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Dynamics of a nonlocal discrete Gross-Pitaevskii equation with defects
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We study the dynamics of dipolar gas in deep lattices described by a nonlocal nonlinear discrete Gross-Pitaevskii
equation. The stabilities and the propagation properties of traveling plane waves in the system with defects are
discussed in detail. For a clean lattice, both energetic and dynamical stabilities of the traveling plane waves are
studied. It is shown that the system with attractive local interaction can preserve the stabilities, i.e., the dipoles
can stabilize the gas because of repulsive nonlocal dipole-dipole interactions. For a lattice with defects, within a
two-mode approximation, the propagation properties of traveling plane waves in the system map onto a nonrigid
pendulum Hamiltonian with quasimomentum-dependent nonlinearity (induced by the nonlocal interactions).
Competition between defects, quasimomentum of the gas, and nonlocal interactions determines the propagation
properties of the traveling plane waves. Critical conditions for crossing from a superfluid regime with propagation
preserved to a normal regime with defect-induced damping are obtained analytically and confirmed numerically.
In particular, the critical conditions for supporting the superfluidity strongly depend on the defect type and the
quasimomentum of the plane waves. The nonlocal interaction can significantly enhance the superfluidity of the
system.
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I. INTRODUCTION

In recent years, the interplay between nonlinearity, discrete-
ness, and disorder (i.e., small random impurities or defects)
has been the subject of intensive theoretical and experimental
investigations [1–11]. The competition between nonlinearity,
discreteness, and disorder can induce rich phenomena and
plays a crucial role in nonlinear discreteness systems such
as Anderson localization [12] and disorder-induced inhibition
of transportation [13–16]. In particular, the transportation
properties of the disordered nonlinear discrete system have
become a challenging issue. A key property is that in such
system, the propagation of traveling plane waves experiences a
crossover from a superfluid regime with propagation preserved
to a normal regime with disorder-induced damping [3], in
which nonlinearity plays a crucial role. Because of the
controllability of both disorder (which can be introduced in the
system in a controlled way by using optical means [17], atomic
mixtures [18], or inhomogeneous magnetic fields [19]) and
nonlinearity (which, as a consequence of interactions between
particles, can be controlled by the Feshbach technique [20]),
ultracold bosons in deep lattices with defects provide an ideal
physical system to study this issue.

At low temperature, bosons in deep lattices are well
described by the nonlinear discrete Gross-Pitaevskii (GP)
equation [3,21], which has played a central role in our
understanding of the system. In the discrete GP equation the
cubic nonlinearity arising in the case of local interaction is
characterized by a two-body nonlinear term through a contact
interaction that is parametrized by the s-wave scattering
length a, whose sign determines the type of interaction, i.e.,
a < 0 indicates that the interaction among the particles in the
system is attractive, while a > 0 indicates that the interaction
is repulsive. Importantly, systems with dominant attractive
local interactions are fundamentally unstable against collapse
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[22–25]. The transportation properties of bosons in lattices
with defects were originally predicted and explored in the
context of this local discrete GP equation. The transportation
properties of bosons in the disordered nonlocal discrete GP
equation are still not clear; however, the long-range nonlocal
character of the dipolar interaction results in the dipolar
condensate trapped in deep optical lattices [26,27] promoting
discussion of this issue. A dipolar condensate loaded into the
deep lattices can be described by a nonlinear discrete GP
equation with nonlocal interaction [28–30], i.e., a nonlocal
nonlinear discrete GP equation. Stable solitons [31–37] and
the condensate [38–42] should be observable.

In this paper we investigate the stability and superfluidity
of a dipolar condensate in lattices within a nonlocal nonlinear
discrete GP equation with and without defects. The stability
and the propagation properties of traveling plane waves in
the system are discussed in detail. For a clean lattice, both
energetic and dynamical stabilities of the traveling plane waves
are studied. It is shown that there is a critical scattering length
ac and when a > ac, the system is stable. Interestingly, we
find that, in a system with nonlocal interaction, ac is always
negative. This is different from the case with only a local
interaction, when ac > 0. That is, the dipoles can stabilize the
condensate because of the repulsive nonlocal dipole-dipole
interaction. For a lattice with defects, we discuss the superflu-
idity of the condensate in a deep annular lattice with defects,
i.e., the propagation properties of the traveling plane waves in
the system with competition between defects and the nonlocal
interaction. Within a two-mode approximation, the dynamics
of the system described by the nonlocal nonlinear discrete GP
equation maps onto a nonrigid pendulum Hamiltonian. We
find that there can also exist a critical scattering length ac that
divides the system into two regime: a > ac, in which a plane
wave coherently passes through the defects and the system is
in a superfluid state, and a < ac, in which the system is in
a normal regime with defect-induced damping. Importantly,
ac and the superfluidity of the system strongly depend on
the quasimomentum of the plane waves. In particular, the
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nonlocal interaction can enhance the superfluidity of the
system.

