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Langmuir oscillations in a nonextensive electron-positron plasma
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The Langmuir oscillations, Landau damping, and growing unstable modes in an electron-positron (EP) plasma
are studied by using the Vlasov and Poisson’s equations in the context of the Tsallis’s nonextensive statistics.
Logically, the properties of the Langmuir oscillations in a nonextensive EP plasma are remarkably modified
in comparison with that of discussed in the Boltzmann-Gibbs statistics, i.e., the Maxwellian plasmas, because
of the system under consideration is essentially a plasma system in a nonequilibrium stationary state with
inhomogeneous temperature. It is found that by decreasing the nonextensivity index q which corresponds to a
plasma with excess superthermal particles, the phase velocity of the Langmuir waves increases. In particular,
depend on the degree of nonextensivity, both of damped and growing oscillations are predicted in a collisionless
EP plasma, arise from a resonance phenomena between the wave and the nonthermal particles of the system.
Here, the mechanism leads to the unstable modes is established in the context of the nonextensive formalism yet
the damping mechanism is the same developed by Landau. Furthermore, our results have the flexibility to reduce
to the solutions of an equilibrium Maxwellian EP plasma (extensive limit q → 1), in which the Langmuir waves
are only the Landau damped modes.
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I. INTRODUCTION

Electron-positron (EP) plasma play an important role in the
physics of a number of astrophysical situations such as active
galactic nuclei [1], pulsar and neutron star magnetosphere [2],
solar atmosphere [3], accretion disk [4], black holes [5],
the early universe [6], and many others. For example, the
detection of circularly polarized radio emission from the jets
of the archtypal quasar 3C297 indicates that EP pairs are an
important component of the jet plasma [7]. Similar detections
in other radio sources suggest that, in general, extragalactic
radio jets are composed mainly of an EP plasma [7]. It has
been suggested that the creation of pair plasma in pulsars is
essentially by energetic collisions between particles, which are
accelerated as a result of electric and magnetic fields in such
systems [8]. Also, two terrestrial sources of EP plasmas are
the interaction of high-power lasers with plasmas [9] and the
laboratory experiments in plasma confinement devices [10].
It is observed that the annihilation time of EP pairs in typical
experiments is often long compared with typical confinement
times [11], showing that the lifetime of EP pairs in the
plasma is much longer than the characteristic time scales
of typical oscillations. The long lifetime of EP pairs against
pair annihilation indicates that many collective oscillations can
occur and propagate in a pure EP plasma.

Waves in EP plasmas have been extensively studied over
the past two decades. These studies mainly have concentrated
on the relativistic EP plasmas (see, e.g., the references given
in Ref. [12]). However, there are many experiments that
confirm the possibility of nonrelativistic EP plasmas in the
laboratory [13]. Until now, some authors have studied the

*Corresponding author: s.esaberian@azaruniv.edu
†ra-esfandyari@azaruniv.edu

characteristics of possible modes in the EP plasmas. An
excellent and comprehensive study on the collective modes
in nonrelativistic EP plasmas was presented by Iwamato [14]
and used a kinetic theory description. Zank and Greaves [15],
by use of a two-fluid model, discussed the linear and nonlinear
modes in nonrelativistic EP plasmas. Furthermore, some
authors have studied some aspects of the nonlinear electrostatic
and electromagnetic wave propagation in the EP plasmas (see,
e.g., the references given in Ref. [16]). From a theoretical
point of view, analysis of an EP plasma, as compared with
the ordinary electron-ion (EI) plasmas, leads to considerable
modifications in the mathematical description. As we know,
an EP plasma is composed of species with the same absolute
charge-to-mass ratio. Therefore, the same dynamics of the
EP pairs and, hence, the involved symmetry imply that the
physical properties of such a system would differ from those
of an ordinary EI plasma.

Although pair plasmas consisting of electrons and positrons
have been experimentally produced, because of fast anni-
hilation and the formation of positronium atoms and also
low densities in typical EP experiments, the identification
of collective modes in such experiments is very difficult in
practice. To resolve this problem, one may experimentally
deal with a pure pair-ion plasma instead of a pure EP plasma
for identification of the collective modes. An appropriate
experimental method has been developed by Oohara and
Hatakeyama [17] for the generation of pure pair-ion plasmas
consisting of only positive and negative ions with equal masses
by using fullerenes C−

60 and C+
60. The fullerene pair plasmas

are physically akin to the EP plasmas, without having to worry
about fast annihilation. By drastically improving the pair-ion
plasma source in order to excite effectively the collective
modes, Oohara et al. [18] have experimentally examined the
electrostatic modes propagating along the magnetic-field lines
in a fullerene pair plasma.
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In the experiment of Oohara et al. [18], three kinds
of electrostatic modes have been observed from the
obtained dispersion curves: the acoustic waves in a relatively
low-frequency band, an intermediate-frequency backwardlike
mode, and the Langmuir-type waves in a relatively high-
frequency band. There, they have briefly discussed some
aspects of their experimental results by using a theoretical
two-fluid model. To our knowledge, a satisfactory and accepted
theoretical justification for explanation of the acoustic and
the backward intermediate modes in a fully symmetric pure
pair plasma (as the Oohara et al. [18] claim their experiment
to be) does not exist. Particularly, it is obvious that the
acoustic modes are not possible in a fully symmetric pair
plasma where the particles have the same dynamics. Here, we
want to discuss, in detail, the high-frequency Langmuir-type
oscillations in a pure pair plasma by using a kinetic theory
model and argue some properties of these modes in a subtler
manner.

