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Electric conductance of highly selective nanochannels
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We consider electric conductance through a narrow nanochannel in the thick-double-layer limit, where the
space-charge Debye layers adjacent to the channel walls overlap. At moderate surface-charge densities the
electrolyte solution filling the channel comprises mainly of counterions. This allows to derive an analytic
closed-form approximation for the channel conductance, independent of the salt concentration in the channel
reservoirs. The derived expression consists of two terms. The first, representing electromigratory transport, is
independent of the channel depth. The second, representing convective transport, depends upon it weakly.
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Nanochannels and nanopores of well-defined geometries,
made possible through use of conventional fabrication methods
[1], constitute key elements in nanoscale devices [2–4],
with potential applications including energy conversion [5],
nanofluidic transistors [6–8] and diodes [9–13], DNA translo-
cation [14–16], and molecular sieving [17,18].

A conceptual model problem, schematically portrayed in
Fig. 1, consists of a channel (length L∗, depth 2h∗, width w∗),
transversely bounded by uniformly charged walls (surface-
charge density −σ ∗). The channel is connected at its ends to
two large reservoirs filled with a symmetric z–z electrolyte
solution, where the cation and anion concentrations are equal,
say c∗. Application of a voltage V ∗ between the reservoirs
results in an ionic current I ∗. The property of practical interest
is the channel conductance I ∗/E∗, with E∗ = V ∗/L∗ being the
“applied field” magnitude. When considering “deep” channels,
with h∗ on the micron scale and above, electric conduction
is essentially carried out through ionic electromigration, the
resulting current thus being proportional to both c∗ and h∗.
In view of electroneutrality which prevails throughout the
majority of the channel cross section, charge convection is
then confined to the narrow diffuse-charge layers.

In a landmark nanochannel experiment, Stein et al. [19]
demonstrated that the linear scaling with c∗ breaks down at low
salt concentration, where the conductance actually saturates at
a c∗-independent value that depends only weakly upon h∗.
Stein et al. [19] explained that the breakdown of Ohmic
conductance is due to the dominance of electrokinetic effects
at low salt concentrations, where the Debye width is thick
enough for the diffuse-charge Debye layers formed about the
“top” and “bottom” channel walls to overlap.

In the experiments of Stein et al. [19] the channel is
several millimeters long and 50 μm wide, while its depth 2h∗
ranges roughly between 100 nm and one micron. These figures
suggest the use of a simplified electrokinetic model, where
the first scale disparity (L∗ � w∗) allows to approximate
the transport process as being “fully developed,” while the
second scale disparity (w∗ � h∗) allows for a two-dimensional
description of the cross-sectional transport. Such a model
was used by Stein et al. [19], assuming a monovalent
solution (z = 1) for simplicity. The exact solution of their
one-dimensional Poisson-Boltzmann equation, expressed in
terms of Jacobi elliptic functions [20], provides a set of

transcendental equations from which the channel conductivity
can be calculated numerically. The resulting values indeed
reveals the observed transition from a linear variation at
high salt concentrations to a saturation at low concentrations.
Using the surface-charge density as a fitting parameter,
Stein et al. [19] obtained values of order 100 mC m−2,
comparable to those measured by charge titration.

We here propose using a thick-double-layer approxima-
tion to derive a closed-form approximation for the channel
conductance at low salt concentrations. In this limit, and
for moderate surface-charge-density values, the nanochannel
consists mainly of counterions and therefore acts as a highly-
selective membrane. This scenario lends itself to well-known
analytic approximations, going back to the Derjaguin-Landau-
Verwey-Overbeek (DLVO) theory for suspension stability
[21]. Similar approximations, making use of the dominance
of counterions, were used in recent years in the analysis of
such problems as the anion-depleted cathodic Debye charge
in overlimiting currents [22–24] and of surface conduction
through the “Dukhin layer” surrounding highly-charged solid
surfaces [25,26]. In the present problem, our model provides a
closed-form approximation for the channel conductance which
is independent of c∗ and weakly depends upon h∗.

