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Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas
when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the
dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type
velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of
the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and
of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a
symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of
the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that
the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles
interacting simultaneously with two or more waves at resonances of different natures and orders are discussed,
showing that such complex processes determine the main characteristics of the wave spectrum’s evolution.
Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of
the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth,
characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied
by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe
on the wave-particle dynamics is also discussed.
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I. INTRODUCTION

So-called electron and ion horseshoe distributions are shell-
like distributions that can arise in space and laboratory plasmas
when particle beams propagate into increasing magnetic fields
B due to the conservation of the first adiabatic invariant v2

⊥/|B|,
where v⊥ is the velocity of particles in the plane perpendicular
to B. Such distributions were often observed by satellites
and rockets in the earth’s magnetosphere [1–6] or in the
laboratory [7,8] and are also expected to arise in planetary
and stellar magnetospheres where energetic electron fluxes
are streaming in inhomogeneous magnetic field configurations
[9,10]. In particular, horseshoe distributions are believed to
be a free energy source for the auroral kilometric radiation
or emissions from other astrophysical objects such as stars,
through the mechanism of cyclotron maser instability [11].
The waves excited by such anisotropic distributions f (vz,v⊥)
(vz is the velocity of particles along B) through shell-type
instabilities draw their energy from the positive derivative
∂f/∂v⊥ > 0; such processes are believed to be very efficient
and considerably stronger than loss cone-type instabilities
[12].

However, horseshoe distributions can also excite waves in
quite different situations as, for example, in nonrelativistic
and overdense plasmas (with the electron plasma frequency
ωp much higher than the electron cyclotron frequency ωc)
where the conditions favorable for efficient cyclotron maser
instability are not met. Recently, observations from the Cluster
spacecraft in overdense plasmas of the cusp, mantle, or polar
cap have shown that electrostatic and electromagnetic wave
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emissions above ωp are associated with the presence of
low-energy electron shell-like distributions presenting positive
gradients ∂f/∂v⊥ > 0 [13]. In this case, as well as in those
mentioned above, the densities of the hot and cold electron
populations were supposed to be of the same order. Nev-
ertheless, low-energy horseshoe distributions with densities
much smaller than the ambient plasma can also destabilize
waves through Landau and cyclotron resonant mechanisms, as
shown in this paper. In particular, the gradient ∂f/∂v⊥ > 0 can
excite electrostatic waves above ωp that propagate obliquely
to the magnetic field. Such waves, as well as electron cyclotron
emissions, both driven by the gradient ∂f/∂v⊥ > 0, have been
observed in space and the laboratory together with shell-like
distributions (see, e.g., [7,14]) or studied numerically (see,
e.g., [15]).

In order to study the dynamics of an electron horse-
shoe distribution interacting resonantly with electrostatic
wave packets, a three-dimensional Hamiltonian model and
a symplectic code have been built. The theoretical approach
allows us to split the particle velocity distribution into two
populations: (i) the nonresonant bulk, i.e., the ambient plasma
supporting the wave dispersion, and (ii) the so-called resonant
electrons forming the horseshoe, which interact strongly with
the waves at different resonance conditions and whose density
is much smaller than that of the ambient plasma nres/n0 � 1.
This situation is worth studying as even low-density shell-type
distributions can generate waves of finite amplitudes. Those
can be destabilized above ωp through resonant mechanisms
where Landau, normal, and anomalous cyclotron resonances
compete. The waves’ saturation and the horseshoe relaxation
result from complex processes where particle trapping and
velocity diffusionlike phenomena occur. In particular, the role
of the normal cyclotron resonances and their harmonics in
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the dynamics of the system’s, the simultaneous interaction
of particles with waves at multiple resonances of different
nature or order, and the coupling of waves through their
interaction with common groups of particles (note that wave-
wave coupling processes are not included in the model) are
discussed on the basis of the simulations’ results.

The paper is organized as follows. After the determination
of the instability growth rates using linear theory and the
study of their dependences on the ratio of the plasma to the
cyclotron frequency, on the velocity and the opening angle
of the horseshoe, and on the relative thickness of the shell
(Sec. II), numerical simulations are performed for various
horseshoe distributions and wave packets. Section III presents
and discusses the wave-particle dynamics successively for the
case of a single wave, a few waves, and a wave packet with a
quasicontinuous spectrum. Section IV summarizes and states
our conclusions. The theoretical model and the numerical code
are presented in the Appendix.

II. INSTABILITY OF HORSESHOE DISTRIBUTIONS

The instability growth rate γk of a wave of frequency ωk

and wave vector k destabilized by hot electrons with horseshoe
and shell-like velocity distributions fe can be calculated in
the frame of kinetic theory using the well known formula
(γk � ωk)

γk = πkz

|kz|
(

∂εk

∂ωk

)−1 ω2
pr

k2

∞∑
n=−∞

×
∫ ∞

0
d(πv2

⊥)J 2
n

(
k⊥v⊥
ωc

)

×
∫ ∞

−∞
dvzδ(vz − vzn)

(
∂fe

∂vz

+ nωc

kzv⊥

∂fe

∂v⊥

)
, (1)

which is valid for electrostatic waves of any nature in a
magnetized plasma (including cyclotron and lower- and upper-
hybrid waves). Here

vzn = ωk − nωc

kz

(2)

is the resonant velocity of the wave, with resonance number
n, and

εk = 1 − ω2
p

ω2
k

k2
z

k2
− ω2

p

ω2
k − ω2

c

k2
⊥

k2
− ω2

pi

ω2
k

(3)

is the plasma dielectric constant of the wave (ions are
supposedly not magnetized); ωpand ωpi are the electron and
ion plasma frequencies; ωc is the electron cyclotron frequency;
ωpr is the plasma frequency of the resonant electrons with
density nres , ω2

pr = 4πnrese
2/me; nres is supposed to be much

smaller than the ambient plasma density n0, nres/n0 � 1
(see also the model in the Appendix); kz and k⊥ are the
wave numbers parallel and perpendicular to the constant
magnetic field B0, respectively, with k2

z + k2
⊥ = k2; vz and

v⊥ are the parallel and perpendicular velocities; fe(vz,v⊥) is
the velocity distribution of the resonant electrons, normalized
as

∫
fed

3v = 1; and Jn is the Bessel function of order n.
Further we consider only dense and/or weakly magnetized

plasmas with ωp � ωc and upper-hybrid waves, whose insta-
bility is developing most rapidly. In this case Eq. (3) provides

the approximated dispersion relation (in a cold plasma without
thermal effects)

ω2
k � ω2

p + ω2
c

k2
⊥

k2
z + k2

⊥
, (4)

with ∂εk/∂ωk � 2/ωk .
In the general case, for horseshoe and shell distributions,

calculations of the growth rates using Eq. (1) require a
numerical approach. However, one can get a simple and
convenient expression of γk for a narrow horseshoe distribution
of the form fe(v,θ ) = f (v)	(θ ); v and θ are the conventional
spherical coordinates, where v is the modulus of the velocity
v and θ is the angle between v and B0. Passing in Eq. (1) from
the cylindrical coordinates (v⊥,vz) to the spherical ones using
vz = v cos θ and v⊥ = v sin θ and integrating on the angle θ

we obtain

γk = π2ωk

ω2
pr

k2

∞∑
n=−∞

∫ ∞
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(
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kz

)
	(θv)

]
, (5)

where cos θv = vzn/v. For an extremely thin horseshoe dis-
tribution of velocity v0, one can use the approximation
f (v) = A0δ(v − v0) so that the integration on v provides the
normalized growth rate

γk

ωk

= π2
ω2

pr

k2
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⎡
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⎦ , (6)

where z = k⊥
√

v2
0 − v2

zn/ωc and θv0 = arcsin(
√

1 − v2
zn/v

2
0). If

	(θ ) is a smooth function, i.e., ∂	(θv0 )/∂θv0 tends to zero, the
first term in Eq. (6) is small. Let us consider, for example, that
	(θ ) = 1 − H (θ − θ0) (H is the Heaviside function and θ0

can be referred to as the opening angle of the horseshoe).
In this case the coefficient A0 = [(1 − cos θ0)2πv2