It is often observed that the physical distribution of
particles in space plasmas as well as in laboratory plasmas
are not exactly Maxwellian and particles show deviations
from the thermal distribution [19,20]. Presence of nonthermal
particles in space plasmas has been widely confirmed by
many spacecraft measurements, e.g., see the references in
Ref. [21]. In many cases, the velocity distributions show
non-Maxwellian tails decreasing as a power-law distribution
in particle speed. Several models for phase-space plasma
distributions with superthermal wings or other deviations
from purely Maxwellian behavior have become rather popular
in recent years, like the so-called kappa (κ) distribution,
which was introduced initially by Vasyliunas in 1968 [22]
to describe plasmas far from the thermal equilibrium such as
the magnetosphere environment and the solar winds (e.g., see
Ref. [23]); the nonthermal model advanced by Cairns et al. in
1995 [24], which was introduced at first to explain the solitary
electrostatic structures involving density depletions that have
been observed in the upper ionosphere in the auroral zone by
the Freja satellite [25]; and the nonextensive Tsallis model. In
the following we want to briefly review the formalism of the
Tsallis model and to argue why it is preferred, rather than that
of the Carins and kappa models.

Generally, the standard Boltzmann-Gibbs (BG) extensive
thermostatistics constitutes a powerful tool when micro-
scopic interactions and memories are short ranged and the
environment is a Euclidean space-time, a continuous and
differentiable manifold. However, there are many studies
which show the breakdown of the BG statistics to describe
systems with long-range interactions, long-time memory,
and fractal space-time structures (see, e.g., the references
given in Ref. [26]). Basically, systems subject to long-range
interactions and correlations and long-time memories are
related to the non-Maxwellian distributions where the standard
BG statistics do not apply. The plasma environments in the
astrophysical systems, obviously, are subject to spatial and
temporal long-range interactions evolving in a non-Euclidean
space-time that make their behavior nonextensive. A suitable
generalization of the Boltzmann-Gibbs-Shannon (BGS) en-
tropy for statistical equilibrium was first proposed by Reyni
[27] and subsequently by Tsallis [28], preserving the usual

properties of positivity, equiprobability, and irreversibility but
suitably extending the standard extensivity or additivity of the
entropy to nonextensivity.

The nonextensive generalization of the BGS entropy which
was proposed by Tsallis in 1988 [28] is given by the following
expression:

Sq = kB

1 − ∑
i p

q

i

q − 1
, (1)

where kB is the standard Boltzmann constant, {pi} denotes the
probabilities of the microstate configurations, and q is a real pa-
rameter quantifying the degree of the nonextensivity. The most
distinctive feature of Sq is its pseudoadditivity. Given a com-
posite system A + B, constituted by two subsystems A and B,
which are independent in the sense of factorizability of the joint
microstate probabilities, the Tsallis entropy of the composite
system A + B satisfies Sq(A + B) = Sq(A) + Sq(B) + (1 −
q)Sq(A)Sq(B). In the limit of q → 1, Sq reduces to the
celebrated logarithmic BGS entropy S = −kB

∑
i pi ln pi , and

the usual additivity of the entropy is recovered. Hence, |1 − q|
is a measure of the lack of extensivity of the system. There
are a number of evidences exhibiting that the nonextensive
statistics, arising from Sq , is a better framework for describing
many physical systems, such as galaxy clusters [29], plasmas
[30,31], turbulent systems [32], and so on, in which the
system shows a nonextensive behavior as a result of long-range
interactions and correlations. The functional form of the
velocity distribution in the Tsallis formalism may be derived
through a nonextensive generalization of the Maxwell ansatz
[33] or through maximizing the Tsallis entropy under the con-
straints imposed by normalization and the energy mean value
[34]. Furthermore, from a nonextensive generalization of the
“molecular chaos hypothesis,” it is shown that the equilibrium
q-nonextensive distribution is a natural consequence of the H
theorem [35].

It is to be noted that the empirically derived κ distribution
function in space plasmas is equivalent to the q-distribution
function in the Tsallis nonextensive formalism, in the sense
that the spectrum of the velocity distribution function in
both models shows similar behavior and, in fact, that both
the κ distribution and the Tsallis q-nonextensive distribution
describe deviations from the thermal distribution. In particular,
Leubner in 2002 [36] showed that the distributions very close
to the κ distributions are a consequence of the generalized
entropy favored by the nonextensive statistics and proposed
a link between the Tsallis nonextensive formalism and the κ

distribution functions. In fact, relating the parameter q to κ by
use of a formal transformation κ = 1/(1 − q) [36] provides
the missing link between the q-nonextensive distribution and
the κ-distribution function favored in space-plasma physics,
leading to a required theoretical justification for the use
of κ distributions from fundamental physics. Furthermore,
Livadiotis and McComas in 2009 [37] examined how kappa

