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Exponential spreading and singular behavior of quantum dynamics near hyperbolic points
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Quantum dynamics of a particle in the vicinity of a hyperbolic point is considered. Expectation values
of dynamical variables are calculated, and the singular behavior is analyzed. Exponentially fast extension of
quantum dynamics is obtained, and conditions for this realization are analyzed.
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Hyperbolic (saddle) points are a source of instability in
dynamical systems [1]. Therefore, the quantum dynamics of
a particle in a saddle-point potential is an important problem
in quantum chaos [2–4]. The hyperbolic point at the origin
(x,p) = (0,0) can be described locally by the Hamiltonian
Hloc = xp. The Lyapunov exponents that detect stable �−
and unstable �+ manifolds are �± = ±1. This leads to the
exponential spreading in quantum dynamics and exponential
growth of observable quantities [5,6]. The Hamiltonian Hloc

has been studied in connection with the Riemann hypothesis
[7,8], scattering of the inverted harmonic oscillator [9], and
eigenstates near a hyperbolic point [10].

We consider a quantum system that is a second-order
polynomial of Hloc with the Hamiltonian

Ĥs = 2ωx̂p̂ − iωh̄ + μ(2ix̂p̂ + h̄)2

≡ 2ω

[
Ĥloc − ih̄

2

]
− 4μ

[
Ĥloc − ih̄

2

]2

, (1)

where ω and μ are the linearity and nonlinearity parameters,
correspondingly, while the coordinate and momentum oper-
ators obey the standard commutation rule [x̂,p̂] = ih̄ with
Planck’s constant h̄. This system was considered in [8] in
connection with the Riemann hypothesis as well. Our primary
interest in this Hamiltonian is related to a problem of quantum
dynamics considered in the Heisenberg picture [11], where
the expectation values of the operators p̂(t) and x̂(t) were
calculated in the coherent states [12], especially prepared at
the initial moment t = 0. As shown in [11], the dynamics
of these expectation values becomes singular at specific
singularity times tl . For example, for the observable value
of x̂2 these singularities occur at times tl = π

32h̄μ
+ l π

16h̄μ
,l =

0,±1,±2, . . .. A remarkable property of these explosions is
their pure quantum nature: in the classical counterpart, this
corresponds to the separatrix motion without any singularities.
As follows from the analysis of Ref. [11], this explosion
behavior results from the interplay between the nonlinear
term and the specific choice of zero boundary conditions on
infinities. When μ = 0, the singularities are shifted to infinity
and expectation values of operators are finite, and this result is
independent of the boundary conditions.

We develop a different consideration of the problem to
understand the nature of these singularities that, as will be
shown, are related to the choice of the initial conditions. First
we consider the quantum dynamics of a particle of a unit
mass in the saddle potential described by the Hamiltonian (1).
For calculation of the expectation values, following [11], the
initial wave function is chosen in the form of the coherent state

�0(x) = 〈x|α〉. In the x representation, this is the Gaussian
packet [11,12]:

�0(x) = 〈x|α〉 = (h̄π )−1/4e−|α|2/2h̄−(x2−2
√

2xα+α2)/2h̄, (2)

where α ∈ C. It is worth mentioning that in this notation
the dimension of x is

√
h̄. For simplicity, we calculate the

expectation value of the operator x̂2(t). Thus we have

〈x̂2(t)〉 =
∫ ∞

−∞
�∗

0 (x)Û †(t)x2Û (t)�0(x)dx, (3)

where Û (t) is the evolution operator.
The axis of integration is split into three intervals

(−∞,−x0],[−x0,x0],[x0,∞), and the expectation value is
expressed by the following three integrals:

〈x̂2(t)〉 = Is(t) + I−
f (t) + I+

f (t) =
∫ x0

−x0

�∗
s (t)x2�s(t)dx

+
∫ −x0

−∞
�∗

f (t)x2�f (t)dx +
∫ ∞

x0

�∗
f (t)x2�f (t)dx.