We employ a rather standard dimensionless notation,
normalizing length variables by h∗, the electric potential by the
thermal voltage ϕ∗ = k∗T ∗/ze∗ (in which k∗ is Boltzmann’s
constant, T ∗ the thermodynamic temperature, and e∗ the
proton charge), and the ionic concentrations by c∗. Ionic fluxes
are normalized by the diffusive scale D∗c∗/h∗, wherein D∗
is the cationic diffusivity. The velocity field is normalized
by the Maxwell scale ε∗ϕ∗2/μ∗h∗, wherein ε∗ and μ∗ are
the dielectric permittivity and Newtonian viscosity of the
electrolyte solution.

The essentially two-dimensional transport is described
using a Cartesian xy-coordinate system (see Fig. 1), the x-axis
pointing along the channel direction and the y-axis lying
perpendicular to the bounding walls (at y = ±1). We seek a
fully developed distribution, where the ionic concentrations c±
and the longitudinal velocity u are independent of x. Because
of the continuity equation and impermeability to fluid at the
bounding walls there is no fluid motion in the y-direction.
Moreover, we also postulate a fully-developed electric field,
where the electric potential adopts the form (resembling the
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FIG. 1. (Color online) Nanochannel schematic. The shapes of the
counterion-concentration distribution (red) and electrokinetic-flow
profile (blue), respectively, correspond to expressions (13) and (17),
evaluated for σ = 5.

pressure field in unidirectional pressure-driven flows)

−Ex + ϕ(y), (1)

where E = h∗E∗/ϕ∗ is the dimensionless applied field. The
Nernst-Planck conservation equations in the x-direction are
then identically satisfied, while those in the y-direction imply
uniform ionic fluxes; in view of ionic impermeability at the
inert channel walls y = ±1, both of these fluxes must actually
vanish:

−dc±

dy
∓ c± dϕ

dy
= 0. (2)

The ionic concentration are accordingly Boltzmann
distributed,

c± = A±e∓ϕ, (3)

where A± are constants. Substitution into Poisson’s equation
yields the nonlinear differential equations

d2ϕ

dy2
= 1

2
h2(A−eϕ − A+e−ϕ). (4)

Here,

h = h∗κ∗ (5)

is the ratio of of the semidepth h∗ to the Debye width 1/κ∗,
defined by

κ∗2 = 2ze∗c∗

ε∗ϕ∗ . (6)

The second-order equation (4) is supplemented by the
Gauss-type boundary conditions

dϕ

dy
= ∓σ at y = ±1, (7)

where σ is the ratio of σ ∗ to ε∗ϕ∗/h∗. With no loss of
generality, the surface-charge density −σ ∗ is assumed negative
(as in most solid-electrolyte interfaces), whereby σ > 0.

It is a common practice in electrokinetic analyses of
nanochannels to assume a Boltzmann distribution which
reduces to the reference concentration at zero potential (as
in Ref. [19]); in the present notation, this would correspond
to setting A± = 1 (whereby Eq. (4) becomes the familiar

Poisson-Boltzmann equations, cf. Eq. (1) in Ref. [19]). This
procedure is standard in thin-double-layer analyses, where
it represents asymptotic matching between the Debye scale
and the bulk [27]. In analyzing nanochannels, however, where
the double layers overlap, this procedure is unwarranted. As
the fully developed concentration profiles cannot be directly
matched to the uniform concentrations in the reservoirs,
there is no way to determine A± within the fully developed
framework. We accordingly proceed without making any a
priori assumptions that these constants are identical (let alone
equal to unity).