distributions arise naturally from the Tsallis statistical mechan-
ics. On the other hand, the nonthermal distribution function
introduced by Cairns et al. [24] is a proposal function to
model an electron distribution with a population of energetic
particles. It is especially appropriate to describe the nonlinear
propagation of large amplitude electrostatic excitations such
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as solitary waves and double layers, which are very common
in the magnetosphere. However, the lack of a statistical
foundation behind this proposal function is clearly seen,
leading to it receiving less attention than the κ function
and Tsallis distribution. The q-nonextensive formalism, with
a powerful thermostatistics foundation and considerable ex-
perimental evidence, may cover many features of the other
nonthermal models and provide a good justification for
its preference over the other models. It has considerably
extended both the statistical mechanics formalism and its
range of applicability. The interested reader may refer to the
references given in Refs. [38–41], where the significance,
historical background, physical motivations, foundations, and
applications of the nonextensive thermostatistics are discussed
in detail.

The waves, Landau damping, and instabilities in the
plasma may be investigated in the framework of nonextensive
statistics. For example, Lima et al. [42] have studied the
Langmuir oscillations and Landau damped waves in a col-
lisionless EI plasma in the context of nonextensive statistics.
In particular, they have stressed that, due to the long-range
nature of Coulombic interactions in the plasma, the standard
Maxwell-Boltzmann distribution may provide only a very
crude description of such systems, even in the collisionless
limit. Furthermore, by constraining the nonextensive statistics
with plasma oscillation data [43], it is revealed that a good
agreement between the theory and the experimental results
for the standard Bohm-Gross dispersion relation is possible.
Also, in the context of the nonextensive statistic, the nonlinear
Landau damping of the electrostatic waves in an unmagnetized
collisionless EI plasma has been investigated numerically by
using a semi-Lagrangian Vlasov-Poisson code [44]. Further-
more, Liyan and Jiulin [45] have discussed the dispersion
relation and Landau damping of ion-acoustic waves in a
collisionless magnetic-field-free plasma in the nonextensive
statistics. Particularly, they have emphasized that the physical
state described by the q distribution in Tsallis’s statistics is
not the thermodynamic equilibrium. In fact, the deviation of q

from unity quantifies the degree of the inhomogeneity of the
temperature T via the formula kB

�∇T + (1 − q)Qα
�∇φ = 0

[46], where Qα denotes the electric charge of specie α.
In other words, the nonextensive statistics describes sys-
tems in the nonequilibrium stationary state with inhomo-
geneous temperature that contains a number of nonthermal
particles.

In the present work, our goal is to investigate the Langmuir
oscillations in a field-free collisionless EP plasma in the
context of the q-nonextensive statistics, emphasizing the
possible damping and instability. A kinetic theory model based
on the linearized Vlasov and Poisson’s equations is used by
which the general form of the dielectric function (D(k,ω))
for weakly damped (or growing) longitudinal waves in an EP
plasma is presented, as shown in Sec. II. The eigenvalues of
D(k,ω) = 0 for coherent oscillations in a nonextensive EP
plasma are derived in Sec. III and then the real and imaginary
parts of the frequency of Langmuir oscillations are obtained
there. In Sec. IV, the possibility of normal modes, Landau
damped, and growing unstable modes are discussed. Finally,
the paper is summarized in Sec. V.

II. THE MODEL EQUATIONS

Here, we present a brief review of kinetic equations for
describing the electrostatic collective modes specialized to an
EP plasma with the constraint of weak damping or growth.

We consider a spatially uniform field-free EP plasma at the
equilibrium state. If at a given time t = 0 a small amount of
charge is displaced in the plasma, the initial perturbation may
be described by

fα(t = 0) = fα0(�v) + fα1(�x,�v,t = 0), fα1 � fα0,

where fα0 corresponds to the unperturbed and time-
independent stationary distribution and fα1 is the correspond-
ing perturbation about the equilibrium state, where α stands
for electrons and positrons (α = e,p). We assume that the
perturbation is electrostatic and the displacement of charge
gives rise to a perturbed electric but no magnetic field. With
this assumption, the time development of fα1(�x,�v,t) is given
by solution of the linearized Vlasov and Poisson’s equations
as follows [47,48]:

∂fe1

∂t
+ �v · ∂fe1

∂ �x + e

m
�∇φ1 · ∂fe0

∂ �v = 0, (2)

∂fp1

∂t
+ �v · ∂fp1

∂ �x − e

m
�∇φ1 · ∂fp0

∂ �v = 0, (3)

∇2φ1 = 4πne

∫
(fe1 − fp1) d�v, (4)

where e, m, and n denote, respectively, the absolute charge,
mass, and number density of the electron and positron and
φ1 is the electrostatic potential produced by the perturbation.
This set of linearized equations for perturbed quantities may
be solved simultaneously to investigate the plasma properties
for the time intervals shorter than the binary collision times.
Specially, we can study the properties of the plasma waves
whose oscillations period are much less than a binary collision
time. The standard technique for solving simultaneously
the differential equations (2)–(4) is the method of integral
transforms, as developed for the first time by Landau in the case
of an ordinary EI plasma [47–49]. Another simplified method
of solving the Vlasov-Poisson’s equations for the longitudinal
waves, with the frequency ω and the wave vector �k, is to assume
that the solution has the form

fα1(�x,�v,t) = fα1(�v)ei(�k·�x−ωt), α = e,p
(5)

φ1(�x,t) = φ1e
i(�k·�x−ωt).

