
energy is expressed in units of the oscillator energy (h̄ω). The
van der Waals potential has been chosen as the interatomic
potential with a hard core of radius rc, viz., V (rij ) = ∞ for
rij � rc and −C6

r6
ij

for rij > rc. The strength C6 is taken as

6.4898 × 10−11 o.u. for 87Rb atoms in the JILA experiment
[29]. In the mean-field GP equation, as the energy of the
interacting pair is extremely small, the two-body interaction
is generally represented by the s-wave scattering length (as)
only. A positive value of as gives a repulsive condensate,
and a negative value of as gives an attractive condensate. It
disregards the detailed structure. The presence of essential
singularity as r tends to zero, for the attractive contact δ

interaction makes the Hamiltonian unbound from below. So in
our present calculation we use a realistic interatomic potential
like a van der Waals potential, that is associated with an
attractive − 1

r6
ij

tail at larger separation and a strong repulsion

at short separation. The inclusion of detailed structure in the
two-body potential with the short-range repulsion core needs
to include an additional short-range correlation in the PH basis.
Now as can be obtained by solving the zero-energy two-body
Schrödinger equation for the wave function η(rij )

−h̄2

m

1

r2
ij

d

drij

[
r2
ij

dη(rij )

drij

]
+ V (rij )η(rij ) = 0, (13)

and the correlation function quickly attains its asymptotic form
(1 − as

rij
) for large rij . The short-range correlation function

η(rij ) is a good approximation of the short-range behavior of
the Faddeev component. Replacing Eq. (5) by

�ij (�rij ,r) = r−( 3N−1
2 )

∑
K

P lm
2K+l

(
�

ij

N

)
ul

K (r)η(rij ), (14)

and the correlated PH (CPH) basis becomes[
P l,m

2K+l

(
�

(ij )
N

)]
correlated = P l,m

2K+l

(
�

(ij )
N

)
η(rij ). (15)

The correlated potential matrix VKK ′ (r) is now given by

VKK ′ (r) = (
h

αβ

K h
αβ

K ′
)− 1

2

∫ +1

−1

{
P

αβ

K (z)V

(
r

√
1 + z

2

)

×P
αβ

K ′ (z)η

(
r

√
1 + z

2

)
Wl(z)

}
dz. (16)

Here P
αβ

K (z) is the Jacobi polynomial with its norm h
αβ

K and the
weight function Wl(z) [35]. The value of rc is obtained subject
to the requirement that the calculated asc has the expected
value [36]. This is an improvement of the rate of convergence
of the PH basis, and we call it a correlated potential harmonic
expansion method (CPHEM).

It is to notify that the PH basis becomes nonorthogonal
after the inclusion of η(rij ), and that is why one should
use the standard procedure for handling nonorthogonal basis.
However, in the present calculation we have checked that
η(rij ) differs from a constant value only by small amount,
and the overlap 〈P l,m

2K+l(�
(ij )
N )|P l,m

2K+l(�
(kl)
N )η(rkl)〉 is really very

small. Thus we get back the Eq. (11) approximately when the
correlated potential matrix is calculated by Eq. (16).

Finally the set of coupled differential equation [Eq. (13)]
can be solved by the hyperspherical adiabatic approximation
(HAA) [37]. It is assumed that the hyperadial motion is
slow in comparison with the hyperangular motion. For the
hyperangular motion for a fixed value of r , the potential
matrix is diagonalized together with the hypercentrifugal term.
The energy is thus obtained by solving the equation for the
hyperradial motion [37] as[

− h̄2

m

d2

dr2
+ ω0(r) − ER

]
ζ0(r) = 0 (17)

subject to the appropriate boundary conditions on ζ0(r), while
ER is the relative energy of the system, and the lowest
eigenvalue ω0 is the effective potential for the hyperradial
motion. The function ζ0(r) is the collective wave function of

062101-3



KAMALIKA ROY, BARNALI CHAKRABARTI, AND V. K. B KOTA PHYSICAL REVIEW E 87, 062101 (2013)

the condensate in the hyperradial space. Thus in our many-
body picture the collective motion of the entire condensate is
characterized by the effective potential.

