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Test modes on turbulent magnetized plasmas are studied taking into account the stochastic ion trapping or
eddying that characterizes the E × B drift in the background turbulence. It is shown that ion trapping provides
an important physical mechanism for the complex nonlinear processes in drift turbulence evolution: generation
of large-scale correlations and of zonal flow modes.
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I. INTRODUCTION

The evolution of turbulence in magnetically confined plas-
mas is a complex problem that is not completely understood in
spite of a huge amount of work (see Ref. [1] and the references
therein). Low-frequency drift-type turbulence, which has a
significant influence on plasma confinement, has been exten-
sively studied, especially in connection with fusion research
(see, e.g., Refs. [2–5]). Most of the studies that go beyond
the quasilinear stage are based on numerical simulations or on
simplified models. Numerical simulations show a complex
nonlinear evolution with generation of large correlations,
increase of order, appearance of zonal flow modes ([6,7]), and
nonlinear damping of turbulence. It is interesting to note that
zonal flow modes have been obtained in simulations based
on different approaches (gyrokinetic [3], Hasegawa-Mima
[8], and Hasegawa-Wakatani [9] models), and in different
confining geometries (slab, toroidal, cylindrical), conditions
(collisional or collisionless plasmas), and types of turbulence
(drift, ion temperature gradient driven or trapped-electron
modes). This suggests that the zonal flow mode generation
is a robust process in plasma turbulence that is related to the
basic physics of the nonlinear interaction. Zonal flow modes
and their effects on turbulence damping and on improved
confinement is presently a very active research topic ([10–15]).

The stochastic particle advection that appears in turbulent
plasmas due to the E × B (or electric) drift can produce
trajectory trapping or eddying around contour lines of
the potential ([16–19]). Trapping has a strong effect on the
statistics of particle trajectories. Analytical methods suitable
to the study of particle stochastic advection in the pres-
ence of trapping were developed only in the last decade
( [20,21]). They permitted researchers to show that trapping
determines strong deviation from the Gaussian advection
processes, leading to memory effects, quasicoherent behavior,
and non-Gaussian distribution. The trapped trajectories have
quasicoherent behavior, and they form structures similar to
fluid vortices.

The aim of this paper is to contribute to the understanding
of the effects of trajectory trapping on the evolution of drift
turbulence. These are the first analytical results on this complex
problem that are in agreement with numerical simulations. A
Lagrangian approach is developed, which extends the type of
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methods initiated by Dupree [22,23] to the nonlinear regime
characterized by trapping.

We study linear modes that develop on turbulent plasma
with the statistical characteristics of the potential considered
known. The basic description provided by the drift kinetic
equations in the collisionless limit is used. Analytical expres-
sions are derived, which approximate the growth rates and the
frequencies of the test modes as functions of the characteristics
of the background turbulence.

The characteristics of the test mode provide the tendencies
in turbulence evolution. There is a sequence of processes,
which appear at different stages of evolution as transitory
effects. The drift turbulence has an oscillatory behavior
remaining in the nonlinear stage. A different perspective on
important aspects of the physics of drift-type turbulence in the
strongly nonlinear regime (as zonal flow mode generation) is
deduced. An important role in these processes is shown to be
played by the ion stochastic trapping or eddying.

The paper is organized as follows. The dispersion relation
for the drift modes on turbulent plasmas is deduced in the
next section. It is shown that the effects of the background
turbulence are contained in a function of time that enters
in the ion propagator. It is an average over the stochastic
ion trajectories in the background turbulence. The statistical
methods for evaluating this function are shortly presented. The
next three sections present the effects of turbulence on the test
modes at different stages in turbulence evolution: quasilinear
turbulence, weak nonlinear regime (when the fraction of
trapped ions is small), and strong nonlinear regime (with strong
trapping). The evolution of the drift turbulence is discussed at
each stage. The summary of results and the conclusions are
presented in the last section.

II. TEST MODES ON TURBULENT PLASMAS

Drift waves and instabilities are low-frequency modes
generated in nonuniform magnetically confined plasmas.
Depending on the particular conditions, there are several types
of drift modes. Since the aim of this work is to understand the
effects of trapping on the evolution of turbulence, we consider
a simple confining geometry, the plane plasma slab, in which
the magnetic field is straight and uniform. Plasma has low
β, which means that the perturbation of the magnetic field is
negligible (electrostatic approximation).

The magnetic field is along the z axis (B = Bez), and
plasma is nonuniform in one direction taken along the x axis.
For simplicity, the equilibrium temperatures are uniform and
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only the density n0(x) is x dependent. The characteristic length
of density variation Ln = n0/|dn0/dx| is much larger than the
wave length of the drift modes.