Without loss of the generality, we consider the x axis to
be along the direction of the wave vector �k and let vx = u.
Then, by applying Eq. (5) and solving Eqs. (2)–(4), we find
the dispersion relation for longitudinal waves in an EP plasma
as follows:

D(k,ω) = 1 − 4πne2

mk2

∫ ∂
∂u

(fe0(u) + fp0(u))

u − ω
k

du = 0, (6)

where D(k,ω) is the dielectric function of a field-free pair
EP plasma for the longitudinal oscillations. We then can
investigate the response of the pair plasma to an arbitrary
perturbation via the response dielectric function D(k,ω). In
general, the frequency ω which satisfies the dispersion relation
D(k,ω) = 0 is complex, i.e., ω = ωr + iωi . However, in many
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cases Re[ω(k)] � Im[ω(k)], and the plasma responds to the
perturbation a long time after the initial disturbance with
oscillations at a range of the well-defined frequencies. The
nontransient responses of the plasma to an initial perturbation
are the normal modes of the plasma. We can determine the
normal modes of the plasma from the dispersion relation
D[k,ω(k)] = 0, which gives the frequency of the plasma waves
as a function of the wave number k or vice versa. It should be
further mentioned that when we solve the Vlasov and Poisson’s
equations as an initial valve problem, here via fe0 + fp0, it
is possible to obtain the solutions with negative or positive
values of ωi , corresponding to the damped or growing waves,
respectively. This can be explicitly seen from the electrostatic
potential associated with the wave number k of the excitation
as follows:

φ1(x,t) = φ1e
i(kx−ωr t)eωi t , (7)

where a solution with negative ωi displays a damped wave,
while the solution with positive one corresponds to an unstable
mode.

With the constraint of the weak damping or growth, i.e.,
ωi � ωr , the dielectric function D(k,ω) given in Eq. (6) can
be Taylor expanded in the small quantity ωi , and then we may
explicitly find the real and imaginary parts of the dielectric
function as follows:

Dr (k,ωr ) = 1 − 4πne2

mk2
P.V.

∫ ∂
∂u

(fe0(u) + fp0(u))

u − ωr

k

du,

(8)

Di(k,ωr ) = −π

(
4πne2

mk2

)[
∂

∂u
(fe0(u) + fp0(u))

]
u= ωr

k

.

(9)

Here we have made the analytic continuation of the velocity
integral in Eq. (6) over u, along the real axis, which passes
under the pole at u = ω

k
with the constraint of weakly damped

waves, where P.V.
∫

denotes the Cauchy principal value. By
these relations and neglecting the terms of order ( ωi

ωr
)2, ωr and

ωi can be computed, respectively, from the relations [48,49]

Dr (k,ωr ) = 0, (10a)

ωi = − Di(k,ωr )

∂Dr (k,ωr )/∂ωr

. (10b)

III. LANGMUIR OSCILLATIONS WITH NONEXTENSIVE
STATIONARY STATE

Now we want to obtain the formalism and some features
of the Langmuir waves in an EP plasma in the context of
the nonextensive statistics. For this purpose we assume that
the stationary state of the plasma obeys the q-nonextensive
distribution function, instead of a Maxwellian one, which
merely describes a fully equilibrium stationary sate. The
q-distribution function in one dimension is given by [33–35]

fα0(u) = Aα,q

[
1 − (q − 1)

mαu2

2kBTα

] 1
q−1

, (11)

where mα and Tα are, respectively, the mass and temperature
of species α (α = e,p) and kB is the standard Boltzmann
constant. The normalization constant Aα,q can be written as

Aα,q = Lq

√
mα

2πkBTα

, (12)

where the dimensionless q-dependent coefficient Lq reeds

Lq =
�

(
1

1−q

)
�

(
1

1−q
− 1

2

)√
1 − q, for − 1 < q � 1, (13a)

Lq =
(

1 + q

2

)
�

(
1
2 + 1

q−1

)
�

(
1

q−1

) √
q − 1, for q � 1. (13b)

One may examine that for q > 1, the q-distribution function
(11) exhibits a thermal cutoff, which limits the velocity of

particles to the values u < umax, where umax =
√

2kBTα

mα (q−1) . For

these values of the parameter q we have Sq>1(A + B) <

S(A) + S(B) referred to the subextensivity. This thermal
cutoff is absent when q < 1, that is, the velocity of par-
ticles is unbounded for these values of the parameter q.
In this case, we have Sq<1(A + B) > S(A) + S(B) referred
to the superextensivity. Moreover, the q distribution (11) is
unnormalizable for the values of the q < −1. Moreover, the
parameter q may be further restricted by the other physical
requirements, such as finite total number of particles and
consideration of the energy equipartition for contribution
of the total mean energy of the system. Interestingly, in
the extensive limit q → 1, where S(A + B) = S(A) + S(B),
and by using the formula lim|z|→∞z−a[�(a+z)

