
PHYSICAL REVIEW E 87, 053305 (2013)

Quasi-continuous-time impurity solver for the dynamical mean-field theory with linear scaling
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We present an algorithm for solving the self-consistency equations of the dynamical mean-field theory (DMFT)
with high precision and efficiency at low temperatures. In each DMFT iteration, the impurity problem is mapped
to an auxiliary Hamiltonian, for which the Green function is computed by combining determinantal quantum
Monte Carlo (BSS-QMC) calculations with a multigrid extrapolation procedure. The method is numerically
exact, i.e., yields results which are free of significant Trotter errors, but retains the BSS advantage, compared
to direct QMC impurity solvers, of linear (instead of cubic) scaling with the inverse temperature. The new
algorithm is applied to the half-filled Hubbard model close to the Mott transition; detailed comparisons with
exact diagonalization, Hirsch-Fye QMC, and continuous-time QMC are provided.
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I. INTRODUCTION

The dynamical mean-field theory (DMFT) [1–4] and its
cluster extensions [5,6] are powerful approaches for the
numerical treatment of correlated electron systems, both in
the model context and for materials science, e.g., embedded
in the LDA + DMFT [7] or GW + DMFT [8–11] frameworks
which extend density functional theory to strongly correlated
materials [3,12]. Recently, many DMFT studies have also
appeared in the context of ultracold fermions on optical
lattices [13–15]. The DMFT reduces electronic lattice models
to impurity problems, which have to be solved self-consistently
[16–18]. A challenging part of this iterative procedure is the
computation of the interacting Green function for a given
impurity configuration (defined by the fixed local interactions
and the self-consistent Weiss field). Thus, the availability
of efficient and reliable impurity solvers determines the
complexity of models and the parameter space that can be
accessed using the DMFT.

Quantum Monte Carlo (QMC) impurity solvers allow for
numerically exact solutions of the DMFT self-consistency
equations at finite temperatures. In the case of the Hirsch-Fye
auxiliary field (HF-QMC) method [16,19,20], all raw estimates
contain systematic errors due to the inherent Trotter decom-
position and associated imaginary-time discretization [19,21];
unbiased results can only be obtained after an extrapolation
of the discretization interval �τ → 0 [22,23]. Diagrammatic
QMC impurity solvers [24–27] sample partition function and
Green functions in continuous (imaginary) time (CT), i.e.,
avoid systematic biases. However, in all of these direct QMC
approaches, the computational effort scales cubically [28] with
the inverse temperature β = 1/kBT , which limits their access
to low-temperature phases.

Exact diagonalization (ED)-based impurity solvers [29]
require a discrete representation of the impurity action in terms
of an auxiliary Hamiltonian, which is then solved either by
full diagonalization (for evaluations at arbitrary temperature)
or using a Lanczos procedure [30] (e.g., at T = 0). As the
numerical effort scales exponentially with the number Nb of
auxiliary “bath” sites, Nb has to be kept quite small, which

introduces, again, a bias and is a particularly severe limitation
for multiorbital or cluster DMFT studies at finite temperatures.

Recently, Khatami et al. proposed another Hamiltonian-
based scheme [31], in which the Green function and other
relevant properties of the auxiliary problem are computed
using the determinantal BSS-QMC method developed by
Blankenbecler, Scalapino, and Sugar [32]. The advantage of
this scheme, compared to ED, is the possibility of using more
bath sites (due to cubic instead of exponential scaling with
Nb); the advantage over the direct QMC impurity solvers is
the linear, instead of cubic, scaling in β [33]. The authors
established the feasibility of the method and proved that the
associated sign problem (arising at general band filling in
cluster extensions of DMFT, in frustrated lattices, and for
generic multiband models) converges to that of HF-QMC
for sufficiently fine bath discretization [31]. However, as
all BSS-QMC applications to date, the Green functions and
all observable estimates resulting from their implementation
suffer from systematic Trotter errors.

In this work, we construct a similar algorithm where the
Trotter bias inherent in the BSS Green functions is eliminated
using a multigrid procedure before feeding them back in
the self-consistency cycle. As a DMFT building block, the
resulting method is an exact quasi-CT QMC impurity solver
with linear scaling in the inverse temperature. Its scaling
advantage over direct QMC impurity solvers should allow
access to lower temperatures, in particular in multiorbital and
cluster DMFT studies.

The paper is organized as follows: In Sec. II we briefly
review the DMFT equations and the BSS-QMC algorithm
and fully specify our multigrid DMFT-BSS approach. As a
test case, the new method is applied (in single-site DMFT)
to the half-filled Hubbard model in the vicinity of the Mott
transition in Sec. III. Here, we first focus on the Green function
at moderately low temperature T = t/25 and then discuss
important observables, namely the double occupancy and
quasiparticle weight, also at lower temperatures. The accuracy
of our approach is established by comparisons with the results
of the (multigrid) HF-QMC, ED and CT-QMC solvers, as well
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as with the previous (finite �τ ) DMFT-BSS implementation.
We show that our elimination of the Trotter error improves
the results dramatically. We also discuss the impact of the
bath discretization and establish convergence to the thermo-
dynamic limit. A summary and outlook conclude the paper
in Sec. IV.

II. THEORY AND ALGORITHMS

In this section, we lay out the proposed algorithm for
solving the DMFT self-consistency equations without sig-
nificant Trotter errors and with a computational effort that
grows only linearly with the inverse temperature. We start out
by reviewing the general DMFT framework and established
methods (ED, HF-QMC, CT-QMC) for its solution in Sec. II A
in sufficient detail to expose the similarities and differences
with respect to the new method. Here we also discuss some
algorithmic choices, in particular regarding the Hamiltonian
representation in our ED implementation, that are essential
ingredients also for the BSS-QMC-based approaches. We
then turn to the BSS-QMC method and its applicability in
the DMFT context in Sec. II B, and specify, finally, our new
numerically exact implementation in Sec. II C. For simplicity,
and in line with the numerical results to be presented in
Sec. III, we write down the formalism for the single-band
Hubbard model and the original, single-site variant of DMFT.
Extensions to cluster DMFT (and to multiband models) should
be straightforward, but require some generalizations (e.g., for
the treatment of offdiagonal Green functions) and will be
pursued in a subsequent publication.