We now consider the thick-double-layer limit

h � 1 (8)

while σ ∼ O(1). Naively, Eq. (4) may appear to suggest
the expansion ϕ(y; h) ≈ φ(y) + O(h2); however, the resulting
leading-order equation, d2φ/dy2 = 0, is incompatible with
conditions (7). The limit (8) is a singular one, representing
the dominance of counter ions throughout the entire channel
cross-section. Thus, we postulate the expansion

ϕ(y; h) ≈ 2 ln h + φ(y) + O(h4) (9)

corresponding to large cation concentration [see Eq. (3)]. At
leading order, Eq. (4) then yields

d2φ

dy2
= −1

2
A+e−φ. (10)

The solution of this cation-dominated balance, possessing the
requisite transverse symmetry, is

φ = ln
A+ cos2 py

4p2
, (11)

where with no loss of generality p > 0 [28]. Conditions (7)
yield the one-to-one correspondence

p tan p = σ

2
(12)

between p and σ . Remarkably, the cationic concentration,
obtained from Eq. (3), is independent of A+,

c+ ≈ 4h−2p2

cos2 py
. (13)

Note the h−2 scaling, representing the intensification of
counterions. Clearly, the co-ion concentration is O(h2). Thus,
the conduit effectively constitutes a highly selective single-
pore membrane.

With the electric potential known, the longitudinal velocity
u is obtained from the Stokes equation in the x-direction,

d2u

dy2
= E

d2ϕ

dy2
. (14)

Two successive integrations in conjunction with the no-slip
conditions

u = 0 at y = ±1, (15)

yield the velocity profile

u ≈ E {φ(y) − φ(1)} . (16)
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Substitution of Eq. (11) reveals that it, too, is independent of
A+:

u ≈ E ln
cos2 py

cos2 p
. (17)

In the present fully developed model, the cationic flux j

in the x-direction consists of electromigratory and convective
contributions, both proportional to c+:

j ≈ {E + αu(y)}c+(y). (18)

Here, α = ε∗ϕ∗2/μ∗D∗ is the cationic ion-drag coefficient,
�0.5 for typical ionic size [29]. We therefore proceed
assuming

α ∼ O(1). (19)

Thus, the cationic flux is O(h−2), while the comparable anions
flux is O(h2), negligibly small. Specifically, substitution of
Eqs. (13) and (17) yields

j ≈ 4Eh−2p2

cos2 py

(
1 + α ln

cos2 py

cos2 p

)
. (20)

In view of the effective absence of anions at leading order,
j also constitutes the electric-current density, normalized by
ze∗D∗c∗/h∗. The total current through the conduit, normalized
by ze∗D∗c∗w∗, is readily obtained via integration over y, yield-
ing 4h−2Eσ (1 + 2α − 4αp2/σ ). The channel conductance—
the ratio of the corresponding dimensional current I ∗ to the
dimensional field magnitude E∗—is then readily obtained.
Making use of Eq. (6) we find

conductance = 2σ ∗D∗w∗

ϕ∗ (1 + 2α − 4αp2/σ ). (21)

Expression (21) is the main result of this report. Note that
it is independent of c∗. It is affected however by the channel
semidepth h∗ through its dependence (both directly, as well
as indirectly through p) upon σ = σ ∗h∗/ε∗ϕ∗. Note that α is
independent of both c∗ and h∗. At small σ [but still �h, see
Eq. (23)] it follows from Eq. (12) that p2 → σ/2, whereby
the dimensionless conductance, normalized by 2σ ∗D∗w∗/ϕ∗,
approaches unity. At large σ Eq. (12) implies p → π/2,
whereby the dimensionless conductance goes to 1 + 2α, or,
in dimensional notation,

conductance → 2σ ∗D∗w∗

ϕ∗

(
1 + 2ε∗ϕ∗2

μ∗D∗

)
. (22)

The variation of the dimensionless conductance with σ is
portrayed in Fig. 2 for α = 0.5.