We start from the basic description of this (universal) drift
turbulence provided by the drift kinetic equation in the colli-
sionless limit. Electron kinetic effects produce the dissipation
mechanism to release the energy and, combined with finite
Larmor radius of the ions, make drift waves unstable. The latter
consist of the polarization drift velocity and of the modification
of the electric drift velocity of the ions due to the gyro-average
of the potential. Both effects determine the decrease of mode
frequency below the diamagnetic frequency, which makes the
growth rate positive. Beside this, the polarization drift has a
more complex influence determined by its nonzero divergence.
We neglect here the modification of the potential and consider
the effects of the polarization drift. The reason is that, as
shown below, the background turbulence in the nonlinear
regime eliminates the effects of the finite Larmor radius on the
frequency. Thus, this approximation that determines sensible
simplifications of the calculations has a negligible influence
on the phenomenology of drift turbulence evolution in the
nonlinear regime. Preliminary results, which take into account
the gyro-average of the potential and neglect the polarization
drift, are presented in Ref. [24].

Drift modes are represented by wave type potential
δφ(x,y,z,t) = φkω exp(ikxx + ikyy + ikzz − iωt), where ki

are the components of the wave number and ω is the frequency
(with imaginary part γ ). They have

kz � kx,ky, vT i � ω/|kz| � vT e, (1)

where vT e, vT i are the thermal velocities of electrons and ions,
respectively. The solution of the dispersion relation, which is
the quasineutrality condition, is (see Ref. [25])

ω = kyV∗e

1 + k2
⊥ρ2

s

, (2)

γ =
√

π

2

ω(kyV∗e − ω)

|kz|vT e

, (3)

where V∗e = V∗eey, V∗e = Te/(eBLn) = ρscs/Ln is the dia-
magnetic velocity, ρs = cs/	i, cs = √

Te/mi, Te is the
electron temperature, mi is the ion mass, e is the absolute value
of electron charge, 	i = eB/mi is the cyclotron frequency,
and k⊥ = √

k2
x + k2

y is the perpendicular wave number. Usual
normalized quantities ki = kiρs, ω = ωLn/cs, γ = γLn/cs

will be used for the results, while physical quantities appear in
the calculations. The normalized frequencies and growth rates
for the linear drift modes are

ω = ky

1 + k
2
⊥

, (4)

γ = γ0ω(ky − ω), (5)

where γ0 = √
π/2(cs/Ln)/|kz|vT e. Drift modes are unstable

(γ > 0) if ω < ky. The maximum growth rate is for ω =
ky/2, which corresponds to k⊥ρs = 1. The ρs dependence
that appears in (2) yields from the ion polarization drift

up = mi

eB2
∂tE⊥. (6)

The solution (4) and (5) in the limit ρs = 0 (obtained by
neglecting the polarization drift) is ω = kyV∗e, γ = 0, which
represents the stable drift waves. For an arbitrary initial
condition φ0, this solution is

φ(x,y,z,t) = φ0(x,y−V∗et,z). (7)

It shows that any potential φ0 in a nonuniform plasma moves
with the diamagnetic velocity. Finite Larmor radius effects,
collisions, or other perturbations determine supplementary
time dependencies that modify the potential amplitude and
shape, but this usually appears on a larger time scale.

This model of modes developing on quiescent plasma is
not realistic because drift instabilities appear for a large range
of wave numbers and produce a turbulent potential. Test mode
models consider a turbulent plasma with given statistical
characteristics of the background potential φb(x,z,t) and a
small perturbation δφ,φ = φb + δφ. The growth rates and the
frequencies of the test modes are determined as functions of
the statistical characteristics of φb. The potential φb is taken as
the zero ρs solution (7). The modification of potential shape
and amplitude appears due to polarization drift on a larger time
scale of the order 1/γ. The test mode studies of turbulence are
based on this time-scale separation, which permits a sequential
approach. Starting from a potential that is a zero order solution
(7), it is possible to determine the frequency and the growth
rate of test modes as a function of the statistical characteristics
of the potential. They provide information on the tendency in
the evolution of the potential, which is used to determine the
test mode properties later in the evolution, and so on.

The main statistical characteristics of the background
turbulence are the amplitude β of the potential fluctuations,
their correlation lengths λx, λy , and correlation time τc. They
appear in the Eulerian correlation (EC) of the potential defined
by

E(x,t) ≡ 〈φb(x′,t ′)φb(x′ + x,t ′ + t)〉, (8)

where 〈〉 is the statistical average or the space average. This
function is the Fourier transform of the spectrum. The ampli-
tude of the stochastic electric drift is V = √

V 2
x + V 2

y , where
Vx = β/Bλy, Vy = β/Bλx. These parameters define the time
of flight (or the eddying time) τf l = λx/Vx = λxλyB/β,

which is the characteristic time for trajectory trapping.
The perturbations of the electron and ion distribution func-

tions as a response to the potential δφ have to be determined
as functions of the EC of the background turbulence.