A. DMFT and established impurity solvers

1. The Hubbard model on a lattice or graph

We consider the single-band Hubbard model

H = H0 + Hint =
∑
ij,σ

tij c
†
iσ cjσ + U

∑
i

ni↑ni↓ , (1)

where c
†
iσ (ciσ ) creates (annihilates) an electron with spin

σ ∈ {↑ , ↓} on lattice site i; niσ = c
†
iσ ciσ is the corresponding

density, tij = tj i the hopping amplitude between sites i and
j (or the local potential for i = j ); U quantifies the on-site
interaction. Usually, the hopping is defined to be translationally
invariant, e.g., tij = −t for nearest-neighbor bonds on an
infinite mathematical lattice [as illustrated in Fig. 1(a) for a
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FIG. 1. (Color online) Mapping of the original lattice problem
(a), with local interaction U and hopping t , on a single impurity (b),
embedded in an effective bath G. (c) Discretization of the bath in
terms of an auxiliary Hamiltonian (treatable with ED or BSS-QMC),
here with star topology.

square lattice] or on a finite cluster with periodic boundary
conditions. However, neither the DMFT nor direct QMC
approaches to the Hubbard model depend crucially on such
assumptions, as will be discussed in Sec. II B.

2. General DMFT self-consistency procedure

If all lattice sites are equivalent and for spatially homoge-
neous phases, the DMFT maps the original lattice problem
(1), illustrated in Fig. 1(a), onto a single-impurity Anderson
model [Fig. 1(b)], which has to be solved self-consistently.
The impurity problem is defined by its action

A[ψ,ψ∗,G] =
∫ β

0

∫ β

0
dτ dτ ′ ∑

σ

ψ∗
σ (τ )G−1

σ ψσ (τ ′)

− U

∫ β

0
dτ ψ∗

↑(τ ) ψ↑(τ ) ψ∗
↓(τ ) ψ↓(τ ), (2)

here in imaginary time τ ∈ [0,β] and in terms of Grassmann
fields ψ , ψ∗. G is the “bath” Green function, i.e., the
noninteracting Green function of the impurity, which is related
to the full impurity Green function G,

Gσ (τ ) = −〈Tτ ψσ (τ ) ψ∗
σ (0)〉A (3)

(with the time ordering operator Tτ ), and the self-energy � by
the (impurity) Dyson equation

G−1
σ (iωn) = G−1

σ (iωn) − �σ (iωn), (4)

here written in terms of fermionic Matsubara frequencies ωn =
(2n + 1)πT at finite temperature T ; here and in the following,
we set h̄ = kB = 1.

The central DMFT assumption is that of a local self-energy
on the lattice [1]: �ijσ (iωn) = δij�iiσ (iωn), which is identified
with the impurity self-energy. Similarly, the impurity Green
function is identified with the local component of the lattice
Green function:

Gσ (iωn) = Giiσ (iωn) = {t + [iωn + μ − �σ (iωn)]1}−1
ii

=
∫ ∞

−∞
dε

ρ(ε)

iωn + μ − �σ (iωn) − ε
, (5)

where the last expression is valid in the homogeneous case,
ρ(ε) denotes the noninteracting density of states, and t is the
matrix with elements tij .

The general DMFT iteration scheme is illustrated in
Fig. 2(a): starting, e.g., with an initial guess � = �0 of the
self-energy, the Green function G is computed using the lattice
Dyson equation (5). In a second step, � and G yield the bath
Green function G via the impurity Dyson equation (4), which
defines, in combination with the local interactions, the impurity
problem [illustrated in Fig. 1(b)], the solution of which is the
nontrivial part of the algorithm. A second application of the
impurity Dyson equation (4), to the resulting G and to G,
yields a new estimate of the self-energy �, which closes the
self-consistency cycle. In the following, we discuss the primary
options for addressing the impurity problem.

3. Direct impurity solvers

One class of methods directly evaluates the path integral
representation of the Green function [Eqs. (3) and (2)] for a
continuous bath G, which corresponds to a DMFT solution
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FIG. 2. (Color online) (a) Scheme of the general DMFT self-consistency cycle, including the “impurity problem” (dashed box). Established
impurity solvers include (b) the Hirsch-Fye (HF-QMC) algorithm and (c) exact diagonalization (ED): cf. the main text. (d) The proposed
algorithm approximates the bath Green function G in terms of the parameters Vi , εi of an auxiliary Hamiltonian (6) with Nb “bath” sites
[like ED (c)]. Corresponding Green functions are computed using BSS-QMC for a grid �τmin � �τj � �τmax of Trotter discretizations. The
subsequent extrapolation of �τ → 0 yields the Green function, free of significant Trotter errors and continuous in τ , which is easily Fourier
transformed and fed back into the self-consistency cycle.

of the original lattice problem in the thermodynamic limit
after self-consistency. We will refer to such methods as “direct
impurity solvers.”

For a long time, the Hirsch-Fye QMC (HF-QMC) algorithm
has been the method of choice for nonperturbative DMFT
calculations [16]. HF-QMC is based on a discretization of
the imaginary time τ ∈ [0,β] into � “time slices” of width
�τ = β/�, a Trotter decomposition of the interaction and
kinetic terms in Eq. (2), and a Hubbard-Stratonovich trans-
formation, which replaces the electron-electron interaction
by an auxiliary binary field on each time slice; the resulting
problem is then solved employing Wick’s theorem and Monte
Carlo importance sampling over the field configurations. As
configurations can be updated in the case of a single spin flip
(i.e., an auxiliary-field change on a single time slice) with a
matrix-vector operation of cost O(�2) and � local updates
are needed for a global configuration update, the numerical
cost of the HF-QMC algorithm scales as �3. All HF-QMC
results have statistical errors (which decay as N−1/2 for N

“sweeps,” each consisting of � attempted single-spin updates)
and systematic errors resulting from the Trotter decomposition.
As �τ has to be kept constant for roughly constant systematic
error upon variation of T , the numerical effort of HF-QMC
scales as the cube of the inverse temperature, β3. This is also
true for the numerically exact (unbiased) “multigrid” HF-QMC
method [34].

