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Sigma method for the microcanonical entropy or density of states
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We introduce a simple improvement on the method to calculate equilibrium entropy differences between
classical energy levels proposed by Davis [S. Davis, Phys. Rev. E 84, 050101 (2011)]. We demonstrate that the
modification is superior to the original whenever the energy levels are sufficiently closely spaced or whenever
the microcanonical averaging needed in the method is carried out by importance sampling Monte Carlo. We also
point out the necessary adjustments if Davis’s method (improved or not) is to be used with molecular dynamics
simulations.
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Consider a system with configurational coordinates {ri}
and potential energy function U ({ri}). The Hamiltonian of the
system is of the standard classical form, that is, separable in
its coordinates and conjugate momenta, {pi}, so that it may be
written thus:

H ({ri},{pi}) = U ({ri}) + K({pi}), (1)

where K({pi}) is the kinetic energy of the system. In this Brief
Report, we consider the calculation of the energy dependence
of the microcanonical Boltzmann-Planck equilibrium entropy:

S(E) = k ln ω(E), (2)

where k is Boltzmann’s constant and

ω(E) = C

∫
{dri}{dpi}δ(E − H ({ri},{pi})) (3)

is the phase density, also known as the density of states, where
C is a constant that assures ω(E) is dimensionless and δ is
Dirac’s δ function. Algorithms to evaluate ω(E) [and thus
S(E)] abound in the literature [1–17]. They each have their
advantages and drawbacks, and an exhaustive review of them
all is not possible in this Brief Report. Here, we instead focus
in particular on the recently proposed σ method by Davis [18].
We will recapitulate its derivation and offer an improvement
on the original method. Our notation differs slightly from that
of Davis [18].

For the moment, we consider a microcanonical ensemble
whose only first integral of motion is the total energy, E. We
will briefly consider the case with more first integrals of motion
later. The Laplace principle of indifference assigns equal a
priori probability to all phase space points on the energy shell
H ({ri},{pi}) = E. In other words, the ensemble probability
density is constant on this energy shell and zero everywhere
else. We write this probability density as

WE({ri},{pi}) = C

ω(E)
δ(E − H ({ri},{pi})). (4)

If K({pi}) is quadratic in each conjugate momentum coor-
dinate and shows no complicated interdependencies (in this
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equation {mi} are generalized masses),

K({pi}) =
∑

i

p2
i

2mi

, (5)

the dependence on {pi} can be integrated out, yielding [18–21]

ŴE({ri}) = C ′
E(E − U ({ri}))n/2−1�(E − U ({ri})), (6)

where

C ′
E =

(∫
{dri}(E − U ({ri}))n/2−1�(E − U ({ri}))

)−1

(7)

is a normalization constant that is inversely proportional to
ω(E), � is the Heaviside step function, and n is the number
of configurational degrees of freedom of the system (which
for an unconstrained particle system is three times the number
of particles in three dimensions). The quantity ŴE({ri}) is
directly proportional to the density of kinetic energy states.
The microcanonical average of a quantity A({ri}) that does
not depend explicitly on the momenta can now be expressed
as

〈A({ri})〉E =
∫

{dri}ŴE({ri})A({ri}). (8)

The probability function in Eq. (6) can be used as the
weighting factor in a microcanonical Markov chain Monte
Carlo simulation [19–21] to calculate averages according to
Eq. (8). In a molecular dynamics simulation, however, in
which additional integrals of motion appear, the probability
function of Eq. (6) is not the proper one, assumed ergodicity
notwithstanding. In this case, the correct probability function
is given by [22]

W̃E({ri}) = C̃E

(
E − U ({ri}) − P2

2M

)n/2−1

, (9)

where P is the center-of-mass momentum, M is the total
mass, C̃E is a normalization constant, and n carries the same
meaning as in Eq. (6) but does not correspond to the same
numerical value, there being one degree of freedom less for
each Cartesian component of the center-of-mass momentum.