0]−1 is
obtained from

∫
fe(v,θ )d3v = 1. The first term in Eq. (6)

is not negligible only at the boundary of the distribution
where ∂	(θv0 )/∂θv0 → δ(vzn/v0 − cos θ0). Thus, excluding
the waves with resonant velocities satisfying vzn = v0 cos θ0

we get

γk

ωc

� − π

2(1 − cos θ0)

sin θv0

| sin θv0 |
ωc

|kz|v0

ω2
k

ω2
c

ω2
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ω2
c

nres

n0

k2
⊥

k2

×
∑

v2
0>v2

zn

1

z

∂J 2
n (z)

∂z
, (7)

which in the limit of the shell distribution 	(θ ) = 1 matches
the formula obtained in [15].
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Numerical calculations of γk using Eqs. (1) and (6) show
that the assumption of infinitely thin distributions [providing
Eqs. (6) and (7)] are sufficiently accurate if the thickness of the
horseshoe (i.e., the scattering of its velocity v0) is very small,
i.e., 
v0 �

√∫ ∞
0 (v − v0)2fe(v)dv � v0/40. The growth rates

are calculated using the general formula (1) and the horseshoe
distribution with thickness σ [3]:

fe(v,θ ) = A exp

[
−

(
v − v0

σ

)2
]

(b cos θ + a)2H (θ − θ0),

(8)

where θ0 is the horseshoe angle. In the figures all results are
presented using the dimensionless variables γk/ωc, kzρ, and
k⊥ρ, where ρ = vT /ωc is the Larmor radius and vT is the
electron thermal velocity.

An important feature of the horseshoe instability is that
its growth rate γk is determined by the sum of several
non-negligible resonance terms or, in other words, by the
interaction of the wave with several groups of particles of
different velocities. This obviously follows from (7) and is
confirmed by numerical calculations. Moreover, as a result, the
complex dependence of the growth rate on the wave vectors is
characterized by the presence of many local maxima of γk in
the plane (k⊥ρ,kzρ).

The growth rate depends on several parameters charac-
terizing the hot electrons and the plasma. Some of these
dependences are simple, such as the proportionality of the
maximum growth rate γmax to the ratio of the horseshoe to
the ambient plasma densities nres/n0, resulting from Eq. (1);
the others are studied below. Let us first consider how the
thickness of the horseshoe affects γk and the values of the
wave vectors of the most unstable waves. Figures 1(a) and
1(b) show the variation of γk/ωc in the plane (k⊥ρ,kzρ) for
(a) a thin and (b) a thick horseshoe distribution, computed
using Eq. (1). Note that the calculations of γk/ωc using Eq.
(7) (not shown here) are in good agreement with Fig. 1(a).
For a thin horseshoe, Fig. 1(a) reveals the existence of
several local maxima among which the largest is located
near k⊥ρ � 1.1 and kzρ � 1.85 with γmax/ωc � 0.006. This
maximum is mainly due to the Landau resonance n = 0; the
normal cyclotron resonance harmonics n > 1, even if they
also contribute to the wave growth in the same wave-number
ranges as the main resonance n = 1, are responsible for
instability in the lower part of the (k⊥ρ,kzρ) plane (kzρ � 1.6);
the anomalous cyclotron harmonics n < 0 also contribute to
growth, but at higher values of kz [not visible in Figs. 1(a) and
1(b)]. Comparing Figs. 1(a) and 1(b), one observes that when
the thickness of the shell is larger, γmax is smaller [γmax/ωc �
0.0023 near k⊥ρ � 2.5 and kzρ � 0.3 for Fig. 1(b)]; however,
the maximum growth rate is not due to the Landau resonance,
but mainly to the higher-order resonances n > 1, whereas
the islands where γk > 0 in Fig. 1(a) (corresponding to
n � 0) have merged. Thus, for a larger thickness, γmax is
reduced, but the energy extraction at the normal cyclotron
resonances is stronger than at the Landau resonance. Moreover,
the differences between Figs. 1(a) and 1(b) make evident
that Eq. (7) is not applicable for σ � v0/40. Finally, the
dependence of γmax/ωc on σ is well described by the power law
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k
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c
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FIG. 1. (Color online) Variation of the normalized growth rate
γk/ωc in the plane (k⊥ρ,kzρ) for (a) a thin horseshoe and (b) a
thick horseshoe, calculated using Eq. (1), for ωp/ωc = 8.5, v0 = 5,
θ0 = 137◦, nres/n0 = 0.0001, a = 1, and b = 0, and (a) σ � v0/40
and (b) σ � v0/10. All resonances are taken into account in (1), i.e.,
n < 0, n = 0, and n > 0. The regions of instability (γk > 0) and the
corresponding isocontours are represented by gray (colored) surfaces
and white lines, respectively (the red contours visible online are the
boundary lines where γk = 0). The maximum growth rate is located
near (a) (k⊥ρ � 1.1,kzρ � 1.85) and (b) (k⊥ρ � 2.5,kzρ � 0.3).

γmax/ωc ∝ (σ/v0)−0.5 for σ � v0/10; then, when increasing σ,

the decrease of γmax becomes faster.
The necessity to take into account the contributions of

higher-order resonances is illustrated by Fig. 2, where γmax/ωc

is calculated as a function of the opening angle θ0 using
Eq. (1), with the following resonances included: (i) n = 0
only (stars), (ii) n = 1 only (circles), and (iii) all resonances
(triangles); note that the contribution of the resonances n < 0
is negligible in the regions of the (k⊥ρ,kzρ) plane considered.
The following important point has to be stressed: For (i) and (ii)
the wave number kz maxρ corresponding to γmax is around 0.6,
whereas for (iii), kz maxρ � 0.04; the higher-order resonances
shift γmax to significantly lower values of kz. One can see that
the growth rates γmax are the largest at small angles (θ0 � 50◦)
and decrease monotonically as a function of θ0 at bigger
angles. The Landau resonance n = 0 contribution overcomes
that of the normal cyclotron resonances only at very small
angles θ0 � 20◦. However, normal cyclotron resonances are
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FIG. 2. Variation of the maximum normalized growth rate
γmax/ωc as a function of the horseshoe angle θ0 (in degrees) for the
following resonances: (i) n = 0 only (stars), (ii) n = 1 only (circles),
and (iii) all resonances n (triangles). For (i) and (ii), kz maxρ � 0.6 and
for (iii), kz maxρ � 0.04. The main parameters are ωp/ωc = 3, v0 = 5,
σ � v0/20, b = 0, a = 1, and nres/n0 = 0.0001.

responsible for the main growth of waves for almost all angles
θ0 � 20◦ and the contribution of the higher harmonics n > 1,
which is almost always larger than that of the fundamental
n = 1, is shown to be essential. One should note that if the
maximum growth rates correspond to different domains of
wave numbers for each kind of resonance (kz max decreases
when n increases, contrary to k⊥max), waves destabilized by
Landau and normal cyclotron resonances present rather close
phase velocities (e.g., 
vzn/vzn � 0.1, vzn � 4) and thus
compete together when interacting with the same group of
particles; this feature has important consequences for what
concerns the wave-particle evolution, as we will see below.