The electrons have the same response to a perturbation δφ

as in quiescent plasma due to their fast parallel motion

δne = n0(x)
eδφ

Te

(
1 + i

√
π

2

ω − kyV∗e

|kz|vT e

)
(9)

(see, for example, Ref. [25, p. 457]).
The ion response is obtained from the drift kinetic equation

Oif i + f i∇ · up = 0, (10)

Oi ≡ ∂t − ∇φb × b
B

· ∇, (11)

053105-2



ION STOCHASTIC TRAPPING AND DRIFT TURBULENCE . . . PHYSICAL REVIEW E 87, 053105 (2013)

where Oi is the derivative along ion trajectories where parallel
motion is negligible due to condition (1). The distribution

f i
0 = n0(x)F i

M

[
1 + eφb(x − V∗et)

Te

]
(12)

represents the short time approximate equilibrium because
Oif i

0 = 0 and the term ∇ · up � 1. Perturbing the potential
with δφ, the operator is perturbed with

δOi = − 1

B
∇δφ × ez · ∇

and a change of the distribution function appears: f i = f i
0 +

h. The linearized equation in this perturbation

Oih + h∇ · up = −in0(x)F i
M

eδφ

Te

(
kyV∗e − ωρ2

s k
2
⊥
)

(13)

has the formal solution

h(x,v,t) = −n0(x)F i
M

eδφ

Te

(
kyV∗e − ωρ2

s k
2
⊥
)


i
, (14)

where the propagator is


i = i

∫ t

−∞
dτ M(τ ) exp[−iω(τ − t)] (15)

and M(τ ) is the average over ion trajectories

M(τ ) ≡
〈

exp

{
ik·[x(τ ) − x] −

∫ t

τ

dτ ′ ∇ · up[x(τ ′)]
}〉

.

(16)

The integrals are along ion trajectories obtained from

dx(τ )

dτ
= −∇φ(x − V∗et) × ez

B
, (17)

calculated backwards in time with the condition at τ = t,

x(t) = x.

The last term in the argument of the exponential in Eq. (16)
accounts for the compressibility effects in the background
turbulence produced by the polarization drift. This term has
zero average, but, as shown below, its correlation with the
displacements

Li(τ ) = mi

eB2

∫ t

τ

dτ ′′
∫ t

τ

dτ ′〈vi[x(τ ′′)]∂τ ′�φ[x(τ ′)]〉 (18)

can play an important role in the evolution of the turbulence.
This is a Lagrangian correlation that has the dimension of a
length and represents the effect of the compressibility in the
background potential due to the polarization drift.

The dispersion relation for test modes in turbulent plasma
obtained from the quasineutrality condition is

−(
kyV∗e − ωρ2

s k
2
⊥
)


i = 1 + i

√
π

2

ω − kyV∗e

|kz|vT e

. (19)

It is the same as in quiescent plasma, except for the function
M(τ ) that appears in the propagator (15).

Thus, the function M(τ ) defined by Eq. (16) embeds all the
effects of the background turbulence. M(τ ) depends implicitly
on the background potential through the statistical character-
istics of the trajectories (17), which determine the average. It
also depends explicitly on the background turbulence through

the compressibility term Li . In the case of quiescent plasmas
M = 1.

This function and its evolution are estimated in the next
sections. We present here a short review of the statistical
methods.

The E × B drift in turbulent plasmas can determine trajec-
tory trapping or eddying. It is permanent in the case of static
electric fields and appears due to the Hamiltonian character of
the motion with the potential φ as a conserved Hamiltonian.
When this motion is weakly perturbed by slow time variation
of the potential or by other components of the motion, trapping
persists for finite time intervals determined by the strength of
the perturbation [16–19].

Semianalytical statistical methods (the decorrelation trajec-
tory method DTM [20] and the nested subensemble approach
NSA [21]) have been developed for the study of test particle
stochastic advection. Essentially, DTM and NSA reduce
the problem of determining the statistics of the stochastic
trajectories to the calculation of weighted averages of some
smooth, deterministic trajectories determined from the EC of
the stochastic potential. The main advantage of these methods
is to be in agreement with the statistical consequences of the
invariance of the potential so that they are able to describe
trajectory trapping. NSA is the development of DTM as a
systematic expansion that validates DTM and yields much
more statistical information. These are semianalytic methods,
which need PC-level computations of a few minutes. A
series of studies ( [21] and the references therein, [26]) have
shown that trapping determines memory effects, anomalous
diffusion regimes, quasicoherent behavior, and non-Gaussian
distribution. The trapped trajectories form structures similar to
fluid vortices. It was also shown that the trajectory structures
also modify the advection process of passive scalar fields [27].

The EC of the potential is initially modeled according
to the frequencies and the growth rates of drift modes in
quiescent plasma (4)–(5), and then it is changed as required
by the modification of these quantities in turbulent plasma.
These equations show that the maximum of γ corresponds to
k⊥ρs = 1, with larger ky (of the order of ρ−1

s ) and smaller kx.

The growth rate is zero for ky = 0. Thus, the spectrum of the
drift type turbulence is zero along the line ky = 0, which means
that the integral of the EC along y must be zero. It has two
peaks at ky = ±k0,kx = 0. A simple analytical approximation
for the spectrum is

S(k) ∼ ky exp

(
−k2

x

2
λ2

x

){
exp

[
− (k0 − ky)2

2
λ2

y

]

− exp

[
− (k0 + ky)2

2
λ2

y

]}
, (20)

which corresponds to the EC,

E(x,t) = β2∂y

[
exp

(
− x2

2λ2
x

− y ′2

2λ2
y

)
sin k0y

′

k0

]
, (21)

where y ′ = y − V∗et, λi and the dominant wave number k0

are of the order 1.

