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Stream of asymmetric bubbles in a Hele-Shaw channel
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Laboratório de Fı́sica Teórica e Computacional, Departamento de Fı́sica, Universidade Federal de Pernambuco,
50670-901 Recife, PE, Brazil

(Received 18 April 2013; published 20 May 2013)

Exact solutions are reported for a stream of asymmetric bubbles steadily moving in a Hele-Shaw channel. From
the periodicity along the streamwise direction, the flow region is reduced to a rectangular unit cell containing
one bubble, which is conformally mapped to an annulus in an auxiliary complex plane. Analytic expressions for
the bubble shape as well as for the velocity field are obtained in terms of the generalized Schwarz-Christoffel
formula for doubly connected domains.
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I. INTRODUCTION

The study of interface dynamics in a Hele-Shaw cell, where
the fluids are confined between two closely spaced glass plates,
has been a topic of great interest since the seminal work
by Taylor and Saffman [1]. More recently, the Hele-Shaw
system was shown to have an integrable structure and to
possess deep connections with other branches of mathematical
physics [2]. This rich mathematical structure lies behind the
fact that numerous exact solutions have been obtained both for
time-dependent interfaces (listed in [3]) and for steady shapes
(see [4] and references therein). Most of these exact solutions
were obtained for situations where the flow domain is (or can
be mapped to) a simply connected region. Hele-Shaw flows in
multiply connected regions remain a problem of considerable
difficulty and only a few solutions are known [5–7]. One
particular instance where multiply connected fluid domains
naturally appear is in the case of multiple steady bubbles in
a Hele-Shaw channel. This class of problems, besides being
mathematically challenging, is also of practical interest in
connection, for instance, with the problem of clustering in
bubbly Hele-Shaw flows [8,9]. Periodic arrays of bubbles in a
Hele-Shaw channel are also of interest in view of similar
arrangements found in the flow of vesicles and red blood
cells in microcapillaries [10–12]. For example, the “zigzag”
phase [10,12] observed in the flow of red blood cells in
microvessels has a counterpart in the Hele-Shaw system as
a staggered two-file array of bubbles [13].

In the present paper we report exact solutions for a periodic
stream of asymmetric bubbles steadily moving in a Hele-Shaw
channel. Because of the lack of symmetry, one has to deal with
a fluid domain (within a unit cell) that is doubly connected.
We tackle the problem by conformally mapping the fluid
domain to an annulus in an auxiliary complex plane. An
explicit solution for the bubble shape and the corresponding
velocity potential is then obtained in terms of the generalized
Schwarz-Christoffel formula for doubly connected domains,
and several specific examples of bubble configurations are
discussed. We emphasize that this is an instance of exact
solutions for completely asymmetric bubbles in a Hele-Shaw
channel.
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It is worth noting that exact solutions for a single asymmet-
ric bubble in a Hele-Shaw channel have been obtained by using
both conformal mapping techniques [14] and Riemann-Hilbert
methods [15]. In this case, however, the bubble has fore-and-aft
symmetry and so the flow region can effectively be reduced to
a simply connected domain [4]. Solutions for multiple steady
bubbles in an unbounded Hele-Shaw cell were reported in Ref.
[6]; here the bubbles also had fore-and-aft symmetry but the
flow domain was multiply connected. An attempt at extending
these solutions to include bubbles with no assumed symmetry
in a channel was made in Ref. [16], but it was subsequently
found that part of the argument used there was not valid [17].
On the other hand, it seems possible to extend the method
presented herein to the case of a finite number of asymmetric
bubbles in a Hele-Shaw channel. This requires conformal
mappings between domains of arbitrary connectivity and will
be presented elsewhere [18].

II. MATHEMATICAL FORMULATION

We consider the problem of a periodic stream of bubbles
moving with a constant velocity U along the x direction in
a Hele-Shaw channel of width a. As usual, we will work
in a frame comoving with the bubbles. The array of bubbles
has a spanwise period denoted by 2L, and in each period cell
there are two bubbles that are mirror reflections of one another
with respect to a midline perpendicular to the channel walls,
chosen as the y axis. This ensures that both the y axis and
the lateral edges, y = ±L, of the period cell are equipotentials
of the flow, which implies in turn that the problem can be
reduced to a rectangular unit cell corresponding to one half,
say the right half, of the original period cell; see Fig. 1(a).