�(z) ] = 1 [50], the
distribution function (11) reduces to the standard Maxwell-

Boltzmann distribution fα(u) =
√

mα

2πkBTα
e
− mαu2

2kB Tα . In Fig. 1,

we have depicted schematically the nonthermal behavior of
the distribution function (11) for some values of the spectral
index q in which the velocity u and the distribution function
f (u), respectively, have normalized by the standard thermal

speed vth =
√

2kBT
m

and
√

m
2πkBT

. We can see that in the

case of a superextensive distribution with q < 1 [Fig. 1(a)],
compared with the Maxwellian limit (solid curve), there are
more particles with the velocities faster than the thermal
speed vth. These are the so-called superthermal particles and
we can see the q distribution with q < 1 behave like the κ

distribution, the same as that introduced to describe the space
plasmas far from the thermal equilibrium [22]. In fact, in a
superthermal plasma modeled by a κ-like distribution (here,
the cases in which q < 1), the particles have distributed in
a wider spectrum of the velocities, in comparison with a
Maxwellian plasma. In other words, the low values of the
spectral index q correspond to a large fraction of superthermal
particle populations in the plasma. On the other hand, in the
case of a subextensive distribution with q > 1 [Fig. 1(b)],
compared with the Maxwellian limit (solid curve), there is
a large fraction of particles with velocities that are slower
than the thermal speed vth. Also, for these values of the q

parameter, we can explicitly see the thermal cutoff which limits
the velocity of particles, as mentioned before. In fact, the q

distributions with q > 1 are suitable for describing the systems
containing a large number of low-speed particles.
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FIG. 1. The nonthermal behavior of the q-nonextensive distri-
bution function and its comparison with the Maxwellian one (solid
carve): (a) Superxtensive distribution with q < 1 that behaves like the
κ distributions for superthermal plasmas. In this case, the particles
have distributed in a wider spectrum of the velocities, in comparison
with a Maxwellian distribution. (b) Subextensive distribution with
q > 1, which is suitable for describing the systems containing a large
number of low-speed particles. In this case, there is a thermal cutoff
which limits the velocity of particles.

Before deriving the normal modes of the nonextensive EP
plasma, it is necessary to discuss the condition for coherent
oscillations in the plasma. In an EP plasma both of the
electrons and positrons participate in the wave motion and
they must oscillate coherently, in response to the local wave
field. For coherent oscillations, a given group of the electrons
and positrons must be influenced only by the local electric field
of the wave. This requires that more distant fields are screened
out, so the electrons and positrons only respond to the field
that is set up within a distance which is much less than the
wavelength, which indicates that λD � λ. This is the condition
for coherent response to a perturbation by the electrons and
positrons, where λD is the Debye screening length and is given
in a charge-neutral EP plasma by

λ−2
D = 4πne2

kB

(
1

Te

+ 1

Tp

)
. (14)

Furthermore, this condition becomes increasingly stringent as
the plasma grows hotter. The reason in that the electric field

remains unscreened over a greater distance, since λD increases
with temperature by Eq. (14).

We consider the high-frequency oscillations with phase
velocity much greater than the thermal speed of the electrons
and positrons ( ω

k
� u). Then, the Cauchy principal value of

Eq. (8) may be evaluated by an expanding in u as follows:

−
∫ +umax

−umax

∂
∂u

(fe0(u) + fp0(u))

u − ωr

k

du

= k

ωr

∫ +umax

−umax

(
∂fe0(u)

∂u
+ ∂fp0(u)

∂u

)

×
(

1 + k

ωr

u + k2

ω2
r

u2 + k3

ω3
r

u3 + · · ·
)

du. (15)

Here, in order to include both cases q < 1 (superex-
tensivity) and q > 1 (subextensivity), we have denoted the
integration limits in Eq. (15) by ±umax. In fact, as discussed
earlier, the integration limits are unbounded, i.e., ±umax =
±∞, when q < 1, and they are given by the q dependent

thermal cutoff ±umax = ±
√

2kBTα

mα (q−1) when q > 1.

With the Tsallis q distribution given in Eq. (11), noting that
fα0(u) is an even function with argument u and ∂fα0

∂u
is an odd

function, one may verify the following relations for all values
of q > 1

3 :

∫ +umax

−umax

∂fα0(u)

∂u
du = 0, (16a)

∫ +umax

−umax

u
∂fα0(u)

∂u
du = −1, (16b)

∫ +umax

−umax

u2 ∂fα0(u)

∂u
du = 0, (16c)

∫ +umax

−umax

u3 ∂fα0(u)

∂u
du = −3

(
2

3q − 1

)
kBTα

mα

, (16d)

where α stands for electron and positron. The above integrals
are computed by parts and we have calculated the average
value of u2 as follows:

