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Cocirculation of infectious diseases on networks
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We consider multiple diseases spreading in a static configuration model network. We make standard
assumptions that infection transmits from neighbor to neighbor at a disease-specific rate and infected individuals
recover at a disease-specific rate. Infection by one disease confers immediate and permanent immunity to
infection by any disease. Under these assumptions, we find a simple, low-dimensional ordinary differential
equations model which captures the global dynamics of the infection. The dynamics depend strongly on initial
conditions. Although we motivate this Rapid Communication with infectious disease, the model may be adapted
to the spread of other infectious agents such as competing political beliefs, or adoption of new technologies if
these are influenced by contacts. As an example, we demonstrate how to model an infectious disease which can
be prevented by a behavior change.
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Introduction. Many important dynamical systems involve
the spread of some process through a network [1–3]. Our
ability to understand the systems is complicated by a lack of
analytic models, limiting our understanding of the dynamics.
Particularly when competing processes are occurring in the
network, the final outcome may be highly dependent on the
intermediate dynamics, so the lack of an analytic model
prevents us from being able to predict even the long-term
equilibrium state of a system. In this Rapid Communication
we study the simultaneous spread of two competing diseases in
a configuration model network. Although we focus on disease,
other competing “infectious” processes such as a change in
behavior in response to a disease [4], spread of beliefs in a voter
model [2], and “viral marketing” of competing technologies
[5] have been studied, and the approach introduced here can
be adapted to these applications.

In this Rapid Communication we derive a low-dimensional
system of equations capturing the dynamics of competing
diseases spreading simultaneously in a configuration model
network. We apply the model in investigating possible out-
comes of cocirculating diseases. Prior studies have extensively
analyzed the effect of network structure such as degree
distribution [6–9] and heterogeneities in infectiousness and/or
susceptibility [10–13] on disease spread. Recent work gives
insight into the role of partnership duration [14–17]. Other
investigations focus on the role of clustering [13,18–25], with
limited predictive success.

Models of interacting diseases typically neglect network
structure (e.g., [26,27], and many others). Until recently,
models of a single disease spreading through a network
have relied on systems of many equations [28] or been
restricted to final size calculations under the assumption of
an asymptotically small initial fraction infected [6]. Extending
these approaches to competing diseases [29–31] does not allow
us to measure the effect of dynamic interactions, and so results
are limited to special cases in which these interactions are
not important, such as when one disease spreads before the
other. Some recent work allows us to investigate simultaneous
disease spread in “overlay networks”, but with a potentially
unbounded number of equations [32].

The method we introduce allows us to capture the dynamic
interactions of two diseases spreading in a configuration model

network and allows for arbitrarily large initial conditions. It can
be easily adapted to more than two diseases. We validate the
system by comparison with simulation. Using our equations,
we are able to identify the scalings which separate different
regimes. We discuss these regimes and introduce possible
generalizations [33].

The basic model. We assume that two diseases spread in a
configuration model network [34] (also called a Molloy-Reed
network [35]) with the degree distribution given by P (k). For
disease 1 transmission along an edge has rate β1 and recovery
of infected individuals has rate γ1. For disease 2 the rates are
β2 and γ2. A node infected by either disease gains immunity
to any further infection.

Our approach is similar to that of [36] and is based on
[15]. We will focus our attention on a test individual u, a
randomly chosen individual in the population [37]. We assume
that the aggregate population-scale spread of the diseases is
deterministic. Under these assumptions, the probability the test
individual has a given infection status equals the proportion
of the population with that status. Thus by calculating the
probability a test individual has a given status, we immediately
know the proportion of the population with that status.

We make one change to the test individual u: we prevent it
from causing infections. This keeps the status of its partners
independent of one another without affecting its own status,
and so it has no effect on our calculations of the proportion
of the population in each state. An alternate argument for
why this change has no impact is that we have assumed the
dynamics are deterministic, while the timing of when (or even
if) u is infected is a random variable. Thus the infections
u would cause cannot have any macroscopic impact on the
disease dynamics, and this modification of u has no effect at
the population scale. This is similar to the concept of a thermal
bath because the population-scale dynamics are independent
of what u does. It is directly analogous to the “price taker”
assumption of economics for which a firm does not produce
enough of a commodity to alter the market price, and so we
can ignore its impact on the market when we calculate the
market’s impact on it. In our case, because we know the test
individual’s local effect is unimportant at the population scale,
we are able to remove its local effect without altering the
population-scale dynamics. Thus we can ignore the impact
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of u on its environment while calculating the impact of the
environment on u.