We recall that the motion of a viscous fluid in a Hele-Shaw
cell is governed by Darcy’s law, �v = −(b2/12μ) �∇p, where b

is the gap between the cell plates, μ is the viscosity, and p

is the fluid pressure. Since the fluid is incompressible, i.e.,
�∇ · �v = 0, it follows that p is a harmonic function
∇2p = 0. It is thus convenient to introduce the complex poten-
tial w(z) = φ + iψ , where z = x + iy, φ = −(b2/12μ)p −
Ux is the velocity potential in the comoving frame, and ψ

is the associated stream function. In terms of the complex
potential w(z) the problem can be formulated as follows. Let
D be the domain occupied by the viscous fluid within the
reduced cell and let C be the bubble interface. The complex
potential w(z) must then be analytic in the fluid domain D and
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FIG. 1. The flow domains for a reduced unit cell: (a) the z plane, (b) the w plane, (c) the w̃ plane, and (c) the auxiliary ζ plane.

satisfy the following boundary conditions on C:

w = −Ux + constant, (1)

which follows from the combined facts that the bubble surface
C is a streamline of the flow, the pressure inside the bubble
is constant (taken to be zero), and surface tension effects are
neglected.

Additional boundary conditions follow from the fact that
the upper and lower edges of the unit cell are streamlines of
the flow, that is,

Imw = −a(U − V ) on y = a, (2)

Imw = 0 on y = 0, (3)

whereas the left and right edges of the unit cell are equipoten-
tials:

Rew = 0 on x = 0, (4)

Rew = −δ on x = L, (5)

where δ is a real-valued constant whose value is related to the
period L and to the bubble area [13]. The flow domain in the
w plane thus corresponds to a rectangle with a horizontal slit
in its interior, as shown in Fig.1(b).

To solve the free-boundary problem formulated in Eqs. (1)–
(5), it is convenient to introduce the following function:

w̃(z) = w(z) + Uz, (6)

which corresponds to the complex potential in the laboratory
frame. From the definition (6) and Eqs. (1)–(5), it follows that
w̃(z) satisfies the following boundary conditions:

w̃ = iUy + C on C, (7)

Imw̃ = aV on y = a, (8)

Imw̃ = 0 on y = 0, (9)

Rew̃ = 0 on x = 0, (10)

Rew̃ = UL − δ on x = L. (11)

From these conditions, one sees that the flow domain in the w̃

plane is a rectangle with a vertical slit in its interior, as shown
in Fig. 1(c).

Let us now consider the conformal mapping z(ζ ) from an
annulus, q � |ζ | � 1, in an auxiliary complex ζ plane onto
the fluid domain in the z plane, in such a way that the inner
circle, |ζ | = q, is mapped to the bubble C and the unit circle,
|ζ | = 1, is mapped to the edges of our unit cell in the z plane;
see Fig. 1(d). The corners of the rectangular cell in the z plane
are the preimages of four points, denoted by αi , on the unit
circle (i.e., |αi | = 1, for i = 1,2,3,4). Similarly, the rightmost,
leftmost, topmost, and lowermost points on the bubble are the
preimages of four points βi on the inner circle (i.e., |βi | = q,
for i = 1,2,3,4), as indicated in Fig. 1.
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Defining the functions

W (ζ ) = w[z(ζ )] and W̃ (ζ ) = w̃[z(ζ )], (12)

it follows from (6) that the conformal mapping z(ζ ) can be
written as

z(ζ ) = 1

U
[W̃ (ζ ) − W (ζ )]. (13)

We have thus reduced our original free-boundary problem
to the more amenable problem of obtaining two analytic
functions, W (ζ ) and W̃ (ζ ), that map an annulus onto respective
rectangular domains with linear slits in their interior. The
latter problem can conveniently be handled in terms of the
generalized Schwarz-Christoffel formula for doubly connected
domains, as discussed below. Note, furthermore, that once the
conformal mapping z(ζ ) is known, the bubble shape can be
readily computed in parametric form by setting x(θ ) + iy(θ ) =
z(qeiθ ) for 0 < θ < 2π .