The integration of the (conventional) HF-QMC method into
the DMFT self-consistency cycle is illustrated in Fig. 2(b)
[as a specification of the lower dashed box in Fig. 2(a)]: a
fixed choice of �τ (diamond-shaped selection box) defines
the grid τl = l�τ with 0 � l � � for a Fourier transform
(square box) of the Matsubara bath Green function G(iωn)
(with |ωn| � ωmax for some cutoff frequency ωmax) to the
imaginary-time equivalent {G(τl)}�l=0. After application of the
HF-QMC algorithm (rounded box), the result {G(τl)}�l=0 is
transformed back to Matsubara frequencies (square box);
this step requires special care in order to get around
the Nyquist theorem, e.g., using analytic weak-coupling
results [23,35,36].

More recently, conceptionally different QMC approaches
have been formulated, which are based on diagrammatic

expansions of the action (2) in continuous imaginary time,
either in the interaction U (CT-INT [37]) or in the bath
hybridization (CT-HYB [25,26]), and on a stochastic sampling
of Feynman diagrams; CT-AUX [38] is related to the HF-
QMC method [27]. All of these continuous time (CT-QMC)
algorithms require Fourier transforms, before and (with the
exception of CT-INT) after the QMC part; the numerical cost
is associated primarily with matrix updates, similar to those
arising in HF-QMC, with a total scaling of the computational
effort, again, as β3.

Thus, all direct QMC-based impurity solvers are very costly
at low T , which limits their access to low-temperature phases
of particular physical interest.

4. Auxiliary Hamiltonian and exact diagonalization

Another class of numerical approaches, such as the “exact
diagonalization” methods, cannot directly be applied to the
action-based formulation of the impurity problem, but requires
a Hamiltonian representation [39]. One possibility is the “star
topology” illustrated in Fig. 1(c), where a central “impurity”
site (with the same interactions as the impurity problem, here
U ) is connected by hopping matrix elements Viσ to a number
Nb of noninteracting “bath sites,” each characterized by a local
potential εiσ . In general, this representation has to be spin-
dependent, leading to the Anderson Hamiltonian

HAnd = ε0

∑
σ

nσ + Un↑n↓

+
∑

σ

Nb∑
i=1

[εiσ niσ + Viσ (a†
iσ cσ + H.c.)], (6)

where c†σ (cσ ) creates (annihilates) an electron with spin σ ∈
{↑,↓} on the impurity site and a

†
iσ (aiσ ) creates (annihilates) an

electron with spin σ on bath site i; nσ = c†σ cσ , niσ = a
†
iσ aiσ are

the corresponding number operators. In this work, we consider
only nonmagnetic phases, which implies spin symmetric bath
parameters Vi↓ = Vi↑, εi↓ = εi↑.

For a fixed choice of Nb, the bath parameters εiσ ,Viσ

are determined such that the noninteracting impurity Green
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function GAnd,σ associated with HAnd, with

G−1
And,σ (ω) = ω + μσ −

Nb∑
i=1

V 2
iσ

ω − εiσ

, (7)

is “close” to the target bath Green function G according to
some metric (see below). Note that the resulting spectrum
− 1

π
ImGAnd,σ (ω + i0+) is necessarily discrete (for finite Nb),

in contrast to piecewise smooth spectrum of the true bath
Green function; in this sense, the mapping to a Hamiltonian
implies a “bath discretization” in frequency space; this step
clearly introduces a bias which has to be controlled particularly
carefully within iterative procedures such as the DMFT.

The integration of this type of approach in the DMFT cycle
is illustrated for the case of ED in Fig. 2(c): for a fixed choice
of Nb (diamond shaped box), the parameters Vi,εi (here and in
the following we suppress spin indices) are adjusted (rounded
box) as to minimize the bath misfit

χ2 [{Vi,εi}] =
nc∑

n=0

wn |GAnd(iωn; {Vi,εi}) − G(iωn)|2 , (8)

with a cutoff Matsubara frequency iωnc
and the weight-

ing factor wn, which can be used to optimize the bath
parametrization [40] and which we set to wn = 1 [41]. As
this fit is performed directly on the Matsubara axis, no Fourier
transform is needed for G. Using ED (rounded box), the Green
function G can be evaluated on the Matsubara axis [29];
therefore, the DMFT cycle is closed without any Fourier
transform.

The minimization of χ2 [as defined in Eq. (8)] is performed
in our ED and BSS-DMFT calculations using the Newton
method, based on analytic expressions for the derivative ∇χ2

with respect to the bath parameters. Due to the multidimen-
sional character of the problem, this deterministic method is
often trapped in local minima; thus, a naive implementation
of Newton-based methods will, in general, not find globally
optimal parameters, which can induce unphysical fixed points
in the DMFT iteration procedure. Therefore, we use not only
the solution {Vi,εi} of the previous iteration as initialization,
but perform a large number (up to 1000) of independent
Newton searches, starting also from random initial parameters.
Of the resulting locally optimal solutions, we choose the one
with minimum χ2 as the final result of the minimization
procedure; typically, about 1% of the individual searches come
close to this (estimated) global optimum.

An advantage of ED, compared to QMC algorithms, is that
Green functions and spectra can be computed directly on the
real axis, without analytic continuation; however, numerical
broadening of the resulting discrete peaks is required. This
discretization problem is particularly severe as the numerical
effort of the matrix diagonalization scales exponentially with
the total number of sites (here Nb + 1), which limits the
applicability of ED for cluster extensions of DMFT or
multiband models.

B. Principles of the BSS-QMC algorithm and application
as a DMFT impurity solver

In Eq. (6), we have used the conventional notation for
the auxiliary Hamiltonian that emphasizes its interpretation

as an impurity model, e.g., with different creation operators
for electrons on the central “impurity” site (c†σ ) and on the
bath sites (a†

iσ ), respectively. However, with the changes
cσ → c0σ , nσ → n0σ , and a

†
iσ → c

†
iσ , Viσ → tσ0i it essentially

reproduces the Hubbard model (1) on a graph, just with
nonuniform interaction (U acting only on site 0) and, possibly,
spin-dependent hopping amplitudes and local energies.