〈u2〉 =
∫ +umax

−umax

u2fα0(u) du = 2

3q − 1

kBTα

mα

, (17)

which requires that the parameter q must restrict to the values
of q > 1

3 . Note that for q values equal or lower than the critical
value qc = 1

3 , the mean value of u2 diverges. Therefore, we see
that the q parameter for the case q < 1 is further restricted to
the values 1

3 < q < 1, in order that the physical requirement
of energy equipartition is preserved. We emphasize that our
results here are valid both for the case 1

3 < q < 1 where the
value of umax is unbounded and also in the case q > 1 in which

umax is given by the thermal cutoff umax =
√

2kBTα

mα (q−1) . Note

that in both cases the above integrals are evaluated by limits
that are symmetric across the origin. The interested reader
may easily check the validity of Eqs. (16) and (17) for all
allowed values of q. Furthermore, in the extensive limit q → 1,
Eq. (17) reduces to the familiar energy equipartition theorem
for each degree of freedom in the Boltzmann-Gibbs statistics
as 〈 1

2mαu2〉 = 1
2kBTα .
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In the present work we shall consider Te = Tp = T which is
in agreement with the experimental works in a pure pair plasma
comprised of particles with the same dynamics [17,18]. In a
different manner, comparing the electron-electron, positron-
positron, and electron-positron relaxation time scales reveals
that the creation of a pure EP plasma with a considerable
difference in the temperature of the pairs is not possible in
practice [14]. In other words, in the creation of a pure EP
plasma the whole system reaches a common thermal state with
T e = Tp = T signifying a temperature-symmetric EP plasma.

Furthermore, it is to be noted that the q distribution given
in Eq. (11) describes the stationary state of the species α in the
framework of the Tsallis nonextensive formalism. The value
of the spectral index q is a measure that determines the slope of
the energy spectrum of the nonthermal particles and measures
the deviation from the standard thermal distribution (which
is recovered at the limit q → 1). The value of the spectral
index q is determined as a result of long-range interactions
and correlations of the whole system. Therefore, a distinction
between electrons and positrons in q may depend on the
physics of the system under consideration. Here, following
El-Tantawy et al. [51], we make no distinction between
electrons and positrons in q. From a physical standpoint, we
have considered a charge-neutral and fully symmetric pair
plasma in which the thermodynamic characteristics are equal
both in T and in q.

Now, with Eqs. (15) and (16), the real part of the dielectric
function in Eq. (8) reads as

Dr (k,ωr ) = 1 − 8πne2

mω2
r

− 3

(
8πne2

m

)
k2

ω4
r

(
2

3q − 1

)(
kBT

m

)
,

(18)

Without considering the thermal effects in Eq. (18), with
Dr (k,ωr ) = 0 we find the natural oscillation frequency in
a charge-neutral EP plasma as ωp = ( 8πne2

m
)

1
2 . However, by

including the thermal correction, the solution of the equation
Dr (k,ωr ) = 0 yields the dispersion relation for Langmuir
waves in a nonextensive EP plasma as follows:

ω2
r = ω2

p

[
1 + 3(kλD)2 2

3q − 1

]
, (19)

where λD is the Debye screening length given in Eq. (14). The
dispersion relation (19) is quite compatible with the results
presented by Iwamato [14] and Zank and Greave [15], by
considering the extensive limit q → 1.

On the other hand, by using Eq. (9) and for the q-distribution
function (11), it is straightforward to obtain the imaginary part
of the dielectric function as follows:

Di(k,ωr ) =
√

π

2
Lq

1

k3λ3
D

ωr

ωp

[
1 − (q − 1)

ω2
r

2k2λ2
Dω2

p

] 2−q

q−1

.

(20)

By Dr (k,ωr ) and Di(k,ωr ) given in Eqs. (18) and (20), we
may obtain the explicit solution of the imaginary part of the
frequency from Eq. (10b), noting that both kλD and ωi

ωr
are

assumed small. The result is as follows:

ωi = −
√

π

8
Lq

ωp

(kλD)3

[
1 − (q − 1)

×
(

1

2(kλD)2
+ 3

3q − 1

)] 2−q

q−1

, (21)

where Lq is that given in Eq. (13).
Here the solutions (19) and (21) have been derived for

the high-frequency oscillations with ω
k

� ( 2kBTα

m
)

1
2 , α = e,p,

when the condition of weak damping or growth is satisfied
with kλD � 1, indicating the coherent long-wave oscillations.
In addition, in the Maxwellian limit q → 1, the imaginary part
of the frequency in the Eq. (21) reduces to that presented by
Iwamato [14] as follows:

ωi = −
√

π

8

ωp

(kλD)3
e
−( 1

2(kλD )2
+ 3

2 )
. (22)

Note that in this extensive limit, the longitudinal oscillations
have only the (Landau) damping and no growth, because of the
negative value of the imaginary part of the frequency provided
by Eq. (22). One basic feature of our analysis is the inclusion of
the nonextensivity of the system, which is essentially a result
of the long-range Coulombian interactions of charge particles
in the plasma. The nonextensivity of the system is determined
by the spectral index q and may lead to positive or negative
values for ωi in Eq. (21). Therefore, depending on the nonex-
tensivity of the plasma, both the damping and growth may be
happening for the electrostatic oscillations in an EP plasma.