We take t = t0 to be our “initial time.’ In practice this may
correspond to the time of introduction of a disease if enough
individuals are initially infected, or it corresponds to a later
time at which enough infection is present that the spread is
deterministic. We choose a test individual u randomly from
the population (it may have any status). We let v be a random
neighbor of u which had not transmitted to u by t0. We assume
that the status of v is independent of the degree of u. We define
θ (t) to be the probability that at time t , v has not transmitted
to u. The probability u is susceptible at time t is

S(t) = ψ(θ (t)) =
∑

k

P (k)S(k,t0)θ (t)k,

where S(k,t0) is the probability an individual of degree k is
susceptible at t = t0. We take I1 and I2 (respectively, R1 and
R2) to be the probabilities that u is infected with (respectively,
has recovered from) the corresponding disease.

To calculate the change of θ , we must know more about
the probability v is in any given state. We define φS(t) to
be the probability v is susceptible; φI,1(t) and φI,2(t) to be
the probabilities that v is infected, has not transmitted to u

and is infected by disease 1 or 2 respectively; and φR to be
the probability v is recovered but did not transmit (we do
not need to distinguish which disease infected v). Then θ =
φS + φI,1 + φI,2 + φR .

We calculate φS similarly to S. If v is initially susceptible
we find the probability it has degree k by counting all edges
of initially susceptible individuals of degree k: NkP (k)S(k,t0)
and dividing by the number of all edges of initially susceptible
individuals

∑
k NkP (k)S(k,t0) (N is population size). If v has

degree k and was initially susceptible, the probability v is still
susceptible is θk−1 (because u is prevented from transmitting
to v). This leads to the conclusion that v is susceptible with

probability φS(t) = φS(t0)
∑

k kP (k)S(k,t0)θk−1∑
k kP (k)S(k,t0) = φS(t0)ψ ′(θ)

ψ ′(1) .
Figure 1 gives flow diagrams which yield our equations.

Each box represents a compartment, and arrow labels represent
probability flux from one compartment to another. The fluxes
from the I compartments to the R compartments represent
recovery of u. The fluxes from the φI compartments to the
φR compartments (respectively, 1 − θ ) represent flux due
to recovery of v prior to transmitting to u (respectively,
transmission to u prior to recovery of v). The fluxes from
S and φS are found by differentiation of S and φS in time,
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FIG. 1. (Left) Flow diagram for the probabilities the test indi-
vidual has each status. (Right) Flow diagram for the probabilities a
partner of the test individual has each status.

using θ̇ = −β1φI,1 − β2φI,2, and assigning the appropriate
proportion to the appropriate compartment.

From the diagram, we find

θ̇ = −β1φI,1 − β2φI,2, (1)

φ̇I,m = −(βm + γm)φI,m + βmφI,mφS(t0)
ψ ′′(θ )

ψ ′(1)
, (2)

S = ψ(θ ), (3)

İm = βmφI,mψ ′(θ ) − γmIm, (4)

Ṙm = γmIm. (5)

The subscript m takes the values 1 and 2. The single-disease,
small initial condition limit of these equations has been proved
exact [38]. These equations capture the fact that disconnected
components are safe from outside introduction.

Sequential introduction. As an example, we consider two
diseases spreading in a network of 106 individuals with Poisson
degree distribution of mean 5. For both, γ = 1 but β1 = 0.5
and β2 = 1. In simulations, we introduce disease 1 into 30
random individuals at t = 0, and disease 2 into 30 random
individuals at t = 5.25.

Our deterministic equations do not apply while either
disease has a small number of infections. We take observations
at t0 = 4 (after the first, but before the second disease) and
t0 = 7 (after both are established) to initialize our equations.
Figure 2 compares calculation with simulation. Comparing the
t0 = 4 calculation with the t0 = 7 calculation shows the effect
of the second disease.