The excited states in this potential are the states with
the lth surface mode and nth radial excitation, which are
denoted by Enl . Thus n = 0 and l = 0 correspond to the
ground state, and for l 	= 0, we get the surface modes. To
calculate the higher levels with l 	= 0, as a large inaccuracy
is involved in the calculation of off-diagonal potential matrix,
numerical computation becomes very slow. However, the main
contribution to the potential matrix comes from the diagonal
hypercentrifugal term, and the off-diagonal matrix element for
l > 0 is ignored. Thus we get the effective potential ωl(r) in the
hyperradial space for l 	= 0. The energy of the lowest modes is
in close agreement with the other calculations [23,24,38,39].

It is to be noted that in the experimental realization of
BEC in trapped Bose gases there is intensive study of the
excitations in these systems [23,24]. Measurements of the
lowest modes are especially important when several interesting
features are explored in the dynamical behavior of trapped
gases [23,24]. The nature of collective excitations of trapped
gas is quite different from superfluid 4He. Although the
Bose gas is extremely dilute it is experimentally observed
that the interatomic interaction has an important role and
the low-energy excitations are of collective nature, whereas
the harmonic confinement makes the high-lying levels of
single-particle nature [21–24]. Thus in our present work we
mainly consider various correlation properties and fluctuation
measures for low-lying levels (lowest 100 levels), which are
of collective nature.

III. STATISTICAL TOOLS AND RESULTS

To characterize spectral fluctuation and correlation function
we unfold the energy level sequence using a seventh-order
polynomial. The unfolding procedure removes the smooth
part of the energy spectrum and maps the energy levels to
another with the mean level density equal to 1. As stated
in the Introduction, the correlation properties of the energy
level sequence {Ei} are characterized by the set of n-level
correlation function Rn(E1,E2, . . . ,En) [1–3] as

Rn(E1,. . .,En) = N !

(N − n)!

∫
PN (E1,. . .,En)dEn+1 . . . dEN,

(18)

where (E1, . . . ,En) ≡ {Ei} denotes the positions of n points
with average density unity. PN (E1, . . . ,EN )dE1 . . . dEN mea-
sures the probability regardless of labeling of having one
point at E1, another at E2, and so on. Thus the n-level
correlation function is the probability density of observing
a level at each of the n points E1, . . . ,En irrespective of the
position of the other levels. Whereas the two-level correlation
function R2(E1,E2) measures the probability density to find
two eigenenergies E1 and E2 irrespective of the position of
other eigenenergies.

In Fig. 1 we display our numerically calculated results of R2

as a function of L for the lowest 100 levels and 5000 bosons in
the trap. Numerical results are also compared with the analytic

0

 0.5

1

 1.5

2

 2.5

3

0  0.5 1  1.5 2

R
2(

L)

L

FIG. 1. (Color online) The plot of R2(L) against L for N = 5000
numbers of interacting trapped bosons and lowest 100 levels. The
green dotted line represents the analytic results using Eq. (19), and
the red solid line represents numerical results.

results given by

R2(L) = αL2 + βL3. (19)

The calculated results are in good agreement with GOE
results, which confirms the high correlation in the energy
levels. At L = 0, our calculated R2(L) is zero, which is
indeed necessary for level repulsion. Next to quantify the level
repulsion at small distances, we perform a nonlinear fit to
Eq. (19), and calculated values of α and β are presented in
Table I.