At this point, Davis [18] introduces the quantity

σE,Er ({ri}) = �(Er − U ({ri}))
(E − U ({ri}))n/2−1 , (10)
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with the condition that Er � E but otherwise arbitrary. When
the microcanonical average of Eq. (10) is calculated using Eqs.
(8) and (6), keeping in mind that C ′

E ∝ 1/ω(E), it is seen that
that the entropy difference according to Eq. (2) between two
energy levels E′ and E′′ is given by

�E′′
E′ S = k ln

〈σE′,Er ({ri})〉E′

〈σE′′,Er ({ri})〉E′′
, (11)

which is the rational for introducing the σ function. Similar to
the procedure in Ref. [18], let us introduce the quantity

�E′′,E′({ri}) = (E′ − U ({ri}))n/2−1

(E′′ − U ({ri}))n/2−1 �(E′ − U ({ri})), (12)

with E′ � E′′. We may then write

�E′′
E′ S = −k ln〈�E′′,E′ ({ri})〉E′′ . (13)

The proof of this equation follows directly from the substi-
tution of Eq. (12) into Eq. (13), from which Eq. (7) can be
identified, and, after using the inverse proportionality between
C ′

E and ω(E), this leads to Eq. (2) in difference form. Clearly,
both Eqs. (11) and (13) may be used to calculate the entropy
difference. Shortly, we will consider the question of which
function is the most efficient from a computational perspective.

The above equations are to be used when the total energy
is the only integral of motion in the mechanical system. For
completeness, we note the form that the corresponding sigma
functions must take when the averaging is done by molecular
dynamics means, if the objective is to obtain the density of
states. In this case, the σ function becomes

σ̃E,Er ({ri}) = �
(
Er − U ({ri}) − P2

2M

)

(
E − U ({ri}) − P2

2M

)n/2−1 , (14)

and the � function is to be replaced by

�̃E′′,E′({ri}) =
(
E′ − U ({ri}) − P2

2M

)n/2−1

(
E′′ − U ({ri}) − P2

2M

)n/2−1

×�

(
E′ − U ({ri}) − P2

2M

)
. (15)

Once again, heed must be paid to the value of n so that
the subtraction of the center-of-mass momentum degrees of
freedom is accounted for. In every other respect, the equations
for the entropy differences remain formally unchanged. Quite
conceivably, one might want to extract the corresponding
entropy of the system without these additional first integrals,
in which case one may introduce the function

�̃′
E′′,E′({ri}) = (E′ − U ({ri}))n′/2−1

(
E′′ − U ({ri}) − P2

2M

)n/2−1 �(E′ − U ({ri}))

(16)

and calculate entropies by Eq. (13). Here n′ exceeds n by
the number of Cartesian components in the center-of-mass
momentum. The corresponding form for Eq. (11) follows by
analogy.

We now turn to an analysis of the relative computational
merits of Eqs. (11) and (13). To obtain S(E) as a (quasi-
)continuous function of E, the calculation may be subdivided
into N discrete energy segments over a predefined energy

range. For instance, if the energy interval [E′,E′′] is subdivided
into N segments separated at energies {Ei} such that E0 =
E′; Ei < Ei+1; i = 0,1, . . . ,N − 1; and EN = E′′ then the
total entropy difference is given as a sum over the individual
entropy differences for each segment:

�E′′
E′ S =

N−1∑
i=0

�
Ei+1
Ei

S. (17)

With Eq. (11) N + 1, and with Eq. (13) N averages are needed.
This difference becomes negligible for large N , which often
corresponds to the most interesting situations. In the limit
N → ∞, keeping E′ and E′′ fixed, this gives S(E) as a contin-
uous function of E in the interval [E′,E′′]. We now note that, as
N → ∞, Ei+1 − Ei → 0, and in this limit �Ei+1,Ei

({rj }) → 1
for all {rj } accessible in the microcanonical ensemble (that
is, for all {rj } such that U ({rj }) � Ei+1), and because the �

function being averaged becomes identically unity the average
〈�Ei+1,Ei

({rj })〉Ei+1 loses all statistical uncertainty. Before we
continue, we note that this quality is not assured for the
averages over the corresponding σ functions, as they do not
enjoy the same guarantee, and is even less assured for their
ratio.