Starting from the EC (21), the statistics of ion trajectories
is determined, then the function M(τ ), the averaged ion
propagator, the growth rate and the frequency of the drift
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modes are estimated. These quantities show how the EC
evolves.

The distribution of displacements obtained from Eqs. (17)
strongly depends on the ordering of the characteristic times of
the stochastic process. The longest characteristic time is the
parallel time of the ions τ‖i = λ‖/vT i, which actually leads
to negligible parallel motion. The motion of the potential
along y with the diamagnetic velocity defines the diamagnetic
time τ∗ = λy/V∗e. The correlation time of the potential τc,

which is the characteristic time for the change of the shape
of the potential, is of the order τc

∼= γ −1. Thus, it is larger
than the diamagnetic time (τc > τ∗). The time of flight
(or eddying time) is defined by τf l = λy/Vy = Bλxλy/β.
Trajectory trapping appears when τf l is smaller than τ∗. The
trapping parameter for drift turbulence is

K∗ = τ∗/τf l = Vy/V∗e = β/(λxV∗eB) (22)

(not the Kubo number K = τc/τf l) because the decorrelation
is produced by potential motion. Trajectory trapping exists
when K∗ > 1. The fraction of trapped trajectories ntr and the
maximum size of trajectory structures are increasing functions
of K∗.

The average propagator (15) is calculated in the next
sections using simplified models that include the main char-
acteristics of the probability of displacements. It is thus
possible to capture the complicated nonlinear effects of strong
turbulence in rather simple analytical expressions. The results
can easily be improved by taking into account the statistics of
test particles obtained with the nested subensemble method.
This significantly more complicated approach that relies
on numerical calculation of the averages does not change
qualitatively the results. We consider that the simple analytical
expressions derived in the next sections give a more clear
image on the complex nonlinear processes that appear in the
drift turbulence evolution beyond the quasilinear stage.

III. ION DIFFUSION AND DAMPING OF LARGE k MODES

For small amplitude of the background potential, the time
of flight is larger than the decorrelation time (K∗ < 1), and
trapping does not appear. The smallest characteristic time
that influences the ion motion corresponds to the potential
motion with the diamagnetic velocity. The characteristic times
ordering is

τ‖e < τ∗ < τc < τf l < τ‖i . (23)

This corresponds to small amplitude background turbulence
with β/B � V∗eλx.

The diffusion coefficients Di, i = x,y determined for the
EC (21) are very small in both directions, much smaller along
y than for a monotonically decaying potential. The distribution
of the displacements is Gaussian, and it leads to

M(τ ; t) = exp

[
− k2

i 〈[xi(τ ) − xi]2〉
2

+ ikiLi

]
, (24)

where Li(τ ) is defined in Eq. (18), and the small quadratic
term in the divergence of the polarization drift was neglected.

The trajectories (the characteristics) have displacements
until decorrelation by potential motions that are small com-
pared to the correlation length and can be neglected. This

strongly simplifies the estimation of the compressibility
term Li because the Lagrangian correlation in (18) can be
approximated by the corresponding Eulerian correlations. The
correlation in Lx can be approximated by

〈vx(τ ′′)∂τ ′�φ(τ ′)〉 ∼= 1

V∗e

∂τ ′′∂τ ′�E[V∗e(τ ′′ − τ ′)],

where vx(τ ) ≡ vx(x − V∗e(t − τ )). The time integral yields

Lx(τ ) = 2

BV∗e

(�E(0) − �E[V∗e|t − τ |)], (25)

which is finite because the Laplacean of the EC is symmetrical
and finite in zero. This function of time starts from zero at the
time τ = t and saturates in a time of the order of τ∗ at the value
−2V 2/BV∗e.The component Ly is zero because it contains one
or three derivatives at x for x = 0, which are zero.

Thus in the quasilinear case

M = exp

[
− k2

i Di(t − τ ) − i2kx

V 2

	iV∗e

]
, (26)

which shows that the compressibility determines a constant
term proportional with the square of the amplitude of the
stochastic velocity determined by the background turbulence.
This is very small due to 	i and to the condition V � V∗e

imposed for this regime.
The propagator is


i = − exp

[
− i2kx

V 2

	iV∗e

]
1

ω + ik2
i Di

(27)

and the ion density perturbation

δni(x,v,t) = n0(x)
eδφ

Te

A
kyV∗e − ωρ2

s k
2
⊥

ω + ik2
i Di

, (28)

where

A = exp

[
−i2kx

V 2

	iV∗e

]
≈ 1 − i2kx

V 2

	iV∗e

. (29)

This factor produced by the polarization drift is very close to
unity.

The solution of the dispersion relations is

ω = ky

1 + k
2
⊥

, (30)

γ = γ0ω(ky − ω) − k
2
i Di − 2kxω

V 2

ρscs

, (31)

where Di = Di/(ρsV∗e). Thus, the frequency is not influenced
by the background turbulence when it has small amplitude. The
latter determines new terms in the growth rate.