III. THE GENERAL SOLUTION

A. The function W (ζ )

Since the conformal mapping w = W (ζ ) maps an annulus
in the ζ plane onto a (degenerate) polygonal domain in the w

plane, an explicit solution for this mapping can be obtained
by a direct application of the Schwarz-Christoffel formula for
doubly connected regions [19]. In this case, one finds that
W (ζ ) is given by the following expression:

W (ζ ) = A + K
∫ ζ

ζ0

P (q2ζ/β1,q)P (q2ζ/β3,q)√∏4
i=1 P (ζ/αi,q)

dζ, (14)

whereA andK are complex constants, and the function P (ζ,q)
is defined by

P (ζ,q) = (1 − ζ )
∞∏

k=1

(1 − q2kζ )(1 − q2kζ−1). (15)

Note that the four factors of P (ζ/αi,q) under the square root
in (14) ensure that each point αi is mapped to a right-angle
corner in the z plane. Similarly, the points ζ = β1 and ζ = β3

are mapped to the slit endpoints in the w plane, as implied by
the fact that dW/dζ = 0 at these two points. [To see this, note
that P (q2,q) = 0.]

The function P (ζ,q) is related to the Jacobi elliptic
functions, but we shall not exhibit this relation here; see,
e.g., [19]. For later use, we list the following properties of
P (ζ,q) that hold for |ζ | = 1:

P (ζ,q) = − 1

ζ
P (ζ,q), (16)

P (qζ,q) = P (qζ,q), (17)

P (q2ζ,q) = −ζP (q2ζ,q), (18)

where the overline indicates complex conjugate.
To completely specify the solution for W (ζ ), we need

to determine the parameters appearing in Eq. (14). Without
loss of generality, we can set A = 0 and ζ0 = α4, since
this merely fixes the origin. Now, recalling that the mapping
function between a doubly connected domain and an annulus

is uniquely defined up to a factor of modulus one [20], we can
choose the constant K to be purely imaginary, i.e., K = iK ,
where K is a real constant to be determined later.

Next, we note that there should be four free parameters
corresponding to the four physical parameters of our solution,
namely, the length L of the unit cell, the centroid of the bubble,
and the bubble area. The radius q of the inner circle is one
such free parameter, which mainly governs the bubble area.
For convenience, we choose the other three free parameters to
be the points α1, α2, and α3 on the unit circle. The remaining
point α4 is then determined by imposing the condition that the
rectangle in the w plane has the proper orientation. This can
be done by requiring, for instance, that the upper edge of the
unit cell in the w plane is horizontal, a condition that can be
written as

Im

[
dW

dθ

]
= 0 on ζ = exp(iθ ), for θ2 < θ < θ3,

(19)

where θi = arg(αi). Using the fact that dW/dθ = iζ (dW/dζ )
on |ζ | = 1, Eq. (19) becomes

dW

dζ
= − 1

ζ 2

(
dW

dζ

)
on ζ = exp(iθ ), for θ2 < θ < θ3.

(20)

Using Eq. (14) and the relations (16) and (17) in the
preceding equation, one obtains after straightforward algebra
the following relation between the αi’s:

α1α2α3α4 = 1, (21)

which can be solved for α4 in terms of the other three (freely
specified) parameters: α4 = α1α2α3, where we have used that
1/αi = ᾱi , since |αi | = 1.

Similarly, from the condition that the slit in the w plane is
horizontal, one obtains the following relation:

Im

[
dW

dθ

]
= 0 for ζ = qeiθ , (22)

or alternatively,

dW

dζ
= −q2

ζ 2

(
dW

dζ

)
for ζ = qeiθ , (23)

where we have used that dW/dθ = iζ (dW/dζ ) and ζ̄ = q2/ζ

for ζ = qeiθ . Using Eqs. (14), (17), and (18) in Eq. (23) yields
the relation

β1 = β3. (24)

We must also ensure single-valuedness of the function W (ζ )
by applying the condition∮

|ζ |=q

W (ζ ) dζ = 0. (25)

Equations (24) and (25) thus determine the parameters β1 and
β3. Finally, the value of K is determined by the following
condition:


W
∣∣D
A ≡ W (α4) − W (α3) = ia(U − V ), (26)

as follows from Fig. 1(b).
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B. The function W̃ (ζ )

Since the flow domain in the w̃ plane is a polygonal region
with a vertical slit in its interior [see Fig. 1(c)], the function
W̃ (ζ ) can also be obtained from the Schwarz-Christoffel
formula:

W̃ (ζ ) = iK̃

∫ ζ

α4

P (q2ζ/β2,q)P (q2ζ/β4,q)√∏4
i=1 P (ζ/αi,q)

dζ, (27)

where, as before, we have chosen the premultiplying constant
as purely imaginary, meaning that K̃ is a real constant.