The paper is organized as follows. In Sec. II we present
the physical model for the dipolar condensate in a deep
one-dimensional lattice. In Sec. III, by using the perturbative
approximation, we analyze the stabilities of the clean system.
In Sec. IV, within a two-mode approximation, the dipolar
condensate is mapped onto a nonrigid pendulum Hamiltonian.
We study the dynamical properties of the system with a single
defect and Gaussian defects. Finally, we summarize in Sec. V.

II. MODEL

We consider a dipolar condensate trapped in a deep one-
dimensional lattice, with magnetic dipolar moment �μ oriented
perpendicular to the lattice by an external magnetic �B . By using
the tight-binding approximation, the system can be described
by the dimensionless nonlocal discrete nonlinear GP equation
[28–30]

i
∂ψn

∂τ
= −1

2
(ψn−1 + ψn+1) + εnψn + [(aχ + CDD0)|ψn|2

+CDD1(|ψn+1|2 + |ψn−1|2) + CDD2(|ψn+2|2
+ |ψn−2|2)]ψn, (1)

where ψn is the wave function of the condensate in the nth site
of the array, n = 1, . . . ,N (N the number of sites). The first
term on the right-hand side of Eq. (1) is the tunneling term,
which denotes the tunneling between the adjacent sites; εn,
which is proportional to any external field superimposed on the
lattice (i.e., εn ∝ ∫

d�r [(h̄2/2mJ )|∇φn|2 + Vext|φn|2], where
φn are wave functions localized in each site of the periodic
potential), is the on-site energy. For a clean lattice, εn is a
constant; for a defected lattice, εn in each lattice is different and
expresses the defect distribution. The defects εn can be created
by additional lasers and/or magnetic fields. In the physical
systems we have discussed, the defects εn can be spatially
localized or extended. In Eq. (1), the nonlinearity is induced by
the atomic contact interaction a, the on-site dipolar interaction
CDD0, the nearest-neighbor dipolar interaction CDD1, and the
next-nearest-neighbor interaction CDD2. The s-wave scattering
length a is in units of the Bohr radius a0. The local on-site
dipolar interaction CDD0 and the nonlocal intersite dipolar
interaction CDDj (j = 1,2) are given in Ref. [28], i.e.,

CDD0 = μ0μ
2

4πJ

1

l3
⊥c3

√
2

π

(
c(3 − c2)

3
√

1 − c2
− arcsin(c)

)
,

CDDj = μ0μ
2

4πJ

1

3l3
⊥

√
2

π
F

(
c,

jb

l⊥

)

(j = 1,2), where χ = 4πh̄2

mJ

a0

(2π)3/2l2
⊥l

, l⊥ = √
h̄/mw⊥, and l =

bs−1/4/π , with b = π/kL the lattice step, w⊥ = 290 Hz the
vertical trapping frequency, and kL = 2π/λ the laser wave
vector (λ = 1064 nm). Further, J = 4√

π
s3/4e−2

√
sER , ER =

h̄2π2/2Md2 is the recoil energy of the optical lattices, d is the
lattice period (d = λ/2), s is the strength of the optical lattice,
c =

√
1 − l2/l2

⊥, μ0 is the vacuum permeability, and μ is the
magnetic dipole moment (μ = 6μB for 52Cr with μB the Bohr

magneton). Here

F (u,ν) =
∫ 1

0
ds

3s2 − 1

(1 − u2s2)3/2

(
1 − ν2s2

1 − u2s2

)

× e−[ν2s2/2(1−u2s2)].