(4)

The dynamics in the finite interval [−x0,x0] is considered
in the framework of the truncated interaction. Near the
hyperbolic point, this dynamics is considered locally, such that
H = Hs for x < x0 and the particle is, for example, free with
H = Hf outside the interaction region |x| > x0, where x0 > 0
determines arbitrarily the interaction range. Note that we do not
consider a scattering task and just truncate the integration. Here
Ĥs is determined by Eq. (1), while Ĥf = p̂2/2 determines free
motion. Therefore, the dynamics of an initial wave function
�0 is determined in these two different regions,

�f (t) = Ûf (t)�0 and �s(t) = Ûs(t)�0, (5)

where the evolution operators Ûf (t) = exp[− i
h̄
Ĥf t] and

Ûs(t) = exp[− i
h̄
Ĥs t] describe two independent processes, and

a corresponding shift of the wave functions is supposed.
Integrals are calculated by substituting Eqs. (5) in Eq. (4)

and taking into account the explicit form of the Hamiltonians.
In the free motion window, the evolution of the square
coordinate operator is

x̂2(t) = [Û †
f (t)x̂Ûf (t)]2 = [x̂ + t p̂]2. (6)

Therefore, the free motion integrals I±
f (t) do not have any

particular features. Their values can be expressed in the form
of the error function �(z) = (2π )−1/2

∫ z

−∞ eη2/2dη [13]. Then,
we obtain that I±

f (t) ∼ t2, as expected.
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The saddle-point integral possesses a more interesting
behavior. Using calculations performed in [11] [Eq. (4.16)],
we arrived at the expression

Is(t) = (h̄π )−1/2e4ωt+24ih̄μt e− (α+α∗ )2

2h̄

∫ x0

−x0

dx x2

× exp

{
−x2

2h̄
[(1 + e32ih̄μt ) − 2

√
2(α∗ + αe16ih̄μt )x]

}
.

(7)

First, we admit the exponential quantum growth, obtained in
Ref. [11]. This quantum behavior has the classical nature of the
near separatrix motion, observed also for a kicked system [6].
At the singularity times tl = π

32h̄μ
+ lπ

16h̄μ
, expression (7) is

simplified, and the integral is calculated exactly. It reads

Is(tl) = (−i)l

(h̄π )1/2
e− (α+α∗ )2

2h̄ eωπ/8h̄μ+lωπ/4h̄μe3iπ/4

×
[√

2h̄3

ξ 3
sinh

(√
2ξx0

h̄

)
− 2h̄2x0

ξ 2
cosh

(√
2ξx0

h̄

)

−
√

2h̄x2
0

ξ
sinh

(√
2ξx0

h̄

)]
, (8)

where ξ = α∗ + i(−1)lα. This expression is finite for finite
x0. When x0 approaches infinity, the integral diverges and tl
are the singularity points. Note that x0 is an arbitrarily defined
scale [14].

To generalize the consideration of the explosion singu-
larities, first we consider the eigenvalue problem for the
Hamiltonian Hs . Since the operator x̂p̂ − ih̄/2 commutes with
Ĥs , this problem is reduced to the dimensionless equation for
the eigenfunctions χε(x):

1

i

(
x

d

dx
+ 1

2

)
χε(x) = εχε(x) (9)

with the solution

χε(x) = 1√
Ns |x| exp[iε ln |x|], (10)

which satisfies the boundary conditions χε(x = ±∞) = 0
and Ns = 4πh̄1/2 [15,16]. For the continuous spectrum, the
normalization condition is∫ ∞

−∞
χ∗

ε′(x)χε(x)dx = δ(ε − ε′) (11)

(see, e.g. [17]).
Now, expanding �0(x) over the complete set of χε(x), we

obtain

�0(x) =
∫

dε q(ε)χε(x). (12)

Note that the explicit form of the expansion coefficients q(ε)
is not important, since integration over energy ε will be
performed with exactly the same form of χε(x). Substituting
Eq. (12) in the integral Is in Eq. (4) with x0 = ∞, we obtain