Simulataneous introduction. We now consider the simul-
taneous introduction of two diseases and assume that the
initial numbers infected are large enough that the dynamics
are deterministic. In our example, we take β1 = 1.2, γ1 = 4,
β2 = 0.2, and γ2 = 0.25. Disease 1 tends to spread more
quickly, but disease 2 has a higher probability of transmission
prior to recovery. At t = 0, we randomly selected a proportion
ρ1 to be infected with disease 1, and a proportion ρ2 to be
infected with disease 2. This gives S(k,0) = 1 − ρ1 − ρ2 for
all k, I1 = ρ1, I2 = ρ2, φI,1 = ρ1, and φI,2 = ρ2, with no
recovered individuals. In our population, the degree of each
node is assigned uniformly from the integers 1–9. We use our
equations to calculate the final proportion infected by each
disease, shown in Fig. 3.

There are several distinct regimes we can identify in
Fig. 3. If ρ2 is O(1) and ρ1 small, or if ρ1 is O(1) and ρ2

small, the disease with the large initial condition spreads and
effectively infects everyone simply because a large fraction
is initially infected. The other disease cannot spread in
the “residual network” left behind. If neither ρ1 or ρ2 is
initially large, other regimes are seen. To analyze them, we
first note that when both diseases are small, they grow at
exponential rates r1 = −(β1 + γ1) + β1ψ

′′(1)/ψ ′(1) = 2 and
r2 = −(β2 + γ2) + β2ψ

′′(1)/ψ ′(1) = 0.75.
In the “overlapping epidemic” regime, the slower growing

disease 2 begins with a head start. The size of the head start
scales so that the two epidemics become large at the same time.
The value of ln I2 − (r2/r1) ln I1 is constant during the ex-
ponential growth phase. For given C = ln ρ2 − (r2/r1) ln ρ1,
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FIG. 2. (Color online) The spread of two diseases in a population
of size 106 with a Poisson degree distribution of mean 5. The
first disease is introduced with 30 cases at t = 0 and the second
with 30 cases at t = 5.25. The second strain is more infectious.
Predictions (dashed) are calculated from observations at t = 4 (before
the second disease’s introduction) and t = 7 (shortly after). Model
and simulation agree well.

the behavior is universal. The diseases grow independently
until the exponential growth phase ends. The amount of each
disease at this time is determined by C. We can estimate
bounds on the regime by crudely assuming exponential
growth continues forever. There is some value of Cmin =
ln 0.0025 − (r2/r1) ln 1 = ln 0.0025 ≈ −6 that corresponds
to ρ1 = 1 and ρ2 = 0.0025, which means that the slower
growing disease would affect less than 1% of the population by
the time the faster growing disease has fully established itself
in this approximation. Similarly we take some Cmax = ln 1 −
(r2/r1) ln 0.05 = −(r2/r1) ln 0.05 ≈ 3r2/r1 corresponding to
ρ1 = 0.05 and ρ2 = 1, which means that the slower growing
disease will have fully burned through the population when the
faster growing disease is only affecting 5% of the population
in this approximation. For C < Cmin, I1 becomes large well
before I2. For C > Cmax, I2 becomes large well before I1.
Between these values, the epidemics become large at similar
times and interact dynamically.1

There are two “nonoverlapping epidemic” regimes. If
C < Cmin, disease 1 becomes large and has an epidemic

1A more detailed derivation of these boundaries is in the
Supplemental Material [33].

FIG. 3. (Color online) We take a network with the degree of
each node chosen uniformly from 1 up to 9. A proportion ρ1 of
the population begins infected with disease 1 and a proportion ρ2

begins infected with disease 2 with β1 = 1.2, γ1 = 4, β2 = 0.2, and
γ2 = 0.25. Disease 1 spreads more quickly, but has a smaller per-edge
transmission probability. (a) Final proportion infected with disease 1.
(b) Final proportion infected with disease 2. The solid lines denote
the estimated upper and lower bounds of the overlapping epidemic
regime.

while disease 2 is still exponentially small. If C > Cmax,
disease 2 has an epidemic while disease 1 is still exponentially
small. Once one epidemic has finished, it may be possible
for the remaining disease to spread in the residual network.
We can derive the threshold condition: For simplicity we
assume disease 1 spreads first. While it spreads, φI,2 remains
negligible. By looking at the relative fluxes out of φI,1

we conclude that after disease 1 has completed its spread
but before disease 2 is significant, φR = γ1(1 − θ )/β1. We
can assume φS(0) = 1 and φS(t) = ψ ′(θ )/ψ ′(1). Since φI,1

and φI,2 are effectively zero, we conclude θ = φS + φR =
ψ ′(θ )/ψ ′(1) + γ1(1 − θ )/β1, yielding

θ = β1

β1 + γ1

(
γ1 + ψ ′(θ )

ψ ′(1)

)
.