In this article we study the propagation of a plane wave
ψn(τ = 0) = eikn in system (1); here k is the quasimomentum
of the plane wave. We will use periodic boundary conditions
(due to the annular geometry); thus we have k = 2πl/N ,
where l is an integer (l = 0, . . . ,N − 1). The Hamiltonian
of the Eq. (1) is

H =
∑ [

−1

2
(ψn+1ψ

∗
n + ψnψ

∗
n+1) + εn|ψn|2

+
(

(aχ + CDD0)

2
|ψn|2 + CDD1(|ψn+1|2 + |ψn−1|2)

+CDD2(|ψn+2|2 + |ψn−2|2)

)
|ψn|2

]
. (2)

III. STABILITIES OF THE SYSTEM WITHOUT DEFECTS

Let us consider the stabilities of the system with εn = 0.
We employ the plane wave ψ = ψ0e

i(kn−u0t), which is the
stationary solution of Eq. (1), where k is the quasimomentum
of the condensate. The stability analysis of such a state can be
carried out by perturbing the carrier wave with small-amplitude
phonons: ψ = [ψ0 + u(t)eiqn + ν∗(t)e−iqn]ei(kn−u0t), where q

is the quasimomentum of the excitation. The perturbation
functions u(t) and ν(t) have the same periodicity as the lattices;
then Eq. (1) becomes

i
∂

∂t

(
u

ν

)
= σ̂ Â

(
u

ν

)
, (3)

where Â = ( L+ Cψ2
0

C(ψ∗
0 )2 L−

) with L± = cos(k) − cos(q ± k) +
C|ψ0|2 and the effective interaction parameter C = aχ +
CDD0 + 2CDD1 cos(q) + 2CDD2 cos(2q). It is important to
note that this effective atom interaction depends on the
quasimomentum of the excitation. This momentum-dependent
atom interaction is induced by the nonlocal dipolar interaction.
For a nondipolar gas (i.e., CDD0 = CDD1 = CDD2 = 0), C

does not depend on q. Here σ̂ is the Pauli matrix. By
straightforward calculation, the eigenvalues of Â are easily
found as

λ± = 2 cos(k) sin2

(
q

2

)
+C|ψ0|2 ±

√
P 2 + C2|ψ0|4 (4)

and the discrete nonlinear GP equation excitation spectrum
(eigenvalues of σ̂ Â) is given by

η± = P ±
√

Q2 − 2CQ|ψ0|2, (5)

where P = sin(q) sin(k) and Q = cos(k)[cos(q) − 1].
Base on Eq. (4), we can easily find that the boundary

of energetic stability of Bloch waves is described by (λ
should be real positive) cos2( q

2 ) � cos(k)[cos(k) + C|ψ0|2].
Clearly, the energetic instability can be completely excited
when cos(k) < 0. For long-wavelength perturbation (q → 0),
this condition can be reduced to a critical contact scattering
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FIG. 1. Energetic stability diagram of the system. Here a0 is the
Bohr radius.

length ac for maintaining the stability in a dipolar condensate:

a � ac = 1

χ

(
sin2(k)

cos(k)|ψ0|2 − CDD0 − 2CDD1 − 2CDD2

)
.

(6)

In Fig. 1 we plot the energetic stability diagram of the sys-
tem; the area above the critical scattering length ac corresponds
to the energetically stable region. The critical parameter ac for
both the dipolar condensate and the nondipolar condensate is
shown in Fig. 1. We find that the critical scattering length ac

decreases with increasing strength of optical lattices s and the
quasimomentum k of the plane wave fixed; for a fixed s, ac

increases with increasing k. Interestingly, we find the dipolar
condensate is more stable than the nondipolar system, i.e., the
dipolar gas can preserve the stability with an attractive local
interaction (contact interaction). With increasing s, the critical
scattering length ac of the nondipolar gas tends to 0, while
the critical scattering length ac of the dipolar condensate tends
to −20a0.

For a nondipolar condensate with purely contact interac-
tion, the system with attractive contact interaction (attractive
local interaction) is fundamentally unstable against collapse,
while the system with repulsive contact interaction prevents
the collapse and is stable. For a dipolar gas, the nonlocal
repulsive dipolar interaction can compensate for the local
attractive contact interaction and the effective interaction of
the system can be repulsive. Thus the system with attractive
contact interaction could be stable as long as the effective
interaction of the system is repulsive (i.e., C > 0). That is,
dipoles can stabilize the condensate due to the effectively
nonlocal repulsive dipolar interaction.

Furthermore, the modulational instability (dynamical insta-
bility) can be induced when the eigenfrequency η in Eq. (5) be-
comes imaginary, i.e., C|ψ0|2 � − cos(k) sin2( q

2 ). Therefore,
when the effective atomic interaction is repulsive (C > 0),
the system suffers an exponential growth of perturbations
with cos(k) < 0. For long-wavelength perturbation (q → 0),
this condition reduces to a critical scattering length ac for
preserving the modulational stability of the system:

a � ac = − 1

χ
(CDD0 + 2CDD1 + 2CDD2). (7)

FIG. 2. Modulational stability diagram of the system. The critical
scattering length ac is shown as a function of the lattice depth s. Here
a0 is the Bohr radius.