As a consequence, the model (6) is not only treatable with
the universal ED approach, but also with more specific methods
developed for Hubbard-type models. As pointed out recently
by Khatami et al. [31], this includes the determinantal quantum
Monte Carlo approach by Blankenbecler, Scalapino, and Sugar
[32,42] (BSS-QMC), which, thereby, becomes applicable as a
DMFT impurity solver. In the following, we will first sketch the
established BSS-QMC approach (for an extended discussion,
including issues of parallelization, see Ref. [43]) and then
discuss its application in the DMFT context.

Similarly to the HF-QMC method (cf. Sec. II A3), the BSS-
QMC approach is based on a Trotter-Suzuki decomposition,
here of the partition function

Z = Tr(e−β(HK+HV )) (9)

≈ Z�τ = Tr

(
�∏

l=0

e−�τHK e−�τHV

)
, (10)

where HV (HK ) corresponds to the interaction (kinetic and
local potential) contribution to the Hubbard-type models (1)
or (6) and �τ = β/�. Again, a discrete Hubbard-Stratonovich
transformation replaces the interaction term by a binary
auxiliary field {h} with hi(l) = ±1 at each site i and time
slice l. The trace in Eq. (10) then simplifies to

Z�τ =
∑
{h}

det[M {h}
↑ ]det[M {h}

↓ ] with

M {h}
σ = 1 + B�,σ

[{hi(�)}Ni=1

] · · · B1,σ

[{hi(1)}Ni=1

]
, (11)

where B is defined in terms of the hopping matrix K:

Bl,σ

[{hi(l)}Ni=1

] = eσλdiag[h1(l),...,hN (l)] e−�τK. (12)

The interaction strength is encoded in the parameter λ =
cosh−1(eU�τ/2). The computation of thermal averages of
physical observables O takes the form:

〈O〉 =
∑
{h}

[
O{h} P {h}

�τ

]
,

(13)

P {h}
�τ = 1

Z�τ

det[M {h}
↑ ]det[M {h}

↓ ].

At particle-hole symmetry, the weights P {h}
�τ are always

positive; i.e., the sums can be evaluated at arbitrary precision,
without any sign problem. As in HF-QMC, the problem is
solved by Monte Carlo importance sampling of the auxiliary
field {h} and evaluation of the Green function at time slice l,
with

G
{h}
l,σ = [1 + Bl−1,σ · · · B1,σ B�,σ · · · Bl,σ ]−1. (14)

As a spin flip in the auxiliary field hi(l) at time slice l and site i

only affects Bl,σ at this site, the ratio of the weights, needed for
the decision whether a proposed spin flip is accepted, involves
only local quantities; a full recomputation of the determinants
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of N × N matrices appearing in Eq. (11) is not needed. The
computational effort is further reduced by calculating the
Green function at time slice l + 1 from the quantities at time
slice l, using so-called “wrapping”:

Gl+1,σ = B−1
l,σ Gl,σ Bl,σ . (15)

In order to avoid the accumulation of numerical errors in
the matrix multiplications, it is necessary to recalculate the
full Green function at regular intervals. This is particularly
important at low temperatures.

All this considered, the numerical cost scales cubically
with the number of sites and linearly with the number of
time slices; at constant �τ , this translates to a total effort
O(N3β), where N = Nb + 1. Note that a need for finer bath
discretizations at lower temperatures could potentially spoil
the scaling advantage of the method over direct impurity
solvers; we will show in Sec. III C that this is not the case
for our test applications.

The application in the DMFT context [31] starts with the
computation of the Hamiltonian parameters (for some choice
of Nb), exactly like in the ED approach. As in the HF-QMC
approach, one then chooses some discretization �τ , computes
{G(l�τ )}�l=0 for the impurity site, and applies a (nontrivial)
Fourier transform back to Matsubara frequencies. The result is
an impurity solver with superior scaling (linear in β) compared
to the direct impurity solvers (cubic in β), however, with a bias
due to the Trotter discretization �τ (in addition to a possible
bias due to the bath discretization with Nb sites), which, as we
will show in Sec. III, can be quite significant.

C. Specification of multigrid BSS-QMC algorithm

The central feature of our new algorithm is the elimination
of this systematic Trotter error, while retaining the advantage
of linear-in-β scaling inherent in the BSS-QMC method. In the
following, we will specify the method and illustrate it using
an example (Fig. 3), that will be discussed in detail in Sec. III.

In contrast to the previous DMFT-BSS implementation
with a unique discretization �τ in all BSS computations
throughout the DMFT self-consistency cycle, the (impu-
rity) Green function of the Hamiltonian HAnd at hand
is computed in M � 20 parallel BSS runs (indexed by
1 � i � M), each employing a homogeneous imaginary-
time grid with a specific discretization (�τ )i , chosen
from a set {(�τ )i |(�τ )min � (�τ )i � (�τ )max} with typ-
ically 6–9 different elements. Green functions resulting
from BSS-QMC runs with the same discretization (�τ )i =
(�τ )j are averaged over, thereby reducing the dependen-
cies on initialization conditions and further enhancing the
parallelism.