The requirement that the slit in the w̃ plane be vertical [see
Fig. 1(c)] yields the following relation:

Re

[
dW̃

dθ

]
= 0 for ζ = qeiθ , (28)

or alternatively,

dW̃

dζ
= q2

ζ 2

(
dW̃

dζ

)
for ζ = qeiθ . (29)

Now, carrying out similar steps as those that led to Eq. (24)
from (23), one finds that

β2 = −β4, (30)

which together with the single-valuedness condition,∮
|ζ |=q

W̃ (ζ ) dζ = 0, (31)

determine β2 and β4. Lastly, the constant K̃ is fixed by the
condition


W̃
∣∣A
D ≡ W̃ (α3) − W̃ (α4) = iaV . (32)

IV. EXAMPLES

Without loss of generality, we shall set a = 1 and V = 1
throughout this section. We also recall that solutions for any
U �= 2 can be obtained by a proper rescaling of the solutions
with U = 2 [13]. We shall thus restrict ourselves to the case
U = 2.

It is easy to verify that the general solution presented
above reproduces, as a particular case, the solution obtained by
Burgess and Tanveer [21] for an infinite stream of symmetrical
bubbles. To see this, it suffices to choose the four points αi

to be symmetrically located with respect to the vertical and
horizontal axes, i.e., α1 = −ᾱ2 = −α3 = ᾱ4. One then finds
that β1 = −β3 = i and β2 = −β4 = −1, implying that the
bubble is symmetric with respect both to the channel centerline
and to the fore-and-aft direction, as in the Burgess-Tanveer
solution [21].

If one requires instead only that α4 = ᾱ1 and α3 = ᾱ2,
with no assumed relation between α1 and α2, one obtains a
stream of bubbles with fore-and-aft symmetry but no centerline
symmetry. An example of this case is shown in Fig. 2 for θ1 =
0.3, θ2 = 1.64, and q = 0.5. (In this figure some streamlines
of the flow are also shown for illustration purposes.) We note,
in particular, that in the limit that the cell period goes to
infinity, i.e., L → ∞, the family of solutions shown in Fig. 2
reproduces the exact solutions for a single asymmetric bubble

0 0.5
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0

0.5

1

y

FIG. 2. (Color online) Period cell for a stream of bubbles with
fore-and-aft symmetry. Here the parameters are θ1 = 0.3, θ2 = 1.64,
and q = 0.5, and the resulting period is L = 0.996.

in a Hele-Shaw cell [14,15]. The limit L → ∞ is accomplished
in our formulation by setting α1 = α2 and α3 = α4; see Fig. 1.

Similarly, a stream of bubbles with centerline symmetry
(but not with fore-and-aft symmetry) is obtained by imposing
the conditions α1 = −ᾱ2 and α3 = −ᾱ4. It is worth point-
ing out that solutions with either centerline or fore-and-aft
symmetry can also be obtained by reducing the problem to a
simply connected domain and applying the standard Schwarz-
Christoffel formula [13,22]. The formalism presented here,
however, is more general in that it naturally accounts for
asymmetric bubbles. Indeed, if one chooses the parameters
αi arbitrarily, i.e., with no symmetry relations between them,
then the resulting bubble has no symmetry whatsoever. One
example of such solutions is shown in Fig. 3 for the parameters
θ1 = 0.87, θ2 = 3.0, θ3 = 3.9, and q = 0.5.
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FIG. 3. (Color online) Asymmetric solution for θ1 = 0.87, θ2 =
3.0, θ3 = 3.9, and q = 0.5. The resulting half-period is L = 1.09.
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V. CONCLUSIONS

We have presented an exact solution for a steady stream
of asymmetric bubbles cotraveling in a Hele-Shaw channel.
From the periodicity along the streamwise direction, the
original flow domain was reduced to a rectangular unit cell
containing only one bubble. The complex potentials w(z)
and w̃(z) in the comoving frame and in the laboratory
frame, respectively, were computed in terms of conformal
mappings from an annulus in an auxiliary complex ζ plane
onto the respective flow domains in the w and w̃ planes. Both

these domains turn out to be given by degenerate polygonal
regions, so that the desired mappings could be constructed
explicitly by making use of the Schwarz-Christoffel formula
for doubly connected domains. As an important extension of
the present work, it would be interesting to consider periodic
solutions with several (asymmetric) bubbles per unit cell, in
which case one needs to employ the generalized Schwarz-
Christoffel formula for polygonal domains of arbitrary con-
nectivity. This more difficult problem is currently under
investigation.
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