Calculations show that the dependence of γmax on the
horseshoe velocity v0 � vT is weak (not shown here). The
contribution of the normal cyclotron resonances n � 1 to
γmax/ωc does not depend on v0, but the position of γmax in the
plane (k⊥ρ,kzρ) is sensitive to v0 as the corresponding kz max

and k⊥max are proportional to v−1
0 . However, the contribution

of the Landau resonance n = 0 to γmax is proportional to v0.
Another important parameter that controls the instability

is the ratio ωp/ωc of the plasma to the cyclotron frequency.
Figure 3 shows the variation of γmax/ωc with ωp/ωc when
the following resonances are included: (i) n = 0 only (stars),
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FIG. 3. Variation of the maximum normalized growth rate
γmax/ωc as a function of the plasma ratio ωp/ωc for the resonances (i)
n = 0 only (stars), (ii) n = 1 only (circles), and (iii) all resonances n

(triangles). Note that for (iii), kz maxρ � 0.02, whereas for (i) and
(ii), kz maxρ � 0.6. This figure should be examined together with
Table I. The main parameters are v0 = 5, σ � v0/20, b = 0, a = 1,
and nres/n0 = 0.0001.

(ii) n = 1 only (circles), and (iii) all resonances (triangles); one
observes the growth of γmax with ωp/ωc as well as the essential
role of the higher-order cyclotron resonances [in particular at
high ωp/ωc]. As revealed by Figs. 1 and 2, two main regions
of maximum local growth rate exist, at small kzρ and at
larger kzρ, which are markedly separated from each other,
so the parallel wavelengths of the unstable waves in these two
areas differ significantly. Table I (complementary to Fig. 3)
summarizes the values of γmax/ωc and the corresponding
wave numbers kz maxρ and k⊥maxρ as a function of ωp/ωc

for these two instability regions [the subscript 1 refers to
the region at small kzρ and the subscript 2 to the rest of the
(k⊥ρ,kzρ) plane]. One can see that for small ωp/ωc the values
of (γmax/ωc)1 and (γmax/ωc)2 are close, but for ωp/ωc � 8.5
the difference between them begins to rise sharply, reaching a
ratio (γmax/ωc)1/(γmax/ωc)2 � 5 at ωp/ωc = 20.5.

Discussing the behavior of the instability at small kz, note
the specific case of the so-called double plasma resonance con-
dition, i.e., when ωk � nωc; then, as kz = (ωk − nωc)/vzn →
0, the wave with the largest parallel wavelength can be excited
and interact with the hot electrons at the finite resonant
velocity vzn. For upper-hybrid waves, this condition occurs
at ωp � nωc, i.e., n = integer (ωp/ωc); then the contribution
of the corresponding term in Eq. (7) becomes dominant and

TABLE I. Normalized values of the maximum growth rates γmax/ωc and corresponding wave numbers kz maxρ and
k⊥maxρ as a function of ωp/ωc for the two instability regions; the subscript 1 refers to the domain at small kzρ (see
also Fig. 1) and the subscript 2 to the rest of the (k⊥ρ,kzρ) plane. The parameters are the same as in Fig. 3.

ωp/ωc (γmax/ωc)1 (γmax/ωc)2 (kz maxρ)1 (kz maxρ)2 (k⊥maxρ)1 (k⊥maxρ)2

3.5 6.1 × 10−4 7.5 × 10−4 0.18 0.77 1.43 0.75
6.5 0.0025 0.0021 0.18 1.39 2.23 0.97
8.5 0.0044 0.0028 0.18 1.79 2.76 1.12
11.5 0.0079 0.0033 0.18 2.37 3.53 1.37
14.5 0.012 0.0036 0.18 2.95 4.31 1.64
17.5 0.0163 0.004 0.18 3.16 5.08 2.65
20.5 0.0205 0.0046 0.17 3.18 5.08 2.65
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the growth rate can be written as

γk � − π

(1 − cos θ0)

ω2
k∣∣ωp

(
1 + 1

2n2
k2
⊥

k2
z +k2

⊥

) − nωc

∣∣
× |vzn|

v0

nres

n0

ω2
p

ω2
c

k2
⊥

k2

∂J 2
n (zn)

∂z2
n

, (9)

where the wave vectors of the most unstable waves have to
be determined using the double resonance condition as well
as zn = k⊥

√
v2

0 − v2
nz/ωc = zn max [at zn max the maximum of

∂J 2
n (zn)/∂z2

n is reached]. The presence of a singularity at
ωp/ωc = n3/(n2 + 1/2) (ωp/ωc > 1/2) in Eq. (9) indicates
that the conditions for kinetic instability are broken. In fact,
under the conditions of double resonance, upper-hybrid waves
with kz → 0 become unstable (see [16,17] and Chap. 8.4
of [18]) and this instability is hydrodynamic. Note that the
exact consideration of this case requires the inclusion of
relativistic effects [19]. In view of the above, the study of
the wave instability near the double resonance is beyond the
scope of this paper and requires a separate consideration. In
particular, it should be noted that in Fig. 3 it is not possible to
interpolate the dependence of γmax/ωc on ωp/ωc to waves with
frequencies corresponding to the double resonance condition.

In conclusion, horseshoe distributions can destabilize
upper-hybrid waves in large (k⊥ρ,kzρ) domains, with growth
rates resulting from a competition between the resonances
n = 0,1 and the higher-order normal cyclotron resonances
n > 1. Some interesting features of the instability have been
studied, mainly the dependence of the maximum growth rates
on the horseshoe angle, thickness, and velocity as well as on
the plasma ratio ωp/ωc. Note that if the contribution of the bulk
particles of density n0 (described by a Maxwellian of thermal
velocity vT ) to the growth rates is taken into account (which is
not the case here in the frame of our approach), γk is reduced
but not crucially diminished: The cold Maxwellian bulk does
not suppress the horseshoe instability if v0 � 
v0,vT .

III. NUMERICAL SIMULATIONS

The numerical simulations are based on a three-dimensional
theoretical model that describes the quasilinear evolution of
electrostatic waves interacting resonantly with particles in
a magnetized plasma (see the Appendix and [20,21]). This
model can be considered as an alternative to the so-called
quasilinear theory of weak turbulence usually applied to
study the nonlinear stage of interactions between waves and
particles. Such an approach of the wave-particle interaction
was developed and used in previous works, including ours,
and its efficiency and validity have been proved for different
physical situations by comparing its results with experimental
observations as well as with numerical simulations based on
other methods.

We investigate here the nonlinear dynamics of electrostatic
upper-hybrid waves interacting with a flow of electrons
presenting a horseshoe-type velocity distribution. Assuming
that the density nres of the hot electrons is small with respect
to that of the ambient plasma density, we take into account only
the interactions of the resonant particles with the waves, i.e.,
for which the resonance conditions ωk − nωc − kzvz = 0 are

fulfilled. We suppose also that the waves’ amplitudes are small,
even at well developed nonlinear stages; thus it is possible
to neglect the nonlinear processes of wave-wave coupling.
All results are presented below in a dimensionless form:
The velocities and the waves’ electric fields are normalized
by the thermal velocity (v/vT → v) and the thermal energy
(|Ek|2/16πn0Te → |Ek|2, Te is the electron temperature of the
bulk), respectively.