In order to complete and strengthen the general argument,
we should sum up and consider the uncertainties of all the N

individual averages. Therefore, considering the rate by which
the averages of the � functions approach unity (and lose their
statistical uncertainty) is of importance. Rearranging Eq. (17),
it is clear that

ln〈�Ei+1,Ei
〉Ei+1 ∼ �E′′

E′ S

kN
. (18)

In other words, the logarithm of each individual � average
tends to zero inversely proportionally to N . In the numerical
implementation, errors will accrue if the ratio on the right-hand
side becomes of the order of the machine precision. To keep
the notation as simple as possible, we temporarily restrict our
attention to n = 2, in which case the formulas are drastically
simplified. In this case, for instance, the uncertainty of the
averages may be estimated from 〈�(Ei − U ({rj }))〉Ei+1 . For
N large enough, the converged value of 〈�(Ei − U ({rj }))〉Ei+1

will be very close to, but slightly less than, unity. With finite
statistics, we estimate this value to be αi . Because of our
choice of n = 2, the average in question is composed only
of terms being either unity or zero. If there are Mi terms
equal to unity and mi terms equal to zero sampled in the
numerical averaging, then αi = Mi/(Mi + mi). In the “worst
case scenario,” the statistics of the ensemble averaging is so
poor (because of Mi + mi being chosen too small) that αi is
virtually a nonuniform random number between zero and one.
This value is quite likely different from the actual converged
value, which we denote βi . The average magnitude of this error
is a measure of the uncertainty in the averaging. The variance
of the relative error, for instance, can be formulated as [23]

var

(
αi

βi

)
≡

〈
α2

i

β2
i

〉
− 1 =

∫
d{rj }ŴEi+1 ({rj })

× �(Ei − U ({rj }))
β2

i

− 1. (19)
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Inserting the expression for ŴEi+1 , we find that the integral on
the right-hand side is∫

d{rj }ŴEi+1 ({rj })�(Ei − U ({rj }))

=
∫

d{rj }�(Ei − U ({rj }))∫
d{r′

j }�(Ei + �NE − U ({r′
j }))

, (20)

where we have introduced �NE = (E′′ − E′)/N .
We cannot hope to solve the integral in Eq. (20) in the

general case, and like this obtain the variance as an explicit
function of N . There are, however, some conclusions to
be drawn from the general form of the right-hand side.
In molecular systems, the accessible configuration space
generally increases superlinearly with increasing potential
energy. Hence, the integral in the denominator of Eq. (20)
should increase superlinearly with increasing �NE. It follows
immediately that the variance according to Eq. (19) should
decrease superlinearly with decreasing �NE ∝ N−1 or, in
other words,∫

d{rj }�(Ei − U ({rj }))∫
d{r′

j }�(Ei + �NE − U ({r′
j }))

= 1 + O(N−a), (21)

where a > 1 is undetermined (but assuredly greater than
unity). Thus, the total variance (given as N times the individual
variance) will decrease to zero as O(N1−a) when N → ∞. It
follows that for a sufficiently finely meshed energy grid the �

function will always be computationally more efficient than the
σ function, regardless of the complexity of the system, as long
as its accessible configuration space increases superlinearly
with increasing potential energy. The general argument, but
with clumsier notation, can be carried through also with n 
= 2.

In the numerical implementation, the limit N → ∞ may of
course not be reached exactly and so a superior computational
efficacy in the numerically very demanding N → ∞ limit
is not necessarily relevant in actual calculations. We must
therefore also consider the relative efficacy of Eqs. (11) and
(13) for finite energy differences.

As discussed by Davis in Ref. [18], in the case of
Eq. (11), the constant Er must be chosen so that both averages
under the logarithm are calculated with enough statistics.
Too small values of Er restrict the statistics sampled, as
not enough sampled configurations do then have potential
energies U ({ri}) � Er. At the same time Er must be less
than or equal to the smallest of the two energies for which
the entropy difference is calculated, meaning that a too large
energy gap will be detrimental to the statistics of the higher
energy average. This essentially introduces an upper bound
for the energy difference for which the entropy difference can
be reliably calculated. As noted by Davis in Ref. [18], this
upper bound will depend on the size of the system, because
the fluctuations in potential energy become smaller the larger
the system is (in the sense of the value of n). We note that a
similar restriction (for the same reasons) applies to Eq. (13),
in which E′ takes the place of Er.