The main effect is produced by ion trajectory diffusion in
the background turbulence, which determine the damping of
the modes with large k (the second term in γ ). This is the well-
known result of Dupree, which is recovered here. An additional
effect is obtained from the compressibility, which determines
the asymmetrical increase of the modes (contribution to the
growth of the modes with kxky < 0 and to the decay of those
with kxky > 0). This effect is very small because the ratio
of the third term to the first term in Eq. (31) is of the order
(1/	iτ‖e)(V 2/V 2

∗e) � 1.
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The frequency and the growth rate of the modes on turbulent
plasma with small amplitude show that the most unstable
modes are, as in quiescent plasma, those with ω ∼= kyV∗e/2,

which have wave numbers of the order of ρ−1
s (k

2
⊥ ∼= 1). Their

interaction with the background turbulence is weak, except for
the large k modes, which decay and eventually are damped
due to ion diffusion.

This means that the EC of the turbulence evolves in this
quasilinear stage by increasing its amplitude β without major
change of its shape.

IV. TRAJECTORY STRUCTURES AND LARGE-SCALE
CORRELATIONS

The increase of the amplitude β of the stochastic potential
determines the change of the ordering of the characteristic
times (23). When V becomes larger than the velocity of the
potential V∗e (or β/B > V∗eλx), the time of flight is smaller
that the decorrelation time τ∗

τ e
‖ � τf l < τ∗ � τc � τ i

‖ (32)

and K∗ > 1. In these conditions ion trapping or eddying
appears. As we have shown, this strongly influences the
statistics of trajectories. The distribution of the trajectories
is not Gaussian any more due to trapped trajectories that form
quasicoherent structures. At this stage the trapping is weak in
the sense that the fraction of trapped trajectories ntr is much
smaller than the fraction nf of free trajectories.

The probability of displacements P (x,t) was obtained using
the nested subensemble method. It has a pronounced peaked
shape compared to the Gaussian probability. The contribution
of the trapped particles to the probability P (x,t) at time t

appears as a narrow peak in r = 0, which remains invariant
after formation. The time invariance of this central part of the
probability is due to the vortical motion of the trapped particles.
It shows that vortical structures appear due to trapping. The
size of the vortical structure depends on the strength of the
decorrelation mechanism that releases the trapped particles.
The free particles, for which the motion is essentially radial,
determine the larger distance part of the probability, which
continuously extends. The probability of displacements until
decorrelation (τ < τ∗) is modeled by

P (x,y,τ ) = ntrG(x; S) + nf G(x; S′), (33)

where G(x; S) is the two-dimensional Gaussian distribution
with dispersion S = (Sx,Sy). The first term describes the
trapped trajectories. We have considered for simplicity their
distribution as a Gaussian function, but with small (fixed)
dispersion that represents the square of the average size si of the
structures Si = s2

i . The shape of this function does not change
much the estimations. The free trajectories are described by
the second term in Eq. (33). They have dispersion that grows
linearly in time: S ′

i(τ ) = Si + 2Di(t − τ ), i = x,y. The initial
value S ′

i(t) = Si is an effect of trapping. It essentially means
that the trajectories are spread over a surface of the order of
the size of the trajectory structures when they are released by
a decorrelation mechanism.

The compressibility term Li will be calculated in the next
section. As shown there, it is negligible in these conditions.

The propagator, obtained by performing the average in
Eq. (16) using the probability (33), is


i = − 1

ω + ik2
i Di

F , (34)

where the factor F is determined by the average size of the
trapped trajectory structures

F ≡ exp

(
−1

2
k2
i Si

)
. (35)

The solution of the dispersion relation (19) is

ω = Fky

1 + Fk
2
⊥

, (36)

γ = γ0ω(ky − ω) − k
2
i Di. (37)

Thus, the effect of trajectory trapping appears in the frequency
while the growth rate is not modified (the small compressibility
term was neglected).

Trajectory trapping determines the decrease of the fre-
quency. The value of k⊥ corresponding to the maximum of
γ (at ω = ky/2) is displaced from values k⊥ ∼= 1 to k⊥ ∼= 1/s

where s = √
Sx + Sy/ρs is the size of trajectory structures

normalized with ρs. For s � 1 (Si � ρ2
s ), the frequency (36)

is ω ∼= Fky, which shows that the finite Larmor radius effects
become negligible in the presence of trapping when the size
of the vortical structures is larger than ρs.

The growth rates of the drift modes for different values
of s are shown in Fig. 1. One can see the displacement of
unstable mode range toward small k⊥. This determines a
further increase of the size of trajectory structures. The process
is accompanied by the decrease of the growth rates.