A. Dynamics of the resonant wave-particle interaction

Let us first consider the case of a single wave, which can
be used to present and illustrate some important features of
the resonant wave-particle interactions. We choose a wave
(kzρ = 0.54 and k⊥ρ = 0.99) and a horseshoe distribution
(v0 = 5, θ0 = 137◦, σ � v0/20, a = 1, and b = 0) in a such
way that the particles can interact with the wave only at
the normal cyclotron resonance n = 1 and its harmonics
(n = 2–5), the resonant velocities vzn corresponding to the
other resonance numbers n verifying |vzn| > v0 (see also
Fig. 5). Figure 4 shows the time dependence of the electric field
energy density Wk = |Ek|2 and the corresponding variation
of the total kinetic energy density of the particles, E =
(nres/n0)

∑
p(v2

p − v2
p0) ∝ 〈
v2〉; the inset presents |Ek|2(t)

on a logarithmic scale for ωct/2π < 140. The growth rate of
the wave instability, obtained by the simulation in the linear
stage of the evolution, is γk/ωc � 0.057 (see the inset), which
is consistent with the value γk/ωc � 0.06 calculated using
Eqs. (1) and (7). The balance between the kinetic energy
and the wave energy holds with high accuracy, which is
also the case for all of the calculations discussed below. The
parallel and the perpendicular kinetic energy densities of the
particles, i.e., Ez ∝ 〈
v2

z 〉 and E⊥ ∝ 〈
v2
⊥〉, are decreasing

as E (not shown here): The particles lose energy along and
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FIG. 4. Case of a single wave: variation with the normalized time
ωct/2π of the wave energy and the total kinetic energy densities Wk =
|Ek|2 (upper curve) and E = (nres/n0)

∑
p(v2

p − v2
p0) (lower curve),

respectively, in arbitrary units. The inset shows the time variation of
|Ek|2 on a logarithmic scale for ωct/2π < 140. The main parameters
are ωp/ωc = 3, v0 = 5, θ0 = 137◦, σ � v0/20, nres/n0 = 0.023, a =
1, and b = 0.
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FIG. 5. (Color online) Isocontours of the particle distribution in
the plane (vz,v⊥) for two moments of time at the initial and final
stages of the simulation: (a) ωct/2π = 12 and (b) ωct/2π = 573,
respectively. The vertical lines mark the positions of the resonant
velocities vzn for n = 0 (red) and n = 1–5 (blue), i.e., vz0 � 5.82,
vz1 � 3.98, vz2 = 2.13, vz3 = 0.24, vz4 = −1.62, and vz5 = −3.48.
(a) The invariants of the motion, i.e., the lines nωcvz/kz − v2

⊥/2 � C
(10), are shown for n = 1–5 [dashed (blue) curves] as well as
the projections of five test particles trajectories [thick gray (pink)
segments on the dashed lines]. (b) The five groups of particles
involved in the interaction at each resonance n = 1–5 form structures
elongated along the conservation lines. The parameters are the same
as in Fig. 4.

across the magnetic field, transferring it to the wave that
grows exponentially and then saturates by particle trapping
near ωct/2π � 20, reaching |E2

k |s � 0.035.
Figures 5(a) and 5(b) show the isocontours of the particle

distribution function in the plane (vz,v⊥) for two moments
of time, at (a) the initial and (b) the final stages of the
simulation. The vertical lines mark the positions of the resonant
velocities vzn for n = 0–5. One can see that the wave interacts
with different groups of particles and that the distribution
is essentially modified in the vicinity of the velocities vzn

for n = 1–5. The role of the higher-order harmonics n > 1
of the normal cyclotron resonance n = 1 appears to be
determinant, in the linear stage (as expected from the above
linear calculations) as well as in the nonlinear stage. Each
group of particles interacting with the wave at different n

diffuses to perpendicular velocities lower as well as higher
than v0 and is trapped by the wave, the electrons performing
the vibrational motion along the conservation lines

nωc

kz

vz − v2
⊥
2

� C, (10)

moving both below and above their initial perpendicular
velocity (C is a constant). This behavior is typical of wave-
particle interaction at cyclotron resonances (see [20–22]) and
corresponds to the invariant motion of particles in a wave
field of quasiconstant amplitude [23]. Note that for normal
cyclotron resonances n � 1, the slope 
v⊥/
vz = nωc/kzv⊥
of the line (10) at v⊥ and the wave number kz have the same
sign. In Fig. 5(a) the projections of five test particle trajectories
on the plane (vz,v⊥) are shown, each forming a tight line with
slope nωc/kzv⊥ at v⊥.

Finally, the variation of the wave energy density |Ek|2max
at saturation (first maximum) and the time Ts at which it
occurs have been calculated as a function of the density
ratio nres/n0 for the parameters of Figs. 4 and 5. One finds
that |Ek|2max ∝ (nres/n0)3, whereas Ts scales as (nres/n0)2

below some threshold (nres/n0 � 0.002) and is exponentially
decreasing above it. Such scaling of |Ek|2max with (nres/n0)
was also observed for loss cone instabilities destabilized at
normal cyclotron resonances [21,22].

If there are a few or many waves, the situation changes
dramatically. Indeed, due to the modifications of the particle
distribution during the time evolution, the waves that were
stable initially can be destabilized after some time and begin to
grow. Moreover, their amplitude can exceed that of the waves
dominating in the initial stage of the relaxation. In addition,
the same group of particles can be simultaneously in resonance
with two or more waves, so the trajectories of these electrons
become more complex than what we described above. As a
result, particle diffusion in velocity space may increase, which
contributes to a faster and stronger relaxation of the electron
distribution. To analyze this problem, let us consider as a
first step the case of four waves. The selected waves have
close frequencies ωk = [3.115,3.123,3.129,3.126] and their
wave numbers are kzρ = [0.625, − 0.650,0.537,0.562] and
k⊥ρ = [0.913,1.076,0.990,0.990]; note that the parallel wave
number of the second wave is pointing in the direction opposite
to the other ones (as well as to the ambient magnetic field),
i.e., kzρ(2) ≡ kz2ρ < 0. The corresponding resonant velocities
are the following: (i) for n = 0 (Landau resonance), vz0 =
[4.984, − 4.805,5.821,5.558]; (ii) for n = −1 (anomalous
cyclotron resonance), vz(−1) = [6.584, − 6.343,7.682,7.336];
and (iii) for n = 1 (normal cyclotron resonance), vz1 =
[3.384, − 3.266,3.961,3.780]. Below we attribute a number to
each wave, which corresponds to its rank in the lists of values
given for ωk , kzρ, k⊥ρ, and vzn; for example, the third wave
has a Landau resonant velocity vz0(3) = 5.821. The initial
particle distribution and the plasma parameters are the same
as in Figs. 4 and 5 (single-wave case). Note that for all the
waves, there are no particles interacting at n = −1 resonances
(as v0 < |vz(−1)|) and only the fourth wave can interact with
particles at the Landau resonance (at vz0 = 5.558). Owing to
the nearness of the frequencies and the wave vectors, most of
the higher-order cyclotron resonant velocities vzn with n > 1
verify |vzn| < v0, so it is possible to study the dynamics of the
particles interacting with them.

Figure 6 shows the variation with time ωct/2π of (a) the
energy density |Ek|2 of each wave and (b) the total energy
density W = ∑

k|Ek|2 of the waves (upper curve) as well as
the total, the parallel, and the perpendicular kinetic energy
densities of the particles, E , Ez, and E⊥ (lower, dashed, and
thin curves, respectively). The insets in both panels present
the time evolution of the same quantities, but for the initial
stage of the simulation when ωct/2π � 120. In contrast to
the single-wave case discussed above, attention is drawn to
the nonmonotonic evolution of the energy densities of the
waves [Fig. 6(a)] and the particles [Fig. 6(b)]. The second
and third waves grow more quickly than the others and reach
saturation at first near ωct/2π � 50 [see the inset of Fig. 6(a)];
then the second wave’s amplitude drops to almost vanish,
whereas the energy of the third one continues to grow, but
not exponentially. Thus there is a redistribution of energy
between these waves during their interactions with one or more
groups of common resonant particles. Meanwhile, the fourth
wave grows slowly and reaches its first saturation at a lower
level around ωct/2π � 150. From this stage of the evolution
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FIG. 6. (Color online) Case of four waves: (a) variation with
time ωct/2π of the energy density Wk = |Ek|2 of each wave, which
is labeled by its number (see also the text), and (b) variation with
time of the total energy density W = ∑

k|Ek|2 of the waves [upper
(blue) curve] as well as the total [lower black curve], the parallel
(upper middle dashed curve), and the perpendicular [lower middle
gray (pink) curve] kinetic energy densities of the particles, E , Ez,
and E⊥, respectively. The insets in (a) and (b) present the same time
evolutions, but for the initial stage of the simulation when ωct/2π �
120. The main parameters are ωp/ωc = 3, v0 = 5, θ0 = 137◦, σ �
v0/20, nres/n0 = 0.008, a = 1, and b = 0.

up to ωct/2π � 1000, the variations of the parallel and the
perpendicular kinetic energies are roughly the same and vary
only slightly.