The critical scattering length ac given by Eq. (7) is plotted in
Fig. 2. The area above the line corresponds to the stable region.
When s is small, we can find that the critical scattering length
ac rapidly grows to a maximum, which is due to the influence
of the intersite dipolar interaction. Then ac decreases gradually
with increasing lattice depth s until close to −20a0. Also, we
can observe that ac for different s is less than zero. However,
it is well known that the dynamical stability in the nondipolar
gas can be induced when the scattering length a is positive.
Thus the dipolar condensate is more stable in dynamics than
the system without dipolar interaction. In contrast, dipoles can
suppress both energetic and dynamical instabilities because of
the effective nonlocal repulsive dipolar interaction. Our results
are in good agreement with recent experiments [38,39].

IV. SUPERFLUIDITY WITH DEFECTS

We now consider the dynamical properties of Eq. (2) with
defects. As discussed above, when cos(k) < 0, the system
becomes unstable, so we consider the case in which cos(k) >

0. The angular momentum of this system is defined as

L(τ ) = i
∑

(ψnψ
∗
n+1 − ψ∗

nψn+1). (8)

The angular momentum L(τ ) oscillates between the initial
value L0 to −L0, corresponding, respectively, to plane waves
with wave vectors k and −k in a liner system. Moreover,
rotational states with opposite wave vectors k and −k are
degenerate in clear optical lattices. However, the defects split
the degeneracy by coupling the two k and −k waves, very much
as the tunneling barrier in a double-well potential between
the left and right localized states. For this reason, the relative
population of the two waves oscillates according to an effective
Josephson Hamiltonian [3,43]. In this limit, one can employ
a two-mode ansatz for the dynamical evolution of the wave
function:

ψn(τ ) = A(τ )eikn + B(τ )e−ikn. (9)

We set A,B = √
nA,B(τ )eiφA,B(τ ) , z = nA − nB , and φ =

φA − φB .
To understand the dynamics of the system, we discuss

the variation of the angular momentum with some related
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parameters. Thus, using ansatz (9) in Eq. (8), we get

L = 2N z sin(k). (10)

Therefore, we observe that the angular momentum is pro-
portional to z. Note that 〈L〉 = 0 implies that the wave
is completely reflected, which means that the system is in
a normal state with defect-induced damping, and 〈L〉 �= 0
implies that the wave is only partially reflected by the defects,
that is, the system is in a superfluid state. Here the angular
brackets stand for a time average. The latter case corresponds
to a self-trapping of the angular momentum. The incident wave
cannot be reflected completely and coherence is preserved.
The observation of a persistent current is associated with a
superfluid regime of the system (1).

A. Single defect

Let us consider the case of a single defect

εn = εδn,n̄. (11)

Defining the effective Lagrangian as £ = ∑
i
2 (ψ̇nψ

∗
n −

ψnψ̇∗
n ) − H , both H and the norm

∑ |ψn|2 = N are conserved
and using ansatz (9) in this effective Lagrangian, we have

£

N = −nAφ̇A − nBφ̇B − 2ε

N
√

nAnB cos(φA − φB + 2kn̄)

−CnAnB, (12)

with the relation
∑

e2kn = 0. Using the Euler-Lagrange
equations d

dt
∂£
∂q̇i

= ∂£
∂qi

for the variational parameters qi(τ ) =
nA,B,φA,B in Eq. (12) and with the replacement φ + 2kn̄ → φ,
we obtain

ż = −2ε

N
√

1 − z2 sin(φ), (13)

φ̇ = 2ε

N
z√

1 − z2
cos(φ) + Cz, (14)

where C = aχ + CDD0 + 4CDD1 cos(2k) + 4CDD2 cos(4k) is
the effective atom interaction, which, interestingly, depends on
the quasimomentum k (induced by the nonlocal dipolar inter-
action). That is, within a two-mode ansatz in Fourier space,
the dynamics of the system map onto a nonrigid pendulum
with quasimomentum-dependent nonlinearity. The effective
Hamiltonian (i.e., the total conserved energy) becomes

H = −2ε

N
√

1 − z2 cos(φ) + Cz2

2
. (15)