The dimensional factor 2σ ∗D∗w∗/ϕ∗ characterizing the
conductance (21) is readily explained. In view of cross-
sectional electroneutality, the surface-charge density −σ ∗ at
the two bounding wall implies an average volume-charge
density σ ∗/h∗. This is true, of course, regardless of the
Debye width. In the present limit (8) of thick double layer,
this density is attributed to cations, implying an average
ionic concentration σ ∗/ze∗h∗. Since the electric field in the
x-direction is transversely uniform (with magnitude E∗),
this average concentration gives rise through electromigration
to an average cationic flux provided by product of that
concentration, the cations charge ze∗ and mobility D∗/k∗T ∗,
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FIG. 2. (Color online) The dimensionless channel conductance,
calculated using Eqs. (12) and (21), as a function of σ = σ ∗h∗/ε∗ϕ∗,
for α = 0.5.

and E∗. The corresponding current density is obtained by
multiplying by the cation charge ze∗ and cross-sectional
area h∗w∗. This results in the h∗-independent conductance
2σ ∗D∗w∗/ϕ∗, corresponding to the electromigratory term
in expression (21). Because of the attendant electrokinetic
flow, the conductance is also affected by a convective term,
proportional to α. This term, proportional to the product of c+
and u, cannot be determined using average quantities: rather,
its evaluation requires the detailed transverse distribution of
these fields. In view of relation (19), this term is comparable
to the electromigratory one.

It is worth noticing that the reference scale c∗ eventually
plays no role at the field distributions obtained using the thick-
double-layer approximation, nor does it affect the channel
conductance. This remarkable feature is related to the pre-
viously mentioned absence of direct linkage between the fully
developed fields and the reservoir conditions. It thus appears
that the only situation in which a fully developed description
can be obtained for a “long” nanochannel is the thick-double-
layer limit addressed herein. In all other situations, it may
be that the resolution of the effective channel conductance
involves matching with the reservoir conditions. In view of that
observation, the validity of the electrokinetic model used by
Stein et al. [19], where the Boltzmann distribution were a pri-
ori associated with the reservoir salt concentration, is dubious.

As already mentioned, the electrokinetic description of
Stein et al. [19] can only provide the channel conductance
by a numerical solution. It is accordingly less informative
than the present model, which provides the closed-form
expression (21). This expression is independent of the reservoir
concentration, in agreement with experimental observations
at low salt concentrations. Moreover, it also predicts a weak
dependence upon the channel depth. Curiously, a dependence
upon channel depth is evident in the experimental results of
Stein et al. [19] (see their Fig. 2 and notice the logarithmic
scale). Admittedly, these results do not correlate with the
monotonic variation with h∗, as predicted in the present Fig. 2.

In their paper, Stein et al. [19] provide degenerate results
of their electrokinetic model for low salt concentrations [see
the discussion following their Eq. (6)]. Their expression for
the channel conductance, which is independent of both the
salt concentration and the channel depth, is analogous to the
present large-σ limit (22). (There appears to be a factor-2
error in the convective term appearing in the expression
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provided by Stein et al. [19].) Stein et al. [19] claim that
their weak-concentration limit applies when (in the present
notation) σ ∗ � e∗c∗h∗. This is incorrect, as can be verified
from the present analysis. Using Eq. (6), it is readily verified
that in dimensional notation the limit σ � 1 actually reads
σ ∗ � e∗c∗/κ∗2h∗—a much stricter criteria.

In many electrokinetic analyses, one assumes that the
natural scale for σ ∗ is ε∗ϕ∗κ∗ [29]. In that case, again using
Eq. (6), the dimensional density σ ∗ is of order e∗c∗/κ∗,
certainly satisfying the criteria σ ∗ � e∗c∗h∗ put forward by
Stein et al. [19]. In the present notation, however, such scaling
would imply

σ ∼ O(h) � 1. (23)

In that limit, the present thick-double-layer limit breaks
down, let alone approximation (22). It is important to
emphasize that analytic progress was made possible here
because of the predominance of counterions. The thick-
double-layer limit h � 1 only constitutes a necessary con-
dition for that to happen: indeed, it is clear that when the
surface-charge density is small, there would be no signifi-
cant difference between the concentrations of the two ionic
species.
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