Further, between ωct/2π � 1000 and 1600, the third
wave’s amplitude increases dramatically, whereas a simulta-
neous energy growth of the fourth and first waves occurs. Note
that these waves have a common group of resonant particles
in the vicinity of vz � −3.3 at vz5(1,3,4) = {−3.016, −
3.481, − 3.331} (n = 5) [whereas vz1(2) = −3.266 (n =
1)] as well as near vz � −1.7 at vz4(1,3,4) = {−1.416, −
1.621, − 1.553} (n = 4) [whereas vz2(2) = −1.728 (n = 2)].
The simultaneous increase of energy of these three waves is
partly due to the expansion of the total width of resonance
and, consequently, to the increase of the number of particles
entering in the energy exchange with them; however, a more
important effect is apparently the change in nature of the
particles’ motion, which interact at multiple resonances with
several waves (see below). Note that there is a sharp decrease
of the perpendicular kinetic energy E⊥, while the energy of
the parallel particle motion presents only small variations.
Then, near ωct/2π � 1600 the dynamics of the waves again
changes dramatically: The fourth wave continues to grow and
its growth is accompanied by a clear decrease of the third
wave’s energy. In this process, the perpendicular energy of
the particles increases markedly, which is conditioned by the
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FIG. 7. (Color online) Case of four waves: isocontours of
the horseshoe distribution in the plane (vz,v⊥) for two moments
of time (a) ωct/2π � 60 and (b) ωct/2π � 6446. The resonant
velocities of the high-order normal cyclotron resonances n = 2–5
are the following (vz0, vz1, and vz(−1) are given in the text): vz2 =
[1.784, − 1.728,2.10,2.003], vz3 = [0.184, − 0.189,0.240,0.225],
vz4 = [−1.416,1.349, − 1.621, − 1.553], vz5 = [−3.016,2.888,

− 3.481, − 3.331]; all these velocities are represented by vertical
lines in (a) and (b), except for most of the velocities vz(−|n|) at the
anomalous cyclotron resonances, which are beyond the domain of
the particles’ velocities (blue, red, and green lines for vz(|n|), vz0,
and vz(−|n|), respectively). In (b) the projections of five test particle
trajectories are superimposed on the distribution, forming gray
(pink) areas (see Fig. 8 for enlarged views). The parameters are the
same as in Fig. 6.

almost complete attenuation of the third wave. Next a steady
state is set in which almost all the field energy is concentrated
in the fourth wave.

All these variations of the waves’ and particles’ energies
are due to the complex dynamics of particles interacting si-
multaneously at different resonances n with several waves. To
illustrate this, Fig. 7(a) presents the isocontours of the electron
distribution in the plane (vz,v⊥) at time ωct/2π � 60, when
the second and third waves have reached their first saturation
level [Fig. 6(a)]. Figure 7(b) shows the horseshoe distribution
at a further time ωct/2π � 6446, when the asymptotic steady
state is installed, superposed on the projections of five test
particle trajectories. One observes that, along with the particles
oscillating along the invariant lines (10), some trajectories
present amazing features. Let us examine them in more detail
on the enlarged views of Fig. 8.

Figure 8(c) shows the trajectory of a test particle oscil-
lating under the influence of waves 1, 3, and 4, interacting
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FIG. 8. Case of four waves: enlarged views of the four trajectories of Fig. 7(a). (a)–(c) Superposition in the plane (vz,v⊥) of (i) the
isocontours of the horseshoe distribution, (ii) the vertical lines representing the resonant velocities, (iii) the invariant lines of motion for the
main resonances, which are crossing here (oblique lines), and (iv) the projections of four test particles’ trajectories, forming black areas.
(a) and (b) The test electrons interact at high-order normal cyclotron resonances n > 1 with the waves. (a) The left-hand-side trajectory crosses
the resonant velocities vz2(2) � −1.727 (n = 2) as well as vz4(1) � −1.416, vz4(3) � −1.620, and vz4(4) � −1.553 (n = 4); the invariant
(oblique) lines correspond to n = 2 for wave 2 and n = 4 for wave 1; the right-hand-side trajectory forming a vertical structure near vz � 0.7 is
a beating between the waves 1 and 2. (b) The trajectory crosses the resonant velocities vz2(1) � 1.784 (n = 2) and vz4(2) � 1.349 (n = 4); the
invariant oblique lines correspond to n = 2 for wave 1 and n = 4 for wave 2. Above the projection of the trajectory drawn up to the asymptotic
time (black area), we have superimposed the same trajectory up to a shorter time period (white area). (c) Interaction of a test particle at the three
Landau resonances of waves 1, 3, and 4, vz0(1,3,4) = {4.984,5.821,5.558}; the conservation line of the motion is v⊥ � C. The parameters are
the same as in Fig. 6.

with them at their Landau resonant velocities vz0(1,3,4) =
{4.984,5.821,5.558}; as n = 0 the invariant of the mo-
tion is v⊥ � C [Eq. (10)]. A more detailed examination
of the time variation of the parallel velocity vz(t) reveals that
the particle jumps from one resonance to another, crossing
the common domain of resonance of the different waves, as
previously studied in [24–26]. The V-shaped projections of
the trajectories presented in Figs. 8(a) and 8(b) correspond to
the motion of particles interacting simultaneously at normal
cyclotron resonances of different orders with several waves.
In particular, the electron in Fig. 8(b) interacts simultaneously
with wave 1 at vz2(1) � (ωk1 + 2ωc)/kz1 � 1.784 (n = 2) and
with wave 2 at vz4(2) � (ωk2 + 4ωc)/kz2 � 1.349 (n = 4); the
corresponding invariant lines of motion (10) intersect due
to the different signs of kz1 and kz2 [see the solid oblique
lines in Fig. 8(b)]. Above the projection of the trajectory
calculated up to the asymptotic time (forming the black
area), we have superimposed the same trajectory limited to
a shorter time (forming the white area); one can see that the
motion of the particle is composed of random fluctuations
around the invariant lines of each resonance. During the
full time of the simulation, these fluctuations cumulate and,
as a result, the trajectory fills a V-shaped region of finite
thickness. The same features can be observed in Fig. 8(a),
where the test particle oscillates over four resonances (left
trajectory), interacting at normal cyclotron resonances of
different orders, i.e., at vz2(2) � −1.727 (n = 2), as well as
at vz4(1) � −1.416, vz4(3) � −1.620, and vz4(4) � −1.553
(n = 4); the two invariant lines corresponding to (i) wave 2 at
n = 2 and (ii) the three other waves at n = 4 (which have very
close invariant lines) are shown (oblique lines).

The projection of the trajectory forming a vertical bar on
the right of Fig. 8(a) near vz � 0.7 results from the resonant

interaction of the test particle with the beat of two waves.
Indeed, no resonant velocity of any wave is present near vz �
0.7, but the resonant velocity of the beating between waves
1 and 2, given by vbeat = (ωk1 − ωk2 − sωc)/(kz1 − kz2) �
sωc/(kz1 − kz2) � 0.74 for s = 1, is close to the particle’s
velocity. The resonant velocities corresponding to the beatings
between the second wave and the third and fourth waves
are also close to this velocity range. Since the interaction of
electrons with the beatings of waves is weaker than with the
waves themselves (as beatings result from nonlinear processes
of higher order), the variation of the particle velocity during
a single oscillation is small; however, as a result of many
oscillations, the particle diffuses along the vertical path vz �
vbeat . In this case we can conclude that, due to the relative
weakness of the interaction and the small number of cases
encountered, the interaction of particles with beatings of waves
does not play any significant role in the evolution of the particle
distribution and the dynamics of the waves.