This leads to a set of Green functions defined, in general,
on incommensurate imaginary-time grids (symbols in Fig. 3).
In order to apply a local �τ → 0 extrapolation, all G(�τ )i
have to be transformed to a common grid. This is possible
since the true G(τ ) is a smooth function; however, a direct
spline interpolation of the raw QMC results, neglecting higher
derivatives, would not be accurate [44]. Instead, we consider
differences between the raw data {G(�τ )i (l�τ )}�i

l=0 and a
reference Green function, obtained via Eq. (5) from a model
self-energy �ref

σ (iωn) [35,36], written here for the single-band
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FIG. 3. (Color online) BSS-QMC impurity Green functions at
T = 0.04 (symbols) using a bath representation with Nb = 4 sites
(with parameters of converged DMFT-ED solution, long-dashed
lines) and results of multigrid extrapolation to �τ = 0 (solid lines).
Upper panel: metallic phase (U = 4.4). Lower panel: insulating phase
(U = 5.1). Arrows denote τ values for which the extrapolation is
shown in Fig. 4.

case (for multiband generalizations, see Ref. [45]):

�ref
σ (iωn) = U

(
〈n−σ 〉 − 1

2

)
+ 1

2
U 2 〈n−σ 〉 (1 − 〈n−σ 〉)

×
(

1

iωn + ω0
+ 1

iωn − ω0

)
, (16)

which recovers the exact high-frequency asymptotics of
�(iωn) and G(iωn) for any choice of the free parameter
ω0 and, therefore, approximates the second and higher-order
derivatives of G(τ ) at τ → 0 (and τ → β) well. This match
can be further improved by adjusting ω0. Consequently, the dif-
ferences {G(�τ )i (l�τ ) − Gref(l�τ )}�i

l=0 have smaller absolute
values and much smaller higher derivatives than the original
data; in particular, their curvature vanishes asymptotically at
the boundaries [46]. Thus, they are well represented by natural
cubic splines.

Usually, the parameters of the piecewise polynomials
constituting such a spline fspline(x) are determined from
discrete data {fmeas(xi)}Ni=0 such that the discrete data are
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reproduced exactly: fspline(xi) = fmeas(xi) for all 0 � i �
N . However, in the QMC context, all measurements have
statistical errors; i.e., the discrete data are better represented as
{fmeas(xi) ± �fmeas(xi)}Ni=0 with standard deviations �fmeas,
which are also estimated within the QMC procedure. It is
clear that the usual interpolating splines, which do not take
the uncertainties of the discrete data into account, contain
more features than warranted by the data (in particular at the
Nyquist frequency); in the context of Green functions this
includes the possibility of acausal behavior. We use, instead,
smoothing spline fits [47,48] which reproduce the discrete
data only within error bars, which are typically O(10−3), (and
minimize the curvatures under this constraint); these fits can
be computed in a very similar procedure and at the same cost
as interpolating splines.

After combining these approximating “difference” splines
with exact expressions for Gref(τ ) resulting from Eqs. (16)
and (5), we obtain smooth approximations of the Green
functions, as seen in Fig. 3(a); the inset also demonstrates
slight deviations of the continuous spline fits from the discrete
data (within error bars), e.g., for the discretization �τ = 0.7
(dotted line) at τ ≈ 1.4 (circle), while most other data points
are reproduced within the line widths.

These smooth approximations can be evaluated on an
arbitrarily fine common grid (e.g., with �τfine = 0.005) and
extrapolated to �τ → 0. This is illustrated in Fig. 4 for the
representative values of τ denoted by arrows in Fig. 3(a).
Even though most of the raw BSS-QMC data do not include
estimates of the Green functions at these precise values of τ ,
the transformed data (symbols in Fig. 4) depend very regularly
on �τ , falling on nearly straight lines as a function of (�τ )2.
Therefore, they can accurately and reliably be extrapolated
to �τ → 0 (lines in Fig. 4 and symbols at �τ = 0); an
application of this procedure at all τ (on the fine grid)
leads to quasi-continuous Green functions without significant
Trotter errors, shown as solid lines in Fig. 3. These results
can be Fourier transformed to Matsubara frequencies in a
straightforward manner [cf. Fig. 1(d)]. A similar approach
has also been useful for computing unbiased spectra from
BSS-QMC [49].
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0.15

0.0 0.1 0.2 0.3

G
(τ

)

(Δτ)2

U = 4.40, T = 0.04

τ = 1.0
τ = 2.0

τ = 5.0
τ = 12.5

FIG. 4. (Color online) BSS-QMC estimates of imaginary-time
Green functions G�τ (τ ) at T = 0.04, U = 4.4 after interpolation
(corresponding to the colored broken lines in Fig. 3) for selected
values of τ (symbols) and extrapolation to �τ = 0 using least-squares
fits (lines).

At first sight, the computational advantage of the multigrid
procedure is less obvious in the BSS-QMC context than
for HF-QMC [34,50], since the numerical effort for direct
computations at small �τ grows only linearly, not cubically,
with (�τ )−1 in the BSS case (while the systematic errors
decay generically as (�τ )2 for a given impurity problem).
However, even for a fixed Hamiltonian, so much accuracy can
be gained by extrapolation that it more than offsets the cost of
the additional grid points. This is true, in particular, since stable
results are best obtained by averaging over independent BSS-
QMC runs; performing these on variable grids then allows
for extrapolation without additional cost. Furthermore, the
individual runs thermalize faster in the multigrid variant, due to
the smaller number of time slices (and proportionally shorter
run time per sweep), which enhances the parallelism. Most
importantly, as we will see below, the DMFT self-consistency
can magnify any bias of the employed impurity solvers in
complicated ways (in the vicinity of phase transitions), so that
controlled results are really dependent on unbiased methods,
such as our multigrid approach.

III. RESULTS

In this section, we compare results of the new numerically
exact “multigrid” BSS-QMC method with raw BSS-QMC re-
sults (at finite Trotter discretization), with reference ED results
(which are exact at the level of the auxiliary Hamiltonian), and
with the predictions of established impurity solvers (multigrid
HF-QMC [34] and CT-HYB [25,26,51]). These comparisons
are performed in three stages: In Sec. III A we keep the
bath G and its approximation by an auxiliary Hamiltonian
fixed and discuss the impact of the Trotter error and its
elimination without the complications of the DMFT self-
consistency. In Sec. III B, we compare full DMFT solutions
obtained using the various algorithms at moderate temperature
(T = 0.04), focusing on the impact of Trotter errors on the
resulting estimates of double occupancy and quasiparticle
weight. Finally, we present results also at lower temperatures
T � 0.01 (with DMFT self-consistency), where the impact
of the bath discretization becomes particularly relevant,
in Sec. III C.

Following the established practice for the evaluation of
DMFT impurity solvers [23,28], all of these comparisons are
performed for the half-filled Hubbard model with semi-elliptic
“Bethe” density of states [52] (full band width W = 4) within
the paramagnetic phase. Specifically, we choose temperatures
T � 0.04, which are below the critical temperature T ∗ ≈
0.055 [36,50] of the first-order metal-insulator transition,
and interactions close to or within the coexistence region
of metallic and insulating solutions, which arises from the
mean-field character of the DMFT.