Next, to calculate the number variance, i.e., �2 statistics, we
consider the number n(E,L) of eigenvalues in length interval
L, centered at the energy E. n(E,L) is obtained from the
density of states as

n(E,L) =
∫ E+ L

2

E− L
2

ρ(E) dE. (20)

The ensemble average of n(E,L) becomes independent of E

and 〈n(E,L)〉 = L. Then for the unit mean level density energy
sequence we define the variance of the number of eigenvalues
as by Eq. (1). Now for uncorrelated energy eigen values,
�2(L) = L, whereas for a Gaussian ensemble with level
repulsion �2(L) increases logarithmically. Our numerically
calculated �2 for lowest 100 levels with 5000 bosons in the
external trap is presented in Fig. 2. For comparison with the
analytic results we also plot Eq. (21) in the same figure for

TABLE I. Values of α and β as per Eq. (19) as well as the values
of a, b, and c as per Eq. (21) in the range 1 � L � 10. GOE values
are also given [25] for the sake of comparison.

Coefficients Numerical GOE

α 0.01 0
β 0.45 0.54 ± 0.1
a −0.005 0 ± 0.005
b 0.04 0.1 ± 0.02
c 0.44 0.44 ± 0.02
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FIG. 2. (Color online) Plot of the variance �2(L) against L

for N = 5000 numbers of interacting trapped bosons and for the
lowest 100 levels. The red solid line represents results of numerical
calculations, and the green dotted line represents the analytic Eq. (21)
with a, b, and c given in Table I. The green curve stops at L = 1 as
given by Eq. (21).

larger L values with a, b, and c chosen from Table I. Nice
agreement with the GOE distribution is found for larger L.
�2 measures large correlations between distant levels and
determines long-range order. Next, to quantify it we fit our
numerical results with the three-parameter expression of �2

as

�2(L) = a L + b ln L + c (L � 1). (21)

For long-range order a = 0, the value of b provides a
measure of long-range order, smaller value of b signifies that
the spectrum is rigid, whereas c becomes independent of L for
large L. We determine a, b, and c by fitting �2 in the range
L � 1. The calculated values are listed in Table I.

Next, to compare the results with the most popular and
well-known statistics, we calculate the spectral rigidity �3.
For a level sequence with a constant average level spacing, the
staircase function on the average follows a straight line. Thus
it measures the fluctuations of the staircase function around a
best fit straight line. We calculate �3(L) [1] as

�3(L) =
〈
mina,b

∫ E+ L
2

E− L
2

[n(E) − a − bE]2 dE

〉
, (22)

where n(E) is determined from the density of states as in
Eq. (20). In Fig. 3 we plot the 〈�3(L)〉 for the lowest 100
levels. For comparison we also plot the GOE results in the
same figure, which shows that the spectrum is more correlated
than GOE.

As pointed earlier, the time series analysis and the study of
Fourier power spectrum of energy level sequence is the alter-
native and elegant way to understand the spectral fluctuation.
To study the correlation and level repulsion between energy
levels one can utilize the established analogy between the
energy spectrum and discrete time series. The energy spectrum
is considered as a discrete signal, and the fluctuations of the
excitation energy are considered as discrete time series. The
recent studies of statistical properties of random signals with
logarithmic correlations attracted active interest in statistical
mechanics and random matrix theory [40,41]. The δn statistics

0
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 0.3

 0.4
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〈 Δ
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FIG. 3. (Color online) Red line is the plot of �3(L) against L

calculated for N = 5000 numbers of interacting trapped bosons and
lowest 100 levels. The green dotted line gives GOE result.

widely used in RMT to study correlation between consecutive
level spacing is defined as

δn =
n∑

i=1

(si − 〈s〉), (23)

where the nearest-neighbor spacing is calculated as si = εi+1 −
εi , i = 1,2, . . . ,n. The average value of si is 〈s〉 = 1, and δn