This means that the EC of the turbulence evolves in
this weakly nonlinear stage by continuing the increase of
the amplitude β (at smaller rate) and by the increase of

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

k ρ
s

ω
L n/c

s,  
γ

L n/c
s*5

1 

1 

2 

2 

3 

3 

4 

4 

1:  s=0 
2:  s=1 
3:  s=2 
4:  s=3 

FIG. 1. The frequencies (36) (dashed lines) and the growth rates
(37) (continuous lines) of the drift modes in the weakly nonlinear
regime for several values of the size of trajectory structures. The
displacement of the unstable domain towards small k and the decrease
of the growth rate appear when s increases. γ is multiplied with the
factor 5.
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the correlation length. The dominant wave number k0 (21)
decreases. The vortical structures of ion trajectories produced
by trapping determine this process of generating large-scale
correlations and of slowing down the evolution (compared to
the quasilinear stage).

V. EFFECTS OF THE ION FLOWS

The evolution of the potential determines the increase of
the fraction of trapped ions. As ntr increases, the average
flux of the trapped particles that move with the potential
ntrV∗e becomes important. Since the E × B drift has zero
divergence, the probability of the Lagrangian velocity is time
invariant; i.e., it is the same with the probability of the Eulerian
velocity. The average Eulerian velocity is zero, and thus the
flux of the trapped ions that move with the potential has to
be compensated by a flux of the free particles. These particles
have an average motion in the opposite direction with a velocity
Vf such that

ntrV∗e + nf Vf = 0. (38)

The NSA shows that the probability of the displacements
splits in two components that move in opposite direction.
The peak of trapped ions moves with the velocity V∗e

while the free ions move in the opposite direction with a
velocity that increases with the increase of the fraction of
trapped ions Vf = −nV∗e,where n = ntr/nf . The distribution
of trapped ions is almost frozen while that of free ions has
a continuously growing width. Thus, opposite ion flows are
generated by the moving potential in the presence of trapping.
A simple approximation that includes the main features of the
distribution is

P (x,y,t) = ntrG(x,y − V∗et ; S) + nf G(x,y − Vf t ; S′),
(39)

where two Gaussian functions were used as in Eq. (33) but
taking into account the ion flows (38). The separation of
the distribution and the existence of ion flows in drift-type
turbulence are confirmed by numerical simulations [28].

The compressibility term Li (18) is determined for trapped
and free particles with the DTM. The component Ly is zero
for both trapped and free ions due to the symmetry. Lx is
different for free and trapped trajectories. In the first case there
is a relative motion of the free ions and of the potential with
the velocity V∗e/nf [obtained from (38)], which determines
rapid decorrelation. The estimation done for the quasilinear
turbulence also holds in these conditions, and Lx for free ions
is approximated by Eq. (25) with V∗e replaced by V∗e/nf ,and
thus it is negligible. For the trapped trajectories, Lx is much
larger than in the quasilinear case. It can be written as

Lx = − V∗e

	iB2

∫ t

τ

dτ ′′
∫ t

τ

dτ ′〈∂yφ[x(τ ′′)]∂y�φ[x(τ ′)]〉,

where the time derivative was replaced by the y derivative
since the argument is y − V∗eτ. A nonzero value is obtained
for Lx essentially because the potential and the Laplacean
of the potential are correlated in a stochastic field: the
maxima of the potential statistically coincide with the minima
of the Laplacean. It follows that the derivatives of these
functions along the same directions are also correlated, and

the derivatives on different directions are not. Lx can be
determined with the DTM, which shows that the following
estimation holds:

Lx(τ,t) = − V∗e

	iB2

∫ t

τ

dτ ′′
∫ t

τ

dτ ′Cx(|τ ′′ − τ ′|),
Cx(|τ ′′ − τ ′|) = 〈∂yφ(τ ′′)∂y�φ(τ ′)〉,

where φ(τ ) ≡ φ(x(τ ) − V∗e(t − τ )).The integral is calculated
by changing the integration variable τ ′′ to θ = τ ′′ − τ ′:

Lx(τ,t) = − 2V∗e

	iB2

∫ t−τ

0
dθCx(|θ |)(t − τ − θ ),

which integrated by parts gives

Lx(τ,t) = − 2V∗e

	iB2

∫ t−τ

0
dθJ(θ ),

where

J(θ ) =
∫ θ

0
dτCx(τ ).

This function saturates after the decorrelation time, which is
the time of flight τf l at J = Cx(0)τf l. Thus

Lx(τ,t) ∼= a(t − τ ), (40)

a = 2∂2
y�E(0)

τf lV∗e

	iB2
, (41)

where ∂2
y�E(0) = β2/λ4

y[(k2
0 + 3)δ + 15 + 10k2

0 + k4
0] and

δ = λ2
x/λ

2
y. The factor a has the dimension of a velocity. This

type of Lagrangian correlation corresponds to the decorrelation
by mixing.

Thus, the compressibility of the background turbulence
influences the propagator for the trapped ions. The function M

(16) that accounts for the effects of the background turbulence
is determined using Eqs. (39) and (40):

M = nf exp

{
− k2

i

2
[Si + 2Di(t − τ )] − ikyVf (t − τ )

}

+ ntr exp

[
− k2

i

2
Si − ikyV∗e(t − τ ) + ikxa(t − τ )

]
.