Let us derive the critical condition for supporting a
superfluid flow, that is, the occurrence of transition between
the regimes with 〈L〉 = 0 and the regime with 〈L〉 �= 0.
Equation (10) indicates that the angular momentum L is
proportional to z. Therefore, 〈z〉 = 0 (i.e., z oscillates around
0 and 〈L〉 = 0) implies that the wave is completely reflected
by the defects; 〈z〉 �= 0 (i.e., z oscillates around a nonzero
value and 〈L〉 �= 0) implies that the wave is only partially
reflected by the defects and the system is in a superfluid
regime. Hence, if z cannot reach the value 0, then we
can have 〈z〉 �= 0 and the system is in a superfluid regime.
To prevent the system from reaching the state z = 0, the
initial energy of the system H0 should be larger than the
energy of this state, i.e., H0 > H (z = 0). Initially, we set

z(0) = 1 and φ(0) = 0, so the conserved initial energy is
H0 = C/2. Because H (z = 0) = − 2ε

N cos(φ), we clearly see
that the maximum value of H (z = 0) is 2ε/N , i.e., H (z =
0) = − 2ε

N cos(φ) � 2ε
N . Hence, if H0 = C/2 � 2ε/N , i.e.,

C � 4ε/N , then H0 > H (z = 0) should be satisfied for all
values of φ. That is, when C � 4ε/N , z cannot reach the
value 0 and the system will be in a superfluid regime. Thus we
find a critical condition for supporting the superfluid flow aχ +
CDD0 + 4CDD1 cos(2k) + 4CDD2 cos(4k) = 4ε/N . From this
condition we can obtain a critical atomic scattering length ac

for maintaining the superfluidity

ac = 1

χ

(
4ε

N − CDD0 − 4CDD1 cos(2k) − 4CDD2 cos(4k)

)
.

(16)

The system can be divided into two regimes by the critical
condition: a normal regime when a < ac and a superfluid
regime when a > ac. When a < ac, L oscillates around 0;
when a = ac, L asymptotically approaches 0, with a > ac,
〈L〉 �= 0. In a normal state a plane wave is reflected by the
defect, while a plane wave travels coherently through the
defects in a superfluid state. Importantly, Eq. (16) indicates that
the superfluidity of the system strongly depends on the defect
ε, the dipolar interaction, and the quasimomentum k of the
gas. The competition between the defect, dipolar interaction,
and quasimomentum of the gas provides a critical scattering
length ac for maintaining the superfluidity. For fixed defect, the
presence of nonlocal dipolar interaction can reduce ac, even
results in a negative ac, and enhance the superfluidity of the
system.

Figure 3 shows the critical ac plotted against lattice depth
s and the quasimomentum k with a single defect given by
Eq. (16). Clearly, we find the critical scattering length ac for
dipolar gas decreases from a positive value to ac = −30a0 with
increasing lattice depth and fixed quasimomentum k. Thus,
in the deep lattice regime, the superfluid can be more easily
preserved due to the relatively small critical scattering length
ac. Furthermore, the critical scattering length ac for nondipolar
gas is positive and tends gradually to zero in the deep lattice
regime. That is, the dipolar condensate with a single defect can
more easily support the superfluid state than the system without

FIG. 3. Critical scattering length ac plotted against lattice depth s

and the quasimomentum k of the gas associated with a single defect.
Here a0 is the Bohr radius, ε = 0.05, and N = 100.
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(a)

(b)

FIG. 4. Critical scattering length ac as a function of the quasimo-
mentum k for different lattice depths: (a) s = 5 and (b) s = 9. Here a0

is the Bohr radius, ε = 0.05, and N = 100. The points are numerical
simulations of Eq. (1) and the solid lines are the analytical results
of Eq. (16).

dipolar interaction. The dipoles can enhance the superfluidity
of the condensate with a single defect. In order to clearly
show the relationship between ac and the quasimomentum
k, the critical scattering length ac of dipolar condensate vs
the quasimomentum k for different lattice depths of s = 5
and 9 is plotted in Fig. 4. It is clear that the value of ac

for s = 9 is smaller than that for s = 5. Interestingly, there
is a critical kc, when k < kc, for which ac decreases with
increasing k, while when k > kc, ac increases with k. This
nonmonotonic behavior of ac with respect to k is induced
by nonlocal dipolar interaction (note that C depends on k).
To confirm the analytical results, numerical results obtained
by direct numerical integration of Eq. (1) with a fourth-order
Runge-Kutta method are also shown in Fig. 4. We find that
the analytical results qualitatively agree with the numerical
results.