B. Horseshoe filling and wave energy evolution

Limitations of computer resources do not allow, in the
framework of our model, us to perform simulations with
numbers of waves exceeding Nw = 500–1000; thus the
question arises as to how adequately a real system with a
continuous spectrum of waves can be described. With no
definitive answer to this question, we note that if the waves
are distributed densely enough, that is, if each particle can
be simultaneously in resonance with several waves (linear
resonance overlap) and if the distribution of the wave vectors k
does not present any artificial regularity, the calculation results
depend only quantitatively and not strongly on how the waves
are distributed in the k space. This was shown in our previous
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FIG. 9. Variation of the normalized growth rate γk/ωc in the plane
(k⊥ρ,kzρ), calculated using Eq. (1), for ωp/ωc = 3, v0 = 5, θ0 =
137◦, σ � v0/20, nres/n0 = 0.03, a = 1, and b = 0. The regions of
instability (γk > 0) are represented by isocontour lines. The stars
indicate the parallel and perpendicular wave vectors of the 240
waves interacting with the horseshoe distribution. The figure shown
is limited to the region 0 < k⊥ρ < 1.6 and −1.2 < kzρ < 1.2.

work [27] and is confirmed by the present study. Below we
discuss how the choice of the wave spectrum affects our results.

Several simulations with large numbers of waves and
different distributions in k space have been done, the majority
of them using the same hot electron distribution and plasma
parameters. Let us first consider a spectrum of 240 waves
whose wave vectors are more or less evenly and randomly
distributed in the plane (k⊥ρ,kzρ), covering an area with
several local instability maxima but, importantly, without
including the region of instability at small kzρ (see the growth
rates and the localization of the selected waves in the region
where instability is most important in Fig. 9). The evolution
of the particle distribution in velocity space at four time points
(see Fig. 10) shows that the development of the instability
leads to the filling of the horseshoe by the particles, more
quickly for the area with vz > 0 than with vz < 0. This is
fully explained by the fact that the resonant particles interact
with the most unstable waves, which have mostly positive kz

and whose growth rates are mainly due to the contributions
of the n = 0 and 1 resonances (see also the above linear
study and Fig. 9). However, the higher-order normal cyclotron
resonances n = 2–5 of these waves are lying in the domain
−3 � vz � 2 and are responsible for the later and slower
filling of the horseshoe in this region. As a result of the
evolution, the perpendicular velocity distribution f (v⊥) is
much wider and its asymptotic shape is characterized by a
linear dependence at v⊥ � v0 and a rather fast decay for v⊥ >

v0 [see the inset of Fig. 10(d)]. A redistribution of the particles’
energy occurs, as some electrons (� 30%) are accelerated
in the perpendicular direction above v0, reaching velocities
v2

⊥ � 2v2
0 . The asymptotic parallel distribution function f (vz)

(not shown here) reveals that electrons are also accelerated
along the magnetic field, but their number (a few percent) and
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FIG. 10. (Color online) Isocontours of the horseshoe distribution
in the plane (vz,v⊥) for four moments of time (a) ωct/2π � 2,
(b) ωct/2π � 195, (c) ωct/2π � 585, and (d) ωct/2π � 1134.
The insets in each panel show, for the same time moments, the
perpendicular velocity distribution f (v⊥) (black surface) superposed
to its initial value [solid (red) line]. The parameters are the same as
in Fig. 9.

the increase of their parallel velocities (
vz/vz � 20%) are
not significant.

Figure 11(b) shows the time variation of the energy
exchanges between waves and particles. In the early stage of
the evolution (ωct/2π � 250), the resonant particles transfer
to the waves some part of their parallel and perpendicular
energies, so Ez and E⊥ are decreasing (dotted and thin lines,
respectively); note that the loss of parallel energy is more
pronounced. Meanwhile, the total wave energy density W is
growing (thick solid line) and saturating around ωct/2π �
250; then it slowly decreases up to ωct/2π � 500, showing
that the waves begin to give back a part of their energy
to the parallel motion of the particles, whereas they do not
stop to extract energy from their perpendicular motion. The
change of behavior of Ez after ωct/2π � 250 seems to be
connected to the fact that for ωct/2π � 250, interactions
at the Landau and the normal cyclotron resonances (n = 1)
are playing the main role, being able, in agreement with
the corresponding invariant lines (10), to move particles to
smaller vz over larger 
vz than the higher harmonics n > 1.
Then, for ωct/2π � 250, the resonances n > 1 are mostly
playing, which cannot decelerate particles as efficiently as
n = 0,1 along the parallel direction. Figure 11(a) completes
the picture by presenting the time variation of the energy
densities of the eight most unstable waves, which increase as
expected, reaching a maximum near ωct/2π � 200–300 and
then smoothly damping. Attenuation of the waves in the last
stage of the evolution is easily explained; indeed, after the main
relaxation of the particle distribution leading to the horseshoe
filling, the instability disappears and its kinetic growth rate
vanishes and becomes negative. However, one can observe that
some waves reach their maximum only later near ωct/2π �
800 and even overcome the saturation levels of the others (the
horseshoe filling not being finished at this stage), but all the
waves are damped or saturated when the particle relaxation
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FIG. 11. (a)Variation with time ωct/2π of the normalized wave
energy densities Wk = |Ek|2 of the eight most unstable waves. (b)
Corresponding time variation of the total wave energy density W

(thick line) as well as the total (dashed line), the parallel (dotted
line), and the perpendicular (thin line) kinetic energy densities of the
particles,E ,Ez, andE⊥, respectively, in arbitrary units. The parameters
are the same as in Fig. 9.

is achieved, near ωct/2π � 2500. As already mentioned, the
diffusion of the particles, leading to the filling of the horseshoe,
occurs as a consequence of successive oscillations of the
particles along the lines (10), with appropriate transitions
from one invariant line to another. The motion of individual
particles interacting resonantly with many waves shows the
same features as those discussed when considering four waves.
For illustration, Fig. 12, like Figs. 7 and 8, presents the
projections of trajectories of several particles on the plane
(vz,v⊥). The particles with 4 � vz � 6 are mainly trapped at
Landau and anomalous cyclotron resonances n < 0, following
the corresponding invariant lines, with vanishing (v⊥ � C) or
negative (
v⊥/
vz = −|n|ωc/kzv⊥ < 0 for kz > 0) slopes.
The test electrons with vz � 4 are mainly interacting with
waves at normal cyclotron resonances n > 0, presenting
complex motions such as those described above.

Let us compare the above results with a simulation
performed with 500 waves (so-called S2), which differs from
the previous one (so-called S1) only by the waves’ distribution
in k space. Note the important point that in S2 the wave
vectors are distributed over the entire kz region, including
the domain where kz is small and the instability growth rates
γk are the largest (see Fig. 13, showing the localization of
the waves and the regions of instability). The main features
of the particle distribution’s relaxation (Fig. 14) and the
dynamics of the waves (Fig. 15) are similar in S2 and S1
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FIG. 12. Isocontours of the horseshoe distribution in the plane
(vz,v⊥) at ωct/2π � 955. The projections of several particle trajec-
tories are superposed (see the black areas). The parameters are the
same as in Fig. 9.