(42)

The average propagator becomes


i = −F

[
nf

ω − kyVf + ik2
i Di

+ ntr

ω − kyV∗e + kxa

]
. (43)

The effect of the compressibility term kxa is measured by
the ratio kxa/kyV∗e, which, for a typical plasma with cs =
106m/s, β = 150V, B = 3T, λ = 10−2m, ρs = 2 10−3m, is
of the order 0.05 for ky

∼= kx and diverges when ky → 0. It
means that the compressibility term can be neglected for modes
with ky � kx and that it is important for modes with ky → 0.

The solution of the dispersion relation is determined for
the two cases: ky � kx , which corresponds to drift modes, and
ky = 0, which are modes with different characteristics called
zonal flow modes.
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A. Ion flows and drift mode damping

Straightforward calculations with the propagator (43) and
a ∼= 0 lead to the solution of the dispersion relation for ky � kx :

ωd = 1

2

[
ω0 + (1 − n)ky + sg

√√√√ω2
n + 4nk

2
y

1 + Fk
2
⊥

]
, (44)

where n = ntr/nf , ωn = ω0 + (n − 1) ky, ω0 is the frequency
(36) obtained for n → 0 and sg = sign (ωn) . A jump appears
in the frequency at k⊥ = kd , which is the solution of ω0 =
(1 − n) ky, which exists if n < 1. kd is an increasing function
of n. In the limit of large k, ωd → −nky if n < 1 and ωd → ky

if n > 1. This means that the asymptotic phase velocity is in
the ion diamagnetic direction when n < 1 and in the electron
diamagnetic direction when trapping is stronger such that
n > 1.

The imaginary part (for γ d � ωd ) is

γ d = γ0(ωd + nky)[(1 − n)ky − ωd ] − nf k
2
i Di

[(1 − n)ky − ωd ]2(1 + Fk
2
⊥) + nk

2
y

(ky − ωd )2.

(45)

The growth rates are presented in Fig. 2. The jump in
the frequency corresponds to a jump in the growth rate from
negative (at small k) to positive values. Thus, the large wave-
length modes are stabilized by the ion flows, while the small
wave-length modes still grow. This leads to further increase
of the turbulence amplitude accompanied by the decrease of
its correlation length. Both effects contribute to the increase
of K∗, which leads to the increase of n. Consequently, the
increase of the amplitude of the turbulence continues as well
as the decrease of the correlation length. The process is stopped
when n > 1 because the growth rate becomes negative for the
whole wave number range. This determines the decrease of n

and the attenuation of the ion flows.
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FIG. 2. The growth rates of drift modes in the strongly nonlinear
regime (45) for the values of ntr and of the size s of the trajectory
structures that label the curves. As ntr increases, γ d becomes negative,
first for small wave numbers and eventually for all modes. The dotted
line corresponds to ntr

∼= 0.

B. Ion flows and zonal flow modes

The compressibility term determines unstable modes com-
pletely different of the drift modes: with ky = 0, kx �= 0 and
very small frequencies, much smaller than the diamagnetic
frequency. These are called zonal flow modes. The solution of
the dispersion relation (19) for ky = 0 is

ωzf = −kxa
1 + Fk

2
xnf

1 + Fk
2
x

, (46)

γ zf = ntrFk
2
x

[
γ0ω

2
zf − nfFk

4
xDx

]
(
1 + nfFk

2
x

)(
1 + Fk

2
x

) , (47)

where a = a/V∗e. The growth rate is positive for any kx and
the frequency is small (typically ten times smaller than the
diamagnetic frequency). These unstable zonal flow modes are
the consequence of trapping combined with the polarization
drift. One can see that when trapping is negligible (ntr

∼= 0),
ωzf = −kxa and γzf = 0, and that ωzf ,γzf = 0 for a = 0.

The growth rates of the zonal flow modes (47) increase
with the increase of ntr and with the decrease of the size of the
trajectory structures (see Fig. 3).

Ion diffusion effect on the zonal flow modes is negligible for
large kx due to the factor F that goes to zero, and it is strongest
for the modes with kx

∼= √
1/Sx, which can be stabilized.

C. Turbulence evolution

Thus, the ion flows produced by ion trapping in the
moving potential determine two parallel effects: nonlinear
damping of drift modes and generation of zonal flow modes.
There is no causality relation between zonal flow modes and
drift turbulence damping. Both effects are generated self-
consistently in the nonlinear evolution of drift turbulence. The

0 0.5 1 1.5 2 2.5 3 3.5 4

1

2

3

4

5

6

7

8

x 10
−3

k
x

ρ
s

γ zf
L n/c

s

6 

7 

8 

9 

6: s=2, n
tr
=0.5 

7: s=1, n
tr
=0.5 

8: s=1, n
tr
=0.3 

9: s=1, n
tr
=0.1 

1−5 

FIG. 3. The growth rates of the zonal flow modes (47) for the
values of ntr and of the size s of the trajectory structures that label
the curves. The curves 1–5 correspond to the parameters in Fig. 2
for the same labels and show that the zonal flow modes are mostly
not excited during the growth of drift modes. γ zf strongly increases
when the correlation length of the drift turbulence decreases (curves
6, 7), and it decays when drift modes are damped (curves 8, 9).
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influence produced by the zonal flows on the drift type modes
is only indirect, through the diffusive damping. Zonal flows
modify the configuration of the potential and consequently
the EC, which determines a rather strong increase of Dy and
the decrease of Dx (due to the decrease of λx). Drift mode
damping determines the decrease of γ zf through the decrease
of ntr . Thus, the predator-prey paradigm [7] is not sustained
by these results, although there is time correlation between the
maximum growth rate of zonal flow modes and the damping
of the drift modes. This time correlation can be deduced from
Figs. 2 and 3, which show the growth rates of the drift and
zonal flow modes for the same set of parameters n, s.

