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Pattern dynamics and filamentation of femtosecond terawatt laser pulses in air including
the higher-order Kerr effects
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Plasma defocusing and higher-order Kerr effects on multiple filamentation and pattern formation of ultrashort
laser pulse propagation in air are investigated. Linear analyses and numerical results show that these two
saturable nonlinear effects can destroy the coherent evolution of the laser field, and small-scale spatial turbulent
structures rapidly appear. For the two-dimensional case, numerical simulations show that blow-up-like solutions,
spatial chaos, and pseudorecurrence can appear at higher laser intensities if only plasma defocusing is included.
These complex patterns result from the stochastic evolution of the higher- or shorter-wavelength modes of
the laser light spectrum. From the viewpoint of nonlinear dynamics, filamentation can be attributed to the
modulational instability of these spatial incoherent localized structures. Furthermore, filament patterns associated
with multiphoton ionization of the air molecules with and without higher-order Kerr effects are compared.
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I. INTRODUCTION

In recent years, considerable interest in the self-guided
propagation of femtosecond terawatt laser pulses in air has
been stimulated because of the many potential applications
[1–14] such as in lighting discharge control, lidar remote
sensing, generation of few-cycle light bullets, and so on. The
propagation of ultrashort laser pulses in air is also rich in
fundamental nonlinear physics [12–20], including generation
of white light, third-order harmonic, terahertz radiation, and
conical emission. It is commonly believed that dynamic
equilibrium between Kerr compression and plasma diffraction
allows femtosecond terawatt laser pulses to self-channel and
propagate over a long distance in air. The second-order Kerr
self-focusing effect arising from the third-order susceptibility
can induce a positive nonlinear refractive index of the air.
In principle, for input laser beam having a power above the
threshold power (Pcr) for self-focusing in air, one can expect
that the beam first undergoes a compression process in the
diffraction plane and narrower beams can be generated by
self-induced waveguiding. However, there is an upper limit to
the optical intensity of the light beams. The limit is due to
ionization of air molecules when the laser intensity becomes
larger than a few tens of TW/cm2. In a parameter range with
the input laser intensity less than 1014 W/cm2, the optically
induced ionization can be modeled within the framework of
lowest-order perturbation theory and multiphoton ionization
processes would be dominant [21], where multiple photons
are absorbed by the air molecules and an electron plasma can
be generated. The resulting electron plasma has a diverging
effect on the light pulse, since it has a negative contribution to
the refractive index of the air. Dynamic balance between the
Kerr self-focusing and the diffraction of the plasma results in
filamentation of the light beam that can last for a distance much
longer than the Rayleigh length [10,11]. The first experimental
observation of long-distance self-guided laser propagation in
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air was shown in the mid-1990s, where a plasma channel as
long as 20 m was observed [12]. Later, it was shown that an
intense femtosecond pulse laser beam launched vertically into
the sky can generate white light at a distance of 10 km [13,14].
The optical intensities inside a filament can reach a few tens
of TW/cm2. Such laser-induced supercontinuum light can be
useful for detecting pollutants in the atmosphere [13].

There exist many theories, simulations, and experiments
on self-channeling of intense femtosecond laser pulses in
air [1–62]. The critical power for self-focusing is one of
the key parameters in laser filamentation in air. As is well
known, if the pulse power is less than a few critical powers,
only one filament is formed. At much higher powers, a single
laser pulse can form several filaments—a process known as
multiple filamentation. The generation of multiple filaments
is usually explained in terms of modulation instability of
the laser beam [22] and an optically turbulent light guide
model [23]. It has been proposed that the multiple filaments
can be regarded as the propagation of a group of interacting
light filaments [24]. In the proposed models, plasma diffraction
due to multiphoton ionization of the air molecules is invoked
for the formation of the self-guided light channel. However,
for balancing the second-order nonlinear Kerr focusing, the
saturation of the Kerr effect or the so-called higher-order Kerr
effects (HOKE) have also been suggested to play an important
role [25–46]. It is well known that the high-order saturation
effect in a nonlinear Schrödinger equation (NLSE) can lead to
spatialtemporal chaos and complicated patterns of light waves
propagating in a medium [47]. Recently, some experiments
have measured the coefficients of the higher-order terms up
to n8 in nitrogen and oxygen and n10 for argon [25]. The
data showed that the different-ordered nonlinear Kerr terms in
the refractive index have different signs, and the higher-order
Kerr effects can provide a defocusing effect. Filaments can
then be formed when the nonlinear refractive index change
signs from positive to negative with the increase of laser
intensity [26–28]. However, it is mentioned that subsequent
experimental results do not support such a higher-order Kerr
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model [29–33]. Recently, some attention has been paid to
these two mechanisms of laser filamentation in air [25–46].
It is found that HOKE can improve the quantitative modeling
of laser filamentation with respect to the peak intensity and
electron density in the laser filaments [34,35]. However,
these results cannot be reproduced by other experiments and
simulations [29–33,36–38]. On the other hand, the HOKE
model cannot fully produce the experimental conical emissions
although the classical model can [39]. A more detailed
understanding of laser filamentation in air is, therefore, still
needed.