IV. DISCUSSION

Equations (19) and (21) describe the Langmuir oscillations
in a nonextensive EP plasma which satisfy the condition of
weak damping or growth by kλD � 1. Now we can investigate
the dispersion relation and the damping or growth of the
Langmuir oscillations via these solutions.

A. Dispersion relation

In Fig. 2 we have plotted the ratio ωr

ωp
as a function

of the dimensionless parameter kλD for some values of
the nonextensivity index q. The solid curve corresponds
to the extensive limit q = 1 and the other ones show the
deviations from the Maxwellian limit. It is seen that, for

0.00 0.05 0.10 0.15 0.20 0.25 0.30
1.00

1.05

1.10

1.15
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1.30

k ΛD

Ω
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Ω
p
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q 1

q 0.8

q 0.7

q 0.6

FIG. 2. The effect of the nonextensivity on the dispersion relation
of Langmuir waves, where the solid curve corresponds to the
extensive limit q → 1 and the other ones show the deviations from
the Maxwellian plasma.
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a given wavelength, the phase velocity of the Langmuir
waves increases with decreasing the value of q. We can
discuss the physical meaning of this result in the context of
the nonextensive statistics as follows. As mentioned earlier,
the q-distribution function with q < 1, compared with the
Maxwellian one (q = 1), indicates the systems with more
superthermal particles (superextensivity). On the other hand,
the q distribution with q > 1 is suitable to describe the
systems containing a large number of low-speed particles
(subextensivity). However, because of the long-range nature
of Coulombian interactions in plasma environments and the
presence of many superthermal particles in such systems,
confirmed by many astrophysical measurements (see, e.g.,
the references given in Ref. [21]), a q distribution with
q < 1 is strongly suggested for the real plasma systems or
superthermal plasmas. It is obvious that in a plasma with
more superthermal particles (q < 1), the phase velocity of
the Langmuir waves should be larger than the case with lack
of superthemal particles (q > 1), in agreement with our results
here. Therefore, it is expected that our diagrams with q < 1
in Fig. 2 are more probable for space plasma systems than
the results with q � 1. On the other hand, the experimental
analysis of electrostatic modes in a pure pair-ion plasma [18]
(that is physically akin to a pure EP plasma) confirms that
a good fit with our dispersion relation with values q < 1 is
provided.

B. Landau damping and growing oscillations

1. Superextensive or superthermal plasmas (q < 1)

The Landau damped and growing Langmuir-type modes in
a superthermal EP plasma can be discussed via the imaginary
part of the frequency given in Eq. (21) for the values of
q < 1. In Fig. 3 we have plotted the ratio ωi

ωp
with respect

to the nonextensivity index q for all allowed values of q < 1,
i.e., 1

3 < q < 1, at the limit of long wavelengths (supported
by, e.g., kλD = 0.1). It is explicitly seen that both of the
damped (ωi < 0) and growing unstable oscillations (ωi > 0)
are predicted in a superthermal EP plasma. Our numerical
analysis shows that in two q regions, i.e., 0.34 � q � 0.6 and
0.71 � q � 0.78, the longitudinal oscillations are unstable,

0.3 0.4 0.5 0.6 0.7 0.8
0.4

0.3

0.2

0.1

0.0

0.1

0.2

q

Ω
i

Ω
p

Growingoscillations
Growingoscillations

Weakly damped oscillations

Heavilydamped oscillations

FIG. 3. The imaginary part of the frequency with respect to the
nonextensivity index for q < 1 (superextensivity), which shows the
q regions for damped and growing oscillations.
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q 0.69
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0.0
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Ω
i

Ω
p q 0.69

q 0.65
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FIG. 4. The damping rate with respect to the wave number for
weakly damped Langmuir waves in the case q < 1, where with
increasing the nonextensivity index q (a) the damping rate increases
up to a critical value at the vicinity of q = 0.69, after which (b) the
damping rate decreases with q.

due to the fact that ω’s have the positive imaginary parts
and then the associated electrostatic modes will grow in time
[Eq. (7) is noted]. The physical mechanism which leads to
this instability may be explained as follows. As we expressed
earlier, the q-nonextensive distribution with q < 1 describes
a system with a large number of superthermal particles [see
Fig. 1(a)]. Therefore, our solution for the Vlasov and Poisson’s
equations with q < 1 indicates an evolution which has started
from a stationary state with a large portion of superthermal
particles. The Langmuir modes may gain energy from these
superthermal particles and result in growing oscillations in
time. In other words, this instability arises from a stationary
state which describes a superthermal plasma and, in fact, we
have obtained the solution for a nonequilibrium stationary
state.