Then R1 = 1 − ψ(θ ). For disease 2 to spread, we require
φ̇I,2 > 0, which implies β2/(β2 + γ2) > ψ ′(1)/ψ ′′(θ ), where
θ comes from the above equation. A similar calculation would
lead to a final size for R2, so in this case we can calculate
the final outcomes of the epidemics without calculating the
dynamics. We note that the threshold we have found requires
that β2/(β2 + γ2) be greater than β1/(β1 + γ1) by a nonzero
amount. It is not enough for the second disease’s transmission
probability to simply be larger than the first, it must be well
above that of the first. This is because even once disease 1 peaks
and begins to decrease, θ will continue to decrease further,
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FIG. 4. The flow diagram for disease spread with behavior
change. Here A = (δBφB + δDφD).

so disease 2 encounters a population that is well below the
threshold for disease 1. The threshold condition for disease 2
to invade has been identified previously: [29] derived it under
the assumption of a second disease introduced after the first
disease had spread, and [30] derived it in the special case that
the system was in the nonoverlapping epidemic regime for
which the faster growing disease would “win.”

Thus our analysis shows that if two diseases are introduced
at small levels into the network, then the possible regimes
can be understood by looking at the exponential growth rates
r1 and r2 of the diseases. Without loss of generality, we can
assume r1 � r2: The first disease grows faster. If disease 2 has
a sufficiently large head start, there will be a nonoverlapping
epidemic regime: The population will experience an epidemic
of disease 2 unaffected by disease 1. If the infectiousness of
disease 1 is large enough it will cause its own epidemic after
disease 2 has finished. We can calculate the final size of each
epidemic without requiring the full dynamic calculation. If we
take a smaller head start for disease 2, there is an overlapping
epidemic regime in which the two diseases produce interacting
epidemics. To calculate the dynamics of these epidemics, we
require the dynamic equations (1)–(5). The possible final sizes
depend on the details of the interactions, and there appears
to be no simple expression for the final size. If the head start
for disease 2 shrinks further, we enter another nonoverlapping
epidemic regime in which disease 1 has the first epidemic.
Again, it is possible for disease 2 to later have an epidemic
if its transmission probability is sufficiently larger than that
of disease 1. At most one of the nonoverlapping epidemic
regimes can have epidemics for both diseases.

Generalizations. This model may be adapted to other
infectious agents. As an example of its flexibility we consider
a disease which can be avoided through behavior modification.
We assume contact with an infected individual transmits

FIG. 5. (Color online) Computed final proportion infected for
epidemics with behavior change. We use networks of the same
structure as in Fig. 3. The disease spreads with β = 2, γ = 1. The
values of δB and δD are varied. For the initial condition, no individuals
have changed behavior and a proportion 10−6 is initially infected
randomly.

infection at rate β. However, we allow that if u is in contact with
an infected individual, then at rate δD u changes its behavior.
If u is in contact with an individual who has changed behavior,
then u changes behavior at rate δB . This leads to the flow
diagram in Fig. 4.

In Fig. 5, we show how behavior change modifies epidemic
outcomes, using B to denote individuals whose behavior has
changed. If the disease is introduced in a small number of
individuals and behavior change spreads sufficiently faster
than the disease, then the behavior change prevents the disease
from having a large-scale epidemic.

Summary. We have introduced an analytic model that
calculates the simultaneous spread of two infectious diseases in
a configuration model network. Our model is low dimensional
regardless of the degree distribution. Using this model, we are
able to calculate the effect of interactions between diseases
in regimes that are inaccessible to analytic theories that do
not include dynamics. This model can easily be generalized
to a range of other infectious processes. We have shown its
application to behavior changes in response to a disease.
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