A. Green function extrapolation at fixed bath
Hamiltonian parameters

In general, a bias present in an impurity solver has a
two-fold impact: On the one hand, it affects estimates of
Green functions and all other properties for a given impurity
problem, defined by its bath Green function G. On the other
hand, it shifts the fixed point of the DMFT self-consistency
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cycle; i.e., it also modifies the converged bath Green function,
which, in turn, also affects the measured Green functions
and all other properties. In this subsection, we study the first
effect in isolation by fixing the bath Green function to the
converged solution of the ED procedure for Nb = 4 bath sites
(with Hamilton parameters {εi,Vi}4

i=1). As the same auxiliary
Hamiltonian is used also in the BSS-QMC algorithm, the ED
estimates of the Green function are exact for the purpose of
the current comparison; the impact of the bath discretization
(which corresponds to a bias on the DMFT level) will be
discussed in Sec. III C.

Local imaginary-time Green functions G(τ ) are shown in
Fig. 3(a) for the metallic phase, at U = 4.4, and in Fig. 3(b) for
the insulating phase, at U = 5.1. Here and in the following,
we restrict the imaginary-time range to 0 � τ � β/2; data for
τ > β/2 follow from the particle-hole symmetry G(β − τ ) =
G(τ ). Symbols (in the magnified insets) represent raw BSS-
QMC results (with discretizations �τ = 0.4, �τ = 0.7, and
�τ = 0.9); colored long-dashed, dotted, and dash-dotted lines
denote interpolations obtained using the methods described in
Sec. II C. Due to the large discretization, these data deviate
significantly from the ED reference results (gray long-dashed
lines), in particular at moderately low imaginary times τ ≈
2. In contrast, multigrid BSS-QMC Green functions (solid
lines) are indistinguishable from the ED data at U = 5.1
and very close to them at U = 4.4, with deviations of the
order of statistical errors. Thus, our method yields, indeed,
quasi-continuous Green functions without significant Trotter
errors in both test cases, although the discretizations of the
underlying raw BSS-QMC computations (with 0.3 � �τ �
1.0) would be considered much too coarse in conventional
applications.

A very similar picture emerges in an analogous comparison
for the two coexisting solutions at U = 4.74, shown in Fig. 5.
Again, the raw BSS-QMC results (symbols and colored broken
lines) show a strong systematic bias, towards more metallic
Green functions and of different magnitude in the different
phases, while the extrapolated Green functions agree nearly
perfectly with the ED references. In fact, some of the BSS
Green functions calculated for an insulating bath (lower set
of symbols and broken lines) show such large discretization
errors at small τ � 2, that they approach the exact Green
function of the metallic DMFT solution (upper solid and
long-dashed lines). One may suspect from this observation
that these biased “insulating” solutions will not be associated
with stable DMFT fixed points if they are fed back in the
self-consistency cycle; such shifts of stability regions induced
by the Trotter bias at �τ > 0 will, indeed, be seen in
Sec. III B.

It is clear that the proposed multigrid extrapolation tech-
nique can only be useful as a practical method if it is insensitive
to the particular set {(�τ )i} of discretizations in the underlying
BSS-QMC runs; i.e., if no sensible choice leads to a significant
bias. This is demonstrated in Fig. 6 for the insulating phase at
U = 4.7: the Green functions for the same auxiliary problem
obtained from multigrid extrapolations with three different �τ

grids [53] agree perfectly within the precision of the method.
The latter is primarily determined by the statistical errors,
i.e., by the number of sweeps and, possibly, by the numerical
precision in the matrix operations. Only if raw BSS-QMC data
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Δτ=0.9
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T = 0.04, U = 4.74
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FIG. 5. (Color online) BSS-QMC impurity Green functions at
T = 0.04 and U = 4.74 (symbols and colored broken lines) using
a bath representation with Nb = 4 sites (with parameters fixed by
converged DMFT-ED solution, long-dashed lines) and extrapolation
to �τ = 0 (solid lines). Upper (lower) set of curves: metallic
(insulating) bath.

of much higher precision was available (with many millions
of sweeps per run), additional accuracy could be gained
by choosing smaller discretizations (e.g., 0.1 � �τ � 0.3).
As a rule of thumb, the multigrid procedure can be based
on discretizations �τ that are 3 to 10 times as large as
the discretization that one would choose in a conventional
BSS-QMC procedure.
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FIG. 6. (Color online) Green functions in the insulating phase
at T = 0.04, U = 4.7, extrapolated from BSS-QMC results using
different imaginary-time grids [53] (at fixed bath representation).
The excellent agreement shows that the multigrid procedure is stable
with respect to its technical parameters.
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B. Comparisons of impurity solvers at full DMFT
self-consistency: Impact of Trotter errors

So far, we have compared different algorithms just at the
impurity level, i.e., for a fixed bath Green function (determined
from a self-consistent DMFT-ED calculation). In contrast,
we will now discuss results of completely independent
DMFT solutions, each of which corresponds to full self-
consistency for a given impurity solver (cf. Fig. 2). For all
Hamiltonian-based methods (ED, BSS-QMC, and multigrid
BSS-QMC), the number of bath sites is restricted to Nb = 4
(as above); the impact of this parameter will be studied in
Sec. III C.

Specifically, we discuss static observables that are particu-
larly useful for discriminating between metallic and (possibly
coexisting) insulating DMFT solutions, namely, the double
occupancy

D = 〈n↑n↓〉, (17)

which is proportional to the interaction energy Eint = UD,
and the quasiparticle weight

Z =
[

1 − ∂ Re �(ω)

∂ω

∣∣∣
ω=0

]−1

≈
[

1 + Im �(iω1)

πT

]−1

.