B. Gaussian defect

Furthermore, we now consider a Gaussian defect with width
σ centered on the site n̄:

εn = ε√
πσ

e−(n−n̄)2/σ 2
. (17)

For sufficiently large N and σ � 1, we can set
∑

εn ≈∫
dnεn = ε. In the same way as in the case of a single defect

and setting φ + 2kn̄ → φ, the effective Hamiltonian reduces
to

H ≈ −2εe−k2σ 2

N
√

1 − z2 cos(φ) + Cz2

2
. (18)

We can clearly see that the system is equal to that of a single
defect with an effective defect εeff = εe−k2σ 2

. Thus the critical
ac for supporting the superfluid is

ac = 1

χ

(
4εeff

N − CDD0 − 4CDD1 cos(2k) − 4CDD2 cos(4k)

)
.

(19)

FIG. 5. Critical scattering length ac plotted against the lattice
depth s and the quasimomentum k with the Gaussian defect. Here a0

is the Bohr radius, ε = 0.05, N = 100, and σ = 2.

For fixed defect, the critical scattering length ac plotted
against the lattice depth s and the quasimomentum k is shown
in Fig. 5. Just like the case of a single defect, we can see that the
critical scattering length ac decreases with increasing lattice
depth s and fixed quasimomentum k. The dipolar gas with
the Gaussian defect also requires a smaller critical scattering
length ac to preserve the superfluidity than that in the system
of the nondipolar gas. In Fig. 6 we plot the critical scattering
length ac as a function of the quasimomentum k with respect
to the lattice depths s = 5 and 9. We can see that the critical
scattering length ac decreases with quasimomentum k. We
note that when kσ  1, εeff → 0. This means that the dipolar
system with a Gaussian defect and large quasimomentum will
always pass through the defect. This is different from the
case of a single defect, where ac varies nonmonotonically
with k (see Fig. 4). We also find that for the Gaussian defect,

FIG. 6. Critical scattering length ac vs the quasimomentum k with
respect to (a) the shallow lattice depth s = 5 and (b) the deep lattice
depth s = 9. The points indicate the numerical solutions of Eq. (1)
and lines the analytical results of Eq. (19). Here a0 is the Bohr radius,
ε = 0.05, N = 100, and σ = 2.
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(a) (b)

FIG. 7. Critical scattering length ac vs defects ε for different
lattice depths s with (a) a single defect and (b) a Gaussian defect.
The points indicate the numerical simulations of Eq. (1) and the solid
lines the analytical results of Eqs. (16) and (19). Here a0 is the Bohr
radius, k/2π = 0.09, N = 100, and σ = 2.

the analytical result is in good agreement with the numerical
result.

The critical scattering length ac plotted against the defect
ε for different lattice strengths s is shown in Fig. 7. One can
find that ac increases with increasing ε and decreases with
increasing s. In particular, ac for the system with a Gaussian
defect is much lower than that for the system with a single
defect. In contrast, the system with a Gaussian defect can
more easily support the superfluid state than the system with
a single defect.

V. CONCLUSION

In this work we have investigated the stability and the super-
fluidity of a dipolar 52Cr condensate in a deep one-dimensional
lattice. By using the perturbative and tight-binding approxima-
tion, we analyzed energetic stability and modulational stability

(dynamical stability) of a dipolar condensate in a clean lattice.
There is a critical scattering length and the system is stable
when a > ac. We showed that the system is more stable in
the deep lattice regime due to the decrease of the critical
scattering length with the lattice depth. Through a comparison
with the nondipolar gas, it was found that it is easier for a
dipolar gas to maintain stability because of the nonlocal dipolar
interactions. Furthermore, the superfluidity of the dipolar
condensate in a deep annular lattice with defect was discussed
both analytically and numerically. Within a two-mode approx-
imation, the dynamics of the system can be considered as a
single nonrigid Hamiltonian with quasimomentum-dependent
nonlinearity (induced by the nonlocal interaction). We found
that the superfluid state can exist beyond a critical scattering
length. The analytical expression of the critical scattering
length for supporting a superfluid flow was obtained and we
found that it is determined by the competition between the
defect, the quasimomentum of the gas, and the nonlocal dipolar
interaction. The system can easily support a superfluid state
in deep lattices. In particular, the dipolar system can easily
support a superfluid state with low scattering length relative to
the nondipolar gas. The present results give deep insight into
the dynamics of a dipolar condensate in a disordered optical
lattice.
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