represents the deviation of the (n + 1)-th level from the mean
value, i.e., the fluctuation of (n + 1)-th excited state. Thus
δn is similar to the time series, and n represents the discrete
time [4–6,42]. Although there are some differences between
δn and the actual time series [8], however, the analogy between
an energy level spectrum and a time series is well established.
Note that we calculate the energy levels for fixed interaction
(fixed scattering length as) and fixed number of bosons. Thus
in this regard it is well justified to study the robustness of
δn statistics against changing the number of levels. In our
earlier calculations, in this direction, focus has been made on
a large set of energy levels, including both low- and high-
level statistics. To find the crossover from Wigner to regular
dynamics, we have already done the thorough calculation in
Refs. [21,22] and determined the best fit window to the Wigner
distribution comparing the level spacing distribution to Brody
distribution, whereas our present study focuses only on the
lowest 100 levels, which can be understood as a stringent test
of our earlier works. However, for completeness we present
the δn statistics for lowest 100 levels in Fig. 4. The observed
antipersistent time series in Fig. 4 again confirms the presence
of high-level correlation. Next, the Fourier power spectrum of
δn gives the following results. It is verified that the Fourier
power spectrum P δ

k follows the power laws

P δ
k ∝ 1

kα
(24)

for both the fully chaotic and integrable systems. Thus the level
fluctuation in chaotic quantum systems are characterized by 1

f

noise, whereas that of integrable systems show 1
f 2 noise [4–7].

In our earlier study in this direction we have observed that
the system of interacting trapped bosons at zero temperature
is a very complex system. The low-lying collective excitations
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FIG. 4. (Color online) Red line is the plot of δn, numerically
calculated against n for N = 5000 numbers of interacting trapped
bosons and lowest 100 levels.

are strongly affected by the interatomic interaction when
the high-lying excitations are of single-particle nature. We
have studied the transition from collective to single-particle
excitations and observed its immediate reflection in the study
of level correlation. In our earlier study we have shown
that the interacting trapped bosons is neither integrable nor
chaotic; it shows a very complex distribution and 1

f α noise
with 1 < α < 2. However, to get a deeper understanding of
the power fluctuation properties we go beyond the study of
the power spectrum. The power spectrum of δn is related
only to the second-order correlation function and does not
provide information on the correlation structure. Thus the
purpose of our study is to explore the correlation structure
and higher-order moments. We are especially interested in
the qth-order height-height correlation function [Cq(τ )] for
higher-order moments. Cq(τ ) measures the moment of order
q, i.e., the average qth power of the signal changes after a
time delay τ . In the earlier study of qth-order height-height
correlation function, the logarithmic correlation structure is
found instead of multiscaling structure in classical random
matrix ensembles [8,43]. Thus the interacting trapped bosons
will be a very realistic quantum system to investigate whether
the qth-order height-height correlation function exhibits the
same properties.

Now, for a continuous time series X(t), the qth-order
height-height correlation function is given by [8]

Cq(τ ) = 〈|X(t) − X(t + τ )|q〉t . (25)

However, the discrete energy spectrum of quantum system is
related to discrete time series. For a discrete and finite time
series X(n), n = 1,2, . . . ,N the power spectrum is defined
as [8]

P (ωk) = |X̂(ωk)|2, (26)

while ωk = 2πk
N

and k = 1,2, . . . ,N
2 . Thus the discrete Fourier

transform of the signal is

X̂(ωk) = 1√
N

N∑
n=1

X(n)exp(−iωkn). (27)

For such discrete time series, the qth-order correlation function
is defined as

Cq(n) = 〈|X(m) − X(m + n)|q〉m

= 1

Q

Q∑
m=1

|X(m) − X(m + n)|q, (28)

where Q is the number of points over which the moving aver-
age is taken [8]. For the calculation of qth-order correlation,
we perform a twofold average, first, a moving average over
each spectrum, and then the ensemble average over different
members of the same ensemble, and thus

Cq(n) = 〈|δ(p + n) − δ(p)|q〉p. (29)

This dual average significantly reduces the statistical fluctua-
tion especially for high values of q.