On the other hand, the Langmuir waves have the Landau
damping in two q regions 0.6 � q � 0.71 and 0.78 � q �
0.82, because ω’s have the negative imaginary parts for these
degrees of nonextensivity in the plasma. The Landau damping
is a resonant phenomenon between the plasma particles
(electrons and positrons) and the wave for the particles moving
with nearly the phase velocity of the wave [47,48]. Noting that
the q distribution is a decreasing function with u, there are,
on average, more particles moving slightly slower than the
wave than particles moving slightly faster than the wave; if
the slower particles are accelerated by the wave, this must
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FIG. 5. The imaginary part of the frequency with respect to the
nonextensivity index for q > 1 (subextensivity). For these values
of the nonextensivity index q, the Lanqmuir waves have only the
damping and no growth.

reduce the energy of the wave, and the wave damps. Our
analysis reveals that the damping rate in the first q region,
i.e., 0.6 � q � 0.71, is small and the associated Langmuir
oscillations are weakly damped. These are the normal modes of
the plasma which would persist in several oscillation periods.
But, in the q region 0.78 � q � 0.82 the Langmuir oscillations
are heavily damped and they would disappear after a few
periods. Here we consider the weakly damped solutions which
can be considered the normal modes of the plasma and abandon
the heavily damped and the growing unstable oscillations. The
damping rate with respect to the wave number is plotted in
Fig. 4 for some values of the nonextensivity index q in the
weakly damped q region. It is seen that the Landau damping
is weak at the limit of long wavelengths (kλD � 1), as is
expected. Also, Fig. 4 shows that by increasing the value of q,
the damping rate increases up to a critical value at the vicinity
of q = 0.69, after which the damping rate decreases with q.

2. Subextensive plasmas (q > 1)

Considering the values of q > 1, we can investigate the
Langmuir oscillations in a subextensive EP plasma in which
there are a number of low-speed particles. In Fig. 5, the
imaginary part of the frequency with respect to nonextensivity
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Ω
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q 1.2

q 1.1

q 1

Landau damping in aMaxwellian EP plasma

extensive limit q 1

FIG. 6. The damping rate with respect to the wave number in the
case q > 1, including the Maxwellian limit q → 1.

index q is plotted for values of q � 1. From this graph, we
find that the Langmuir oscillations have only the damping and
no growth when q � 1. Additionally, the damping rate in this
case is small, in comparison with the case of a superthermal
plasma (q < 1), and also it decreases for higher values of q.
The physical reason is that the number of particles participating
in the resonance with the wave is small for a stationary state
with q > 1. In fact, the slope of the velocity q-distribution
function increases with q and there is even a thermal cutoff
for the particles in the case of q > 1 [see Fig. 1(b)]. This
corresponds to the presence of numerous low-speed particles
in the plasma and weak resonance with the (high-frequency)
Langmuir waves. In Fig. 6, we have plotted the damping rate
versus the wave number for some values of q > 1, including
the Maxwellian limit (q = 1). We see again that the Landau
damping is weak for long-wavelength oscillations (kλD � 1)
and it decreases with q.

V. SUMMARY AND CONCLUSIONS

In this work, we have investigated the Langmuir waves
in a collisionless and magnetic-field-free quasineutral plasma
composed of electrons and positrons on the basis of the
nonextensive statistics. We have thereby used a kinetic theory
model by employing the Vlasov and Poisson’s equations to
obtain the response dielectric function of the EP plasma
to an arbitary perturbation. The dispersion relation and
properties of the Langmuir waves are discussed here and it
is shown that by decreasing the nonextensivity index q the
phase velocity of the Langmuir waves increases, indicating
a plasma with more superthermal particles. Furthermore, it
is found that depending on the degree of nonextensivity of
the plasma, both the damping and growth may occur for
the longitudinal oscillations in a collisionless EP plasma,
arising from a resonance phenomenon between the wave and
nonthermal particles of the plasma. In the case of q < 1
(superextensivity), both the damped and growing unstable
oscillations have been predicted in the plasma, while in the case
of q > 1 (subextensivity) the Langmuir oscillations have only
damping and no growth. The mechanism which leads to the
damping is the same as that developed by Landau [47], arising
from a decreasing distribution function with velocity, but the
growing unstable oscillations are somewhat unexpected and
its mechanism lies in the heart of the nonextensivity. We have
postulated that the concerned instability can be associated with
the presence of numerous superthermal particles (in the case
q < 1), which may give energy to the wave in the resonance
process and results in growing oscillations in time. This
instability disappears in the case of q > 1, describing a plasma
with a great number of low-speed particles. Additionally, the
damping rate in the case q > 1 is smaller than in the case of
q < 1, because of the difference in the number of the particles
participating in the resonance with the wave.

We emphasize that in the present work, we have considered
an inhomogeneous plasma in a nonequilibrium thermal state by
considering the q-nonextensive distribution for the stationary
state of the plasma. Therefore, it is reasonable that our results
should differ from those of a homogeneous and equilibrium EP
plasma, where the growing oscillations are not predicted [14].
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Nevertheless, we have noted that our resultant solutions at
the extensive limit q → 1 are consistent with the ones for a
homogeneous and equilibrium EP plasma in the BG statistics.
In fact, the properties of the Langmuir oscillations derived
here are suitable for plasmas in a nonequilibrium stationary

state with inhomogeneous temperature which contain many
superthermal or low-speed particles. We hope that this study
would be useful for the explanation of the typical modes in a
pure EP plasma (or pure pair-ion plasma) which are out of the
scope of the BG statistics.
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