(see Figs. 10 and 11). However, several important differences
exist. First, the development of the instability in S2 is much
faster and, according to the linear theory, the waves with
small kz are the most rapidly growing. Second, the parallel
velocity of the particles interacting with these waves almost
does not vary during their oscillations along the invariant lines
because ωc/kz is very large. Therefore, in the neighborhood
of vz � 2 and −2 [see Fig. 14(b)], where the particles
interact with these waves mainly at the second harmonics
n = 2 of the normal cyclotron resonances, the particles’
diffusion occurs along narrow vertical strips vz � C and the
cases when particles transit from one resonance to another
are rare. It is also worth noting the markedly pronounced
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k zρ
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FIG. 13. Variation of the normalized growth rate γk/ωc in the
plane (k⊥ρ,kzρ), calculated using Eq. (1), for the parameters ωp/ωc =
3, v0 = 5, θ0 = 137◦, σ � v0/20, nres/n0 = 0.03, a = 1, and b = 0.
The regions of instability (γk > 0) are represented by isocontour lines.
The stars indicate the parallel and perpendicular wave vectors of the
500 waves interacting with the horseshoe distribution. The figure is
limited to the region 0 < k⊥ρ < 1.6 and −1.2 < kzρ < 1.2.
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FIG. 14. (Color online) Isocontours of the horseshoe distribution
in the plane (vz,v⊥) for four moments of time (a) ωct/2π � 12, (b)
ωct/2π � 60, (c) ωct/2π � 107, and (d) ωct/2π � 191. The insets
in each panel show, for the same time moments, the perpendicular
velocity distribution f (v⊥) (black surface) superposed to its initial
value [solid (red) line]. The parameters are the same as in Fig. 13.

perpendicular acceleration of particles near vz � 2 and −2
[Fig. 14(d)]. The third difference of S1 is that, during the whole
process, the energy exchanges mainly occur between the waves
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FIG. 15. (a)Variation with time ωct/2π of the normalized wave
energy densities Wk = |Ek|2 of the eight most unstable waves. (b)
Corresponding time variation of the total wave energy density W

(thick line) as well as the total (dashed line), the parallel (dotted
line), and the perpendicular (thin line) kinetic energy densities of the
particles,E ,Ez, andE⊥, respectively, in arbitrary units. The parameters
are the same as in Fig. 13.
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FIG. 16. (Color online) Averaged wave spectra: wave energy
density Ukz

= ∑
kz−
kz�k′

z<kz
|Ek′ |2 [in logarithmic units and black

(blue) bars] as a function of kz for the waves’ distribution of
Figs. 13–15 including waves with small kz (upper row, simulation
S2) and the waves’ distribution of Figs. 9– 12 excluding the waves
with large parallel wavelengths (bottom row, simulation S1). The
spectra are shown at four moments of time (upper row, from left to
right) ωct/2π � 49,97,145,193 and (bottom row, from left to right)
ωct/2π � 100,299,599,798.

and the perpendicular motion of the particles [see Fig. 15(b)].
The variation of kinetic energy along the magnetic field is
small, in particular in the initial stage of the waves’ growth and
during the process of wave attenuation in the final stages of
the relaxation. Fourth, the maximum of the total wave energy
density in S2 is 2.5 times larger than that in S1. Moreover,
let us compare the evolution of the wave spectra by analyzing
the energy density Ukz

= ∑
kz−
kz�k′

z<kz
|Ek′ |2 of all waves

whose kz lies in a given interval 
kz (i.e., averaged over k⊥).
Figure 16 shows the averaged wave spectra Ukz

obtained for
S1 and S2 at four moments of time. One can see that for S2
(upper row) the waves with large parallel wavelengths k−1

z

dominate during the entire process, although the spectrum
exhibits a noticeable short-wavelength component. In S1 the
long waves are removed artificially, although one observes
that at the time when the total wave energy W is maximum
(i.e., near ωct/2π � 97 for S2 and ωct/2π � 798 for S1),
the amplitudes of the short waves are similar in both cases.
In conclusion, the inclusion of waves with small kz leads to
significant quantitative differences in the relaxation rate of
the distribution during the first stage of the evolution as well
as in the magnitude of the maximum wave energy reached
due to instability. However, from a qualitative point of view
and as a whole, waves and particles behave similarly in both
simulations S1 and S2.

As observed above, the filling of the horseshoe in the
region vz < 0 is slower than in the region vz > 0; this effect is
even more pronounced if the horseshoe distribution presents
a strong asymmetry, i.e., a decrease, in phase space, of the
particle density with vz. Let us now consider such a distribution
interacting with the waves’ set of S1. First, a linear instability
analysis shows that the parallel wave numbers kz of the most
excited waves are positive. Indeed, as the waves interact more
strongly with particles in the velocity regions where the local
electron density is larger (i.e., at vz > 0) (the growth rate being
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FIG. 17. (Color online) Horseshoe with varying density: iso-
contours of the distribution in the plane (vz,v⊥) for four moments
of time (a) ωct/2π � 8, (b) ωct/2π � 72, (c) ωct/2π � 231, and
(d) ωct/2π � 772. The insets in each panel show, for the same
time moments, the perpendicular velocity distribution f (v⊥) (black
surface) superposed to its initial value [solid (red) line]. The parame-
ters are ωp/ωc = 3, v0 = 5, θ0 = 137◦, σ � v0/20, nres/n0 = 0.03,
a = 1, and b = 1.

proportional to the density) and as the fundamental resonances
n = 0,1 contribute mainly to the wave growth when no small
kz are present (see above), the resonant velocities vz0,vz1

of the most excited waves are positive and thus also are
their parallel wave numbers. Then, in the region vz < 0, the
particles’ oscillations in wave fields are very small. Moreover,
the modification of the particle distribution in the nonlinear
stage of the evolution is also weak. Figure 17 shows the
horseshoe at four moments of time during the relaxation
process. One observes that for vz > 0 the relaxation occurs
similarly to the cases S1 and S2 considered above, which
present more symmetric distributions. As noted previously, the
anomalous cyclotron resonances play no significant role here.

Similarly to the previous cases, the instability development
reveals two stages (Fig. 18). First, for ωct/2π � 100, the wave
energy grows rapidly, whereas the distribution is strongly
modified and the particles only give energy to the waves,
with no counterpart (monotonic decreasing of Ez and E⊥).
The faster (compared to S1) wave energy growth is easily
explained by the larger growth rates of the most unstable waves
(with k⊥ � 1.5 and kz � 0.7) due to the increased number of
particles at vz > 0 in the asymmetric case while maintaining
the total density nres/n0 of the hot particles constant. The
greater magnitude of the growth rate γk also allows us to
explain the larger wave energy maximum Wmax if we observe
that, in the growth stage, a small number of waves dominate
and, according to the calculations with one wave, their energy
at saturation increases as |Ek|2 ∼ γ α

k (where α > 1 and, in
the case of a single wave, α � 3). The second stage (100 �
ωct/2π � 500) is characterized by a slow decay of the wave
energy, which is spent to increase the parallel kinetic energy
[Fig. 18(b)]. In almost the whole (vz,v⊥) plane, the horseshoe
relaxes slowly to its asymptotic state and experiences only
small adjustments during the second stage (Fig. 17). However,
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FIG. 18. Horseshoe with varying density: (a) variation with time
ωct/2π of the normalized wave energy densities Wk = |Ek|2 of the
eight most unstable waves and (b) corresponding time variation of the
total wave energy density W (thick line) as well as the total (dashed
line), the parallel (dotted line), and the perpendicular (thin line)
kinetic energy densities of the particles, E , Ez, and E⊥, respectively,
in arbitrary units. The parameters are the same as in Fig. 17.

besides this two-stage relaxation, the simulation shows a
somewhat different feature of energy exchange between waves
and particles: A slow growth of wave energy density occurs
during a third stage, when ωct/2π � 500 (see Fig. 18). In
this case, the energy of the waves is mainly transferred to the
parallel motion of the electrons. This effect is conditioned
by the rest of the free particle energy associated with the
formation of a positive gradient ∂

∂vz

∫
f (vz,v⊥)d(πv2

⊥) > 0
in the parallel velocity distribution at vz � 2.5 (not shown
here). In the previous simulations involving more symmetric
initial velocity distributions, such an effect also occurred,
but for a limited time and with a much smaller magnitude.
Moreover, a more detailed analysis shows that the growth is
observed only for the waves with a Landau resonant velocity
vz0 = ωk/kz � 2.5. Because this effect occurs in a velocity
range close to the thermal velocity, any further calculation
can be meaningful only if one takes into account the wave
damping due to the thermal bulk, which is not included in
our model; however, in spite of that, we can assume that
the third stage of relaxation is brief or absent and does not
have a significant impact on the established distribution of hot
particles.
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IV. CONCLUSION

Numerical simulations have shown that low-energy and
low-density horseshoe or shell-type electron distributions can
generate high-frequency waves of finite amplitudes propagat-
ing obliquely to the ambient magnetic field, in agreement with
space observations. The dynamics of wave packets interacting
with horseshoe-type distributions, which was investigated
using a symplectic code based on a three-dimensional Hamil-
tonian model, was shown to be mainly governed not only
by interactions occurring at Landau n = 0 and normal n = 1
cyclotron resonances, but also at higher-order harmonics
n > 1, which play an essential and determinant role.