It is worth to note that Cq(n) carries much information
of the correlation structure of the time series. However, the
second-order correlation function C2(n) is directly related to
the power spectrum like Eq. (26) as [8]

C2(τ ) = 2

π

∫ ∞

0
dωP (ω)[1 − cos(ωτ )]. (30)

For the finite and discrete time series the second-order
momentum is given by [44]

C2(n) = A2 ln n + B2. (31)

It was pointed out earlier that many natural phenomena that
are characterized by time series with power spectra of form

P (ω) ∼ 1

ωα
(α � 1) (32)

show multiscaling behavior in the second-order correlation
function, i.e.,

C2(n) ∼ nα−1. (33)

However, for generic chaotic quantum systems showing
1
f

conjecture C2(n) behaves logarithmically. For our present
study, we first calculate the δn statistics for the trapped bosons
with the same parameters used in the calculation of other
correlation properties. We again concentrate on lowest 100
levels, which are highly correlated and exhibit GOE prediction.
We calculate C2(n) for 5000 bosons and plot it in Fig. 5 as
a function of ln n. The results of GOE are also presented
for comparison. We observe that for the whole range of n

values, the calculated points fit very well with the law given
by Eq. (31).

The values of A2 and B2 are obtained from least-squares
fitting. The best fit numerical values of the coefficients are
A2 = 0.1902 and B2 = 0.2985, which compare well with
the GOE results of Refs. [8,44], i.e., A2 = 0.2026 and B2 =
0.2753.

In Fig. 6 we present the qth-order momentum Cq(n) for
wide intervals of q. For clarity the figures are divided in
subpanels with different types of scales. It nicely demonstrates
the correlation structure and the main trend of the correlation
function through the whole interval of q. The upper subpanel
(a) presents the double logarithmic scale. The calculated
results for various q values fit well with

Cq(n) = (Aq ln n + Bq)
q

2 . (34)
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Solid lines represent the results of least-squares fit accord-
ing to Eq. (34). The agreement between the numerical values
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FIG. 7. (Color online) (a) Plot of Aq and (b) Bq against q; both
for lowest 100 levels of N = 5000 numbers of interacting trapped
bosons.

of Cq(n) and the continuous curves is excellent. Although
Eq. (34) is the generalization of Eq. (31) for q = 2, small
discrepancies between the GOE prediction and the calculated
results appear for very small values of n. It again supports our
earlier findings that even for the lowest 100 levels although
the system is highly correlated, the spectral distribution is
not strictly Wigner. The interplay between the interatomic
interaction and external trap plays an important role. Moreover
the deviation from the GOE spectra reveals that the power
spectrum does not show 1

f
noise strictly even when the system

is highly correlated and shows level repulsion. Here the higher
order correlation function exhibits the logarithmic behavior
like Eq. (34). We obtain the linear dependence of Aq and Bq in
q. In order to characterize the correlation structure we calculate
Aq and Bq for different q and plot in Fig. 7. It is seen that both
functions increase with q, and their plots are more or less
straight lines. In this work we obtain values of the elements
for 1 � q � 10. Beyond this interval larger dimensionalities
and number of members of the matrix ensemble are needed [8].

IV. CONCLUSION

In the present study we introduce the two-level correlation
properties and give precise measures of level repulsion and
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long-range order in the spectra of interacting trapped bosons.
We choose the spectra of 87Rb atoms in the JILA trap and
calculate the low-lying excitations by introducing a correlated
many-body technique. In the present study we consider only
the lowest hundred levels, which are highly correlated, and
experimental results show that these low-lying levels are of a
collective nature. It is emphasized that an interacting trapped
bosonic system is highly complicated due to the presence of
two energy scales, as stated earlier. However, the low-lying
modes of excitations are highly influenced by the interatomic
interaction. Our calculated values of two-level correlation
measures show the signature of chaos in the energy spectrum.
Next we use the formal analogy between energy level spectra
and time series and calculate the correlation structure in the
spectra. We calculate the qth-order correlation function Cq(n)

for wide range of q values 0 < q � 10 using a twofold average.
This ensures high accuracy for the higher-order correlation
structure. We observe that the second-order correlation func-
tion C2(n) maintains the linear behavior with ln n, which
supports the GOE results of random matrix ensembles.

Thus our present calculation nicely demonstrates that the
various statistical properties of such a realistic system support
the earlier findings of random matrix theory and provide the
stringent test of Bohigas-Giannoni-Schmit conjecture.
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