The evolution of the turbulence in this strongly nonlinear
stage is rather complex. The ion flows determine first the
increase of the amplitude of the turbulence and the decrease
of the correlation length λy , then a major modification of the
EC shape appears due to generation of zonal flow modes,
and eventually the turbulence is strongly attenuated. The
new component that accounts for the zonal flow modes adds
to the EC a function with a slow decay along y (ky

∼= 0),
with zero integral along x (because γzf = 0 for kx = 0) and
with amplitude growing with the increase of n. It essentially
determines in the total EC the increase of λy and β and the
decrease of λx.

VI. SUMMARY AND CONCLUSIONS

Test modes on turbulent plasmas were studied taking into
account the process of ion trajectory trapping in the structure
of the background potential. The case of drift turbulence was
considered, and the frequency ω and the growth rate γ were
determined as functions of the statistical properties of the
background turbulence. The main characteristics of the drift
turbulence evolution were deduced from γ and ω.

A different physical perspective on the nonlinear evolution
of drift turbulence is obtained. The trapping of the ions in the
stochastic potential that moves with the diamagnetic velocity
plays a very important role. The dimensionless parameter K∗
(22) that accounts for ion trajectory trapping is shown to be
the main parameter which defines the stage in the evolution of
drift turbulence.

Drift turbulence develops in the initial stage on a wide range
of wave numbers according to the quasilinear frequencies and
growth rates [(30) and (31)]. Ion trajectories are not trapped at
these small amplitudes of the background turbulence, and they
have a Gaussian distribution. Their diffusion determines the
damping of the large k modes. The correlation lengths ρi and
the inverse of the dominant wave number k0 remain during this
stage close to ρs. Turbulence amplitude β increases (with the
largest growth rate) and the shape of the EC is not changed.

When the amplitude reaches values that make K∗ > 1, ion
trajectory trapping appears and generates vortical structures of
trapped ions. They determine the decrease of the frequencies
(36), which leads to the decrease of γ and to the displacement

of the unstable range of wave numbers to small values of the
order 1/s, where s is the average size of trajectory structures.
Turbulence amplitude continues to increase in this stage, but
with a smaller rate and large-scale correlations are generated.
The shape of the EC (21) remains approximately the same,
and its parameters β, λi, 1/k0 increase.

When the fraction of trapped ions ntr becomes comparable
with the fraction of free ions nf , ion zonal flows become
important both for trajectory statistics and for test mode
characteristics. Trapped ions move with the potential while
free ions move in the opposite direction with the velocity Vf =
−V∗entr/nf such that the total flux is zero. This determines
the splitting of the distribution of ion displacement and an
essential change of the test modes, which consists of two
effects: turbulence attenuation and generation of zonal flow
modes. The attenuation of the drift modes is determined by the
ion flows. It begins with the damping of small k modes, and it
extends to the entire spectrum as ntr increases (the growth rates
are negative for the entire range of k at ntr = 1/2.) A new type
of modes appear in this strongly nonlinear regime, the zonal
flow modes with ky = 0 and very small frequencies. They are
produced by the combined action of the ion flows and of the
compressibility due to the polarization drift in the background
turbulence. The damping of the drift modes is not determined
by the zonal flows. There is only an indirect contribution
through the diffusive damping, which is increased by the zonal
flow modes. They modify the correlation of the turbulence by
introducing components with ky = 0 in the spectrum, which
determine a strong increase of Dy. The decay of the drift
turbulence determines the decrease of ntr and consequently
the decrease of the growth rate of the zonal flow modes (47).

It is interesting to underline that the growth and the decay of
turbulence are produced on different paths (hysteresis process).
Large scales are generated at the increase of turbulence
amplitude when trapping is weak. Later in the nonlinear
evolution when trapping is stronger and produces ion flows,
turbulence amplitude continues to increase but accompanied
by the decrease of the correlation length and by the generation
of zonal flow modes. Then, when ntr � 1/2 both components
of the turbulence are attenuated until the weakly nonlinear
regime is attained (ntr becomes small and the ion flows are
negligible). A closed evolution curve in the (β,λ) space is
described by the turbulence, which remains in the nonlinear
stage characterized by trapping and oscillates between weak
and strong trapping. The characteristic time �t for turbulence
and transport oscillations can be estimated as the inverse of
the growth rates, which are of the order of 5 10−3cs/Ln. One
obtains for R0/Ln = 5, �t = 40 R0/cs, in agreement with
numerical simulations.
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