I∞
s (t) = 2

∫ ∞

0
x2

∫ ′
q∗(ε′)q(ε)e−i(E − E′)t dε dε′

× χ∗
ε′(x)χε(x)dx, (13)

where E = 2ωε − 4h̄με2 is the energy of Ĥs , and we use
that χε(−x) = χε(x). The complex Gaussian exponents are
presented in the form of the Fourier integrals:

e±i4h̄μtε2 =
∫ ∞

−∞

e∓iτεdτ√±16πih̄μt
exp {∓iτ 2/16h̄μt}. (14)

Substituting these expressions in Eq. (13) and taking into
account the explicit form of χε(x), we obtain ln |x| − 2ωt −
τ = ln(|x|e−2ωte−τ ). Then, one integrates over ε and ε′ to
obtain the following expression:

Is(t) = 2
∫ ∞

0
x2

∫
dτ dτ ′

16πh̄μt
e
−i

(τ2−τ ′2)
16h̄μt e−2ωte

(τ+τ ′ )
2

× �∗
0 (xe−2ωte−τ ′

)�0(xe−2ωte−τ )dx. (15)

The next step is integration over τ and τ ′. To this end,
we perform the following variables change τ = u + v and
τ ′ = u − v with the Jacobian of the transformation equaling 2.
Denoting y = xe−2ωte−(τ+τ ′)/2, integration over u is exact and
gives the δ function δ(v − 8ih̄μt). Therefore, integration over
v is also exact. Finally, the expectation value reads

〈x̂2(t)〉 = 2e4ωt

∫ ∞

0
y2�∗

0 (ye8ih̄μt )�0(ye−8ih̄μt )dy. (16)

Here, we also use the symmetrical property of the wave
function. Substituting Eq. (2) in Eq. (16), one obtains that
at times t = tl this expression diverges. These are the same
singularities obtained above in Eq. (7). Moreover, any “good”
Gaussian and exponential functions lead to this kind of singular
behavior for the expectation values of physical operators.

Obviously, these singularities result from a specific prepa-
ration of the initial wave packets �0(x). Let us prepare the
initial conditions “properly” to obtain the finite moments of
the physical variables. Owing to Eq. (12), we present the initial
condition as the spectral decomposition with the Gaussian
weight q(ε) = [ 2a

π
]

1
4 exp(−aε2), where real a > 0. This yields

the initial wave packet in the form of a log-normal distribution,

�0(x) = 1√
N

exp

(
− 1

4a2
ln2 |x| − 1

2
ln |x|

)
, (17)

with N = 4a
√

π . Using Eqs. (17) and (16), one obtains for
the nth moment of x̂

〈x̂n(t)〉 = 1

2a
√

π
e4ωte

16
a2 h̄2μ2t2

×
∫ ∞

0
exp

(
− 1

2a2
ln2 x + n ln x

)
d(ln x)

=
√

2

2
exp

(
4ωt + a4n2 + 16

a2
h̄2μ2t2

)
. (18)

This behavior of the expectation values is finite and spreads
exponentially for the arbitrary long time scale. This exponen-
tial that increases with time consists of two values. The first is
the above-mentioned classical term e4ωt , which is due to the
classical motion near the hyperbolic point. The second, pure
quantum, term 16

a2 h̄
2μ2t2 is dominant and relates to the action

of the evolution operator, which is a delation operator ebx̂p,
where ebx̂pf (x) = f (e−i

√
h̄b) (see, e.g. [18]). Therefore, this

term is due to the quantum dynamics near the hyperbolic point.
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Both singular behavior and this exponential quantum
growth are due to the nonlinear quantum parameter κ = h̄μT ,
where T is a characteristic time scale. For example, for the
explosion behavior of 〈x̂2(t)〉 in Eqs. (7) and (8) it is T = π

32h̄μ
.

For the quantum expansion, we can define this time scale

parameter as h̄μ/ω to define the dimensionless growth of the
expectation values exp[( κ

a
)2ωt].
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