(18)

Open symbols in Fig. 7 denote estimates resulting from
self-consistent DMFT solutions using the conventional BSS-
QMC impurity solver at finite discretization 0.3 � �τ �
0.5, i.e., using the scheme established in Ref. [31]. The
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(b)
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BSS (Δτ=0.5)
BSS (Δτ=0.4)
BSS (Δτ=0.3)
BSS (Δτ→ 0)
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FIG. 7. (Color online) Estimates of double occupancy D(U ) and
quasiparticle weight Z(U ) obtained in independent self-consistent
DMFT calculations using various impurity solvers: multigrid HF-
QMC (crosses), conventional BSS-QMC (open symbols), multigrid
BSS-QMC (circles), and ED (diamonds). In each panel, the upper
(lower) sets of curves correspond to metallic (insulating) solutions.
Lines are guides to the eye only. Arrows in (a) indicate parameters
for which the discretization dependence is studied in Fig. 8.

estimated values of Z, shown in Fig. 7(b), have a nearly
uniform offset in the metallic phase at U � 4.8 relative to
each other and relative to the reference ED solution (gray
diamonds). The Trotter bias inherent in the conventional
BSS-QMC procedure also leads to a significant overestima-
tion of the range of stability of the metallic solution: The
metallic BSS-QMC solutions extend to much larger interac-
tions (e.g., to U ≈ 5.1 at �τ = 0.4) than the ED reference
solution.

This is also seen in corresponding estimates of the double
occupancy [Fig. 7(a)]; however, for these observables the
Trotter bias is highly nonuniform (in the metallic solution):
at U = 4.7 (arrow), the conventional BSS-QMC estimates
are nearly on top of each other; relative deviations are only
clearly seen at stronger interactions U � 4.9 and (to a lesser
degree) at weaker interactions U � 4.5. At the same time,
nearly all of these data deviate significantly (and without
obvious systematics) from the reference ED result (diamonds),
so that an a posteriori elimination of the Trotter bias seems
impossible.

In contrast, the new multigrid BSS-QMC procedure, as
discussed in Sec. II C and illustrated in Fig. 2(d), leads to
estimates of both D and Z (filled circles) which perfectly
recover the ED solutions, even though they are based on BSS-
QMC runs with �τ � 0.3.

This is also true for the insulating solutions (lower sets of
curves in Fig. 7), the stability range of which is also shifted
towards stronger interactions in the case of conventional
BSS-QMC calculations (open symbols); here the Trotter bias
appears roughly uniform for D and very nonuniform for Z.
Again, the multigrid BSS-QMC results agree perfectly with
the ED reference data.

For comparison, crosses and black solid lines in Fig. 7
denote estimates of an unbiased direct impurity solver, namely
the multigrid HF-QMC method [34]; these show good overall
agreement with both the ED and the multigrid BSS-QMC
data. A slight negative deviation in the estimates of D of the
latter, Hamiltonian-based, methods can be traced back to the
relatively poor bath discretization with Nb = 4 auxiliary sites
(cf. Sec. III C).

Since the double occupancy D is best computed directly
on the impurity level (in QMC-based approaches), its physical
value has to be extrapolated from raw estimates D�τ , with
discretizations corresponding to the different grid points
used within the multigrid procedure (in contrast to the
quasiparticle weight Z, which follows from the self-energy
�, which, in turn, is determined from unbiased Green
functions).

As seen in Fig. 8, the Trotter bias inherent in these raw
estimates (filled symbols) is perfectly regular [54] even at
large �τ , so that reliable extrapolations �τ → 0 (thick dashed
lines) are possible both in the metallic phase, at U = 4.7 (upper
set of curves), and in the insulating phase, at U = 5.0 (lower
set of curves).

In contrast, estimates of D resulting from conventional
BSS-QMC calculations in the same range of discretizations
�τ � 0.3 (large open symbols in Fig. 8) show such irregular
dependencies on �τ that quadratic least-square fits (solid
lines) lead to extrapolations �τ → 0 with significant offsets.
Roughly accurate results (dotted lines) can only be obtained
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FIG. 8. (Color online) Discretization dependence of the double
occupancy D as estimated from BSS-QMC, using either the multigrid
scheme (filled symbols) or self-consistent BSS-QMC solutions at
finite �τ (open symbols), within the metallic phase at U = 4.7 (upper
data set) or the insulating phase at U = 5.0 (lower data set). Dashed
(solid) lines denote least squares fits to the multigrid (conventional)
BSS-QMC data at �τ � 0.3; dotted lines denote fits that include also
data at �τ = 0.1 and �τ = 0.2 (small open symbols).

when including raw data at much smaller discretizations (small
open symbols). This shows, again, that only an elimination
of all Trotter errors within the self-consistency cycle, as
introduced by our multigrid approach, can efficiently generate
high-precision results.

C. Comparisons of impurity solvers at full DMFT
self-consistency: Impact of bath discretization

So far, we have restricted the bath representation in all
Hamiltonian-based impurity solvers (ED and both variants
of BSS-QMC) to only Nb = 4 bath sites and focused on
the impact of the Trotter errors and their elimination. From
the mutual agreement with multigrid HF-QMC, an impurity
solver which treats the bath directly on the action level, we
can conclude that this coarse bath discretization allows for
reasonably accurate estimates of D and, in particular, Z at the
moderately low temperature T = 0.04. However, the ED and
multigrid BSS-QMC estimates of D were found in Fig. 7 to lie
a bit below the multigrid HF-QMC data; this deviation must be
an artifact of the bath discretization if the multigrid HF-QMC
reference data are correct. Moreover, we must suspect that the
bath discretization bias gets worse (at constant Nb) at lower
temperatures.