Simulations performed with a limited number of waves
reveal some specific features of the motion of the particles
interacting simultaneously with several waves at multiple
resonances of different natures and orders, showing that such
complex processes determine the main features of the evolu-
tion of the waves’ spectrum. Simulations with wave packets
presenting quasicontinuous spectra provide a full picture of
the relaxation of the horseshoe distribution, revealing two
main phases of the evolution: an initial stage of wave energy
growth, characterized by a fast filling of the shell, and a second
phase of slow damping of the wave energy, accompanied by
final adjustments of the horseshoe distribution. Moreover, the
influence of density inhomogeneity along the shell modifies
quantitatively the energy exchanges between the waves and
the particles due to the strong asymmetry of the horseshoe
distribution interacting resonantly with the wave packet.

Finally, note that the instability growth rates have been
determined using the linear theory as a function of the opening
angle, the velocity, and the relative thickness of the horseshoe,
as well as of the ratio of the plasma to the cyclotron frequency
and the interaction resonance.

The question arises as to how the nonlinear phenomena
described in the present paper can influence the generation of
horseshoe distributions. In principle, as soon as a positive per-
pendicular gradient appears in the distribution function formed
by the penetration of an electron beam in a inhomogeneous
magnetic field and as soon as this distribution under formation
presents a large enough opening angle (roughly θ0 � 30◦), an
instability can develop that widens the shell, thus reducing
the instability growth rates. Thus it will be a competition
between the two following processes occurring on different
time scales: the process of beam penetration in the magnetic
field and the widening of the horseshoe due to instability and
wave emission. If the second process is faster than the first one,
the instability and further nonlinear effects can act to limit the
wave growth by widening the shell, which can be partially or
totally filled eventually; then the resulting distribution may or
may not contain some remaining free energy in the form of a
positive perpendicular gradient. Otherwise, it is likely that the
processes described in the present paper will occur when the
horseshoe is fully formed; our paper offers the possibility to
model such situations.
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Orsay) for her technical support.

APPENDIX: NONLINEAR MODEL OF RESONANT
WAVE-PARTICLE INTERACTIONS

A Hamiltonian self-consistent wave-particle model has
been developed in order to study the nonlinear interaction
of a packet of electrostatic waves with a nonequilibrium
particle distribution in a magnetized plasma. It is supposed
that the plasma electrons can be divided into two groups:
(i) the nonresonant thermal bulk, i.e., the ambient plasma
supporting the wave dispersion, and (ii) the so-called resonant
electrons forming the horseshoe, which interact strongly
with the waves at different resonance conditions and whose
density is much smaller than that of the ambient plasma
nres/n0 � 1. The thermal component determines the waves’
dispersion and is described in the linear approximation using
hydrodynamic equations. However, the resonant particles have
to be considered owing to a kinetic approach that takes into
account their full nonlinear dynamics in the waves’ fields.

The system is supposed to be periodic in space. For elec-
trostatic oscillations in a homogeneous magnetized plasma,
the electric field E is derived from the scalar potential
ϕ = Re(

∑
k ϕke

ik·r−iωkt ), which consists in the superposition
of plane waves with slowly varying amplitudes ϕk(t), so
the average electric field energy density of the wave with
frequency ωk and wave vector k is given by 〈E2

k/8π〉 =
|kϕk|2/16π . In a plasma with constant ambient magnetic field
B0 = B0z, the motion of a particle p in the waves’ electric
field E = −∇ϕ is described by the Newton equations (e and
me are the electron charge and mass)

dvp

dt
+ e

mec
vp × B0 = e

me

Re
∑

k

ikϕke
iηp , (A1)

which can be presented in the Hamiltonian form as dPp/dt =
−∂H0/∂rp, with drp/dt = ∂H0/∂Pp = vp, where Pp =
mevp − eA0(rp)/c is the generalized particle momentum,
rp(r⊥p,zp) and vp(v⊥p,vzp) are the particle’s position and
velocity; ηp = k · rp − ωkt is the phase of the particle p

located at the position rp, and A0(rp) = (B0×rp)/2 is the
vector potential. The corresponding Hamiltonian is

H0 =
∑

p

(
[Pp + eA0(rp)/c]2

2me

− e Re
∑

k

ϕke
iηp

)
. (A2)

Note that in the absence of wave-wave interactions, the full
Hamiltonian should include the wave energy

∑
k ωk|Ck|2

expressed through the normal wave amplitudes Ck(t) ∝
ϕk(t)e−iωkt as

∑
k

ωk |Ck|2 = V
∑

k

Wk = V
∑

k

ωk
∂εk

∂ωk

|kϕk|2
16π

, (A3)

where
∑

k Wk is the energy density of the electrostatic waves
in a unit volume and εk is the plasma dielectric function; V is
the volume occupied by the wave-particle system. From above
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follows the relationship between the normal wave amplitudes
Ck and their electric potential ϕk,

Ck(t) =
√

k2V

16π

∂εk

∂ωk
ϕk(t)e−iωkt . (A4)

The equation describing the time evolution of the wave
amplitudes can be obtained from the full Hamiltonian

H = H0 +
∑

k

ωk |Ck|2 (A5)

according to

∂Ck

∂t
= −i

∂H

∂C∗
k

= −iωkCk + i
e

2

∂ϕ∗
k

∂C∗
k

∑
p

e−iηp . (A6)

Thus, using Eq. (A4) we get

∂

∂t

eϕk

me

= 2iω2
p

k2 ∂εk
∂ωk

nres

n0

1

N

∑
p

e−iηp , (A7)

where N is the number of resonant particles of density nres

inside the volume V , N = nresV . The Hamiltonian structure
ensures the conservation of the total energy H and momentum
Pz,

H = C, Pz =
∑

p

mevzp + V
∑

k

kz

ωk
Wk = C. (A8)

For upper-hybrid waves with ωk � ωc, the approximate
dispersion relation is given by Eq. (4) and ∂εk/∂ωk � 2/ωk,
so we get the equation of wave evolution in the form

∂

∂t

eϕk

me

= i
ω2

pωk

k2

nres

n0

1

N

∑
p

e−iηp . (A9)

The model allows us to choose arbitrary sets of waves (k,ωk)
for which the periodicity conditions have to be verified, i.e.,
kx,y,zLx,y,z/2π = ±1, ± 2, . . ., where [Lx,Ly,Lz] is a three-
dimensional spatial simulation box of volume V = LxLyLz.
The initial velocity distribution of the resonant electrons is
modeled by the function (8). Initially all resonant particles are
randomly distributed within the box [Lx,Ly,Lz] with the same
probability to occupy any position in the volume V .

Owing to the Hamiltonian structure of the model, the
numerical simulations are performed using a symplectic mover
with time steps ωc
t � 0.1–0.2 while checking the accuracy
of the calculations with the help of the H and Pz conservations
(A8). As one can separate the Hamiltonian (A5) as H = H1 +
H2, where H1 = ∑N

p=1(Pp + eA0/c)2/2me, the symplec-
tic operator L(
t) = L1(
t/2)L2(
t)L1(
t/2) + o(
t3) of
order 2 in time step can be used for advancing the Hamiltonian
H (L1 and L2 are canonical transformations applying to H1

and H2, respectively). More technical details are given in
Ref. [25].
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