Both plasma diffraction and HOKE can balance nonlinear
Kerr focusing in laser propagation in air. It should be noted that
these two models balance Kerr focusing for different parameter
ranges. For instance, for infrared laser pulses with duration
of about 100 fs, the nonlinear refractive index saturates
and goes to negative at a lower intensity in HOKE model
than that in classical case [25,34,35,48], where the plasma
defocusing is considered a saturating nonlinearity. For such
generalized saturable NLSEs, our previous investigations [47]
illustrated that spatial chaos and complicated patters can be
formed due to high-order saturable effects. In particular, it
is found that the nonlinear propagation of ultrashort laser
pulses in air can become incoherent and chaotic by invoking
a fifth-order susceptibility [49]. We note that filamentation
instability, solitary waves, and spatial chaotic patterns are the
result of nonlinear development of the modulational instability
for unstable wave modes [63–66]. It is, therefore, of interest to
investigate problems of pattern dynamics and filamentation of
femtosecond terawatt laser pulses in air including higher-order
Kerr nonlinearity and plasma diffraction. Such an investigation
may throw a new light onto the better understanding of the
filamentation process in air.

In the present paper, we theoretically and numerically
investigate spatial chaos and multiple filamentation of ultra-
short laser pulses in air by taking into account multiphoton
ionization of the air molecules without and with higher-order
Kerr nonlinear effects. The numerical simulations are carried
out based on a NLSE including HOKE [25] and a high-
order plasma saturation term that describes the multiphoton
ionization of the air molecules [48]. We aim to provide a deeper
understanding of the influence of the higher-order nonlinear
effects (including both HOKE and plasma saturable effects)
on the nonlinear propagation of ultrashort laser pulses in air.
In particular, we hope to establish a link between nonlinear
dynamical theory and filamentation processes. The paper is
organized as follows. In Sec. II, we give a brief introduction
of the reduced physical model describing the ultrashort laser
pulses propagating in air, and qualitative analysis of the
physical model is also given. The spatial chaos and pattern
dynamics in one and two dimensions are discussed in Sec. III
and Sec. IV, respectively. The effect of HOKE and plasma
diffraction on multiple filamentation of femtosecond terawatt
laser pulses in air is investigated in Sec. V. A conclusion is
given in the last section.

II. PHYSICAL MODEL AND QUALITATIVE ANALYSIS

The generalized NLSE is often considered a universal
model describing wave collapse and strong turbulence [66,67].

It has widely been applied in continuum mechanics, nonlinear
optics, plasma physics, Bose-Einstein condensates [67], and
so on. Recently, a full 3D + 1 dimensional NLSE model
describing a linearly polarized paraxial laser beam propagating
in air was developed [50,51]. In this model, the vectorial effects
[68] due to tight focusing and nonparaxial propagation of the
laser are not considered. Moreover, numerical integration of
the full 3D + 1 dimensional model over long distances is often
limited by the computer capacity. If we only focus on the
spatial dynamics of the laser pulse, a time-averaged 2D + 1
dimensional model that can well reproduce the qualitative
features of the experimentally observed patterns can be
employed [48]. In addition, such a reduced model can provide
a reasonable approximation of fluence patterns developed by
the full (3D + 1)-dimensional model, which makes it be widely
used to capture the transverse dynamics of the filamentation
phenomenon [48,49,69]. For multiple filamentation problem,
such a reduced model can be employed to capture the main
characteristics of the multiple-filament patterns. Including
HOKE, this model for the evolution of the scalar envelope
E(x,y,z) in the frame traveling at the pulse velocity is given
by the equation [34,50]

∂zE = i
1

2k0n0
∇2

⊥E + ik0�nE − iγ |E|2KE, (1)

where ∇2
⊥ = ∂2

xx + ∂2
yy is the transverse