Figure 9 shows estimates of D(U ) and Z(U ) at T = 0.04,
similarly to Fig. 7 and with the same multigrid HF-QMC
reference data (crosses), but now using Hamiltonian-based
impurity solvers with 3 � Nb � 6 bath sites. Here and in
the following, “BSS” refers to multigrid BSS-QMC data,
i.e., without significant Trotter errors; for simplicity, we have
used this method only for the largest auxiliary Hamiltonian
(Nb = 6). Smaller bath sizes (Nb = 3, Nb = 4, and Nb = 5)
are represented only by the ED solution, which is cheaper
and free of statistical noise. At the resolution of Fig. 9,
the estimates associated with the finer bath discretizations
Nb = 5 (triangles) and Nb = 6 (circles) agree with each
other. Therefore and since they are also consistent with the
unbiased multigrid HF-QMC data (crosses), we conclude that
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FIG. 9. (Color online) Estimates of double occupancy D(U ) and
quasiparticle weight Z(U ) at T = 0.04, obtained in self-consistent
DMFT calculations using Hamiltonian-based impurity solvers with
3 � Nb � 6 bath sites: multigrid BSS-QMC (circles), ED (open
symbols). Multigrid HF-QMC results (crosses) represent the limit
Nb → ∞. In each panel, the upper (lower) sets of curves correspond
to metallic (insulating) solutions. Lines are guides to the eye only.

convergence with respect to the bath discretization is reached
already at Nb = 5 at T = 0.04. In contrast, the ED estimates
of D are apparently slightly too small at Nb = 4 (pentagons);
corresponding results at Nb = 3 (squares) are far off both for
D and Z.

Note that consistent convergence of observable estimates
with Nb, as demonstrated in Fig. 9 (as well as Fig. 10 and
Fig. 11) can only be observed when optimal Hamiltonian
parameters are determined with great care, as described in
Sec. II A, within each self-consistency cycle; otherwise some
bath sites may remain ineffective or the estimates can even
get worse upon increasing Nb. In addition (as always in the
DMFT context), it is essential that enough DMFT iterations are
performed at each phase point in order to ensure convergency
with respect to the self-consistency cycle (cf. Fig. 2).

Halving the temperature amplifies the bath discretization
effects, as seen in Fig. 10: At T = 0.02, only the best
Hamiltonian representation (Nb = 6, evaluated with multigrid
BSS-QMC, circles) recovers all reference multigrid HF-
QMC results (crosses) within their accuracy. At Nb = 5, the
estimates of D in the insulating phase are already slightly
too small; at Nb = 4, strong negative deviations in D(U ) are
apparent also for the metallic solution. The impact of the bath
discretization becomes even much stronger at T = 0.01, as
shown in Fig. 11 for the metallic phase, which is interesting
as a strongly renormalized Fermi liquid (while the properties
of the insulating phase are asymptotically independent of tem-
perature). We find that even the results for Nb = 5 and Nb = 6
deviate significantly in Fig. 11(a) from each other and from the
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FIG. 10. (Color online) Estimates of double occupancy D(U ) and
quasiparticle weight Z(U ) at T = 0.02, using bath discretizations
with 4 � Nb � 6 sites, analogous to Fig. 9.

multigrid HF-QMC reference result, especially at U = 5.3,
near the edge of the stability region of the metallic phase.
Only the multigrid BSS-QMC results using Nb = 7 bath sites
(circles) agree with the reference data within their precision;
even better agreement is observed with data obtained using
the CT-HYB impurity solver (diamonds). Note that BSS-QMC
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FIG. 11. (Color online) Estimates of double occupancy D(U ) and
quasiparticle weight Z(U ) at T = 0.01, using bath discretizations
with 4 � Nb � 7 sites, analogous to Fig. 9. The CT-HYB data
(diamonds) also represent the limit Nb → ∞.

is much more efficient than ED at Nb = 7; in particular, the
latter would need orders of magnitude more main memory than
the former.

As noted in Sec. II B, a strong increase with inverse
temperature of the number Nb of bath sites needed for a given
accuracy could, in principle, eliminate the scaling advantage
of the DMFT-BSS approach, as its computational cost does not
only include the direct factor β, but also a factor N3

b ≡ N3
b (β).

However, our results indicate that this effect is minor: In our
test case, we needed to add one bath site upon halving the
temperature for roughly constant accuracy; this is consistent
with a scaling Nb ∝ ln(β), i.e., an overall computational cost
proportional to β[ln(β)]3 which is still linear up to logarithmic
corrections.

IV. CONCLUSIONS

The DMFT and its extensions are invaluable tools for
the study of phenomena associated with strong electronic
correlations and for quantitative predictions of properties of
correlated materials. However, the numerical solution of the
DMFT self-consistency equations remains a great challenge:
the established, direct, QMC impurity solvers yield unbiased
results, but provide only limited access to the low-T phase re-
gions of interest, due to the cubic scaling of their computational
cost with the inverse temperature β. Exact diagonalization
(ED) approaches, on the other hand, are limited by their
exponential scaling with the number of sites N of the auxiliary
Hamiltonian.

The multigrid BSS-QMC algorithm presented in this work
allows for solving the DMFT self-consistency equations with
an effort that grows only linearly with β; in contrast to an
earlier BSS-QMC-based method [31], it is free of significant
Trotter errors, i.e., numerically exact at the level of the
auxiliary Hamiltonian. Since the computational cost grows
only cubically with N , much better representations of the bath
are possible than for ED. As demonstrated by applications
to the half-filled Hubbard model in and near the coexistence
region of metallic and insulating solutions and by comparisons
with direct QMC impurity solvers, the new method yields
unbiased results (for sufficiently fine bath discretization),
in spite of using quite coarse Trotter discretizations in the
underlying BSS-QMC evaluations.

The new unbiased quasi-CT impurity solver should show
its full potential in multi-band cases and in cluster extensions
of DMFT, where the prefactor N3 of the BSS-QMC scheme
(compared to a factor of 1 in HF-QMC calculations in single-
site DMFT) is leveled off by the increased complexity of the
original DMFT problem. Our approach can also be extended
beyond Hubbard models; it could be particularly valuable for
the cellular DMFT treatment of the Kondo lattice model, where
interesting temperature regimes are out of reach of the existing
impurity solvers [26,55].
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[13] R. Jördens, L. Tarruell, D. Greif, T. Uehlinger, N. Strohmaier,

H. Moritz, T. Esslinger, L. De Leo, C. Kollath, A. Georges,
V. Scarola, L. Pollet, E. Burovski, E. Kozik, and M. Troyer,
Phys. Rev. Lett. 104, 180401 (2010).

[14] E. V. Gorelik, I. Titvinidze, W. Hofstetter, M. Snoek, and
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