To consider the question of convergence of the averages
in more detail we restrict our attention somewhat and assume
that the microcanonical statistics are sampled by importance
sampling Metropolis Monte Carlo according to the probability
function ŴE({ri}) [24]. In this case, a statistically good
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FIG. 1. Plot of the difference between either of the two sigma
functions for specific and arbitrarily chosen E′′ = 2,E′ = Er = 1
and U (r) = r2 and the importance sampling function (with n = 3)
used in microcanonical Monte Carlo simulations. In this plot, C ′

E′′ is
arbitrarily set to C ′

E′′ = 1.

estimate of the average of a function A({ri}) is obtained if
A({ri}) contributes appreciably in regions where ŴE({ri})
is large and likewise contributes negligibly in regions where
ŴE({ri}) is close to zero. The question thus reduces to which
of the two sigma functions is most “similar” to ŴE({ri}),
in the sense that they share the domains where they are
both of appreciable magnitude. For instance, consider the
ratios between the sigma functions and the Markov weighting
function:

�E′′,E′({ri})
ŴE′′({ri})

= (E′ − U ({ri}))n/2−1

C ′
E′′(E′′ − U ({ri}))n−2

�(E′ − U ({ri}))
�(E′′ − U ({ri})) ,

(22)

σE′′,Er ({ri})
ŴE′′({ri})

= �(Er − U ({ri}))
C ′

E′′(E′′ − U ({ri}))n−2 , (23)

σE′,Er ({ri})
ŴE′({ri})

= �(Er − U ({ri}))
C ′

E′(E′ − U ({ri}))n−2 . (24)

The less similar the two functions are, the less constant
is their ratio. In the simplest case, the limiting case of an
ideal gas, the {ri} gradients vanish for all of these ratios
and the relative qualities of the importance sampling of
the averages are not distinguishable between the σ and �

functions. When interactions are present, this is no longer
the case. Whereas the resulting ratios of both Eqs. (23)
and (24) consist of a more-or-less constant numerator and
a monotonously and smoothly decreasing denominator as a
function of U ({rj }), the ratio between the �E′′,E′ function
and ŴE′′ presents a smoothly decreasing function of U for
both numerator and denominator. Hence, it would seem that
this ratio is more invariant with respect to changes in {rj }
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[and hence U ({rj })] than the others. This becomes, once
again, particularly pronounced when E′ → E′′. A more-or-
less constant difference can be used just as well as an indication
of similarity, and this is what we consider in Fig. 1 in the case of
a three-dimensional harmonic oscillator for which U (r) = r2.
This is a model potential for atomic crystals and makes for a
reasonably relevant comparison. As anticipated, the difference
�E′′,E′ − WE′′ exhibits much less variation than σE′′,E′ − WE′′ .
Above E = E′ = Er, they become identical.

We do not offer any numerical experiments to illustrate
the method. This has already been achieved by Davis [18]
on a nontrivial system using the σ function. However, the
numerical upper limitation on the size of tractable systems
that Davis [18] points out is nonetheless important to recall.
A similar limitation, although much less severe, is present
already in the microcanonical sampling algorithm [19–21], as
acceptance probabilities for a trial move taking the system from
potential energy U ′ to U ′′ at total energy E are proportional to
the ratio (

E − U ′′

E − U ′

)n/2−1

�(E − U ′′),

which for large n values ought to become difficult for the
computer architecture to resolve to sufficient accuracy, as the
acceptance ratio takes on a more “step function”-like form.
Severin et al. [19] initially introduced the sampling algorithm
for sampling the internal degrees of freedom of single
molecules. Obtaining the density of states of complicated
polyatomics, needed for instance in statistical reaction rate
theories, is thus a natural application of a method such as
this. Nevertheless, Ray [21] reports comfortable simulations
on up to 500 particles, using this microcanonical sampling.
Such system sizes should be sufficient for many purposes in
statistical mechanics.

In conclusion, we note one interesting formal property
of the � averages: from a single microcanonical molecular
dynamics (or Monte Carlo) run, in principle the entire S(E)
function is obtainable (up to an additive constant). This follows
since the energy E′ is arbitrary in Eq. (13), yet does not affect
the dynamics. Nevertheless, it is clear from the limitations
discussed above that good statistics would only be achieved in
a narrow range below E′′. However, for very small systems,
this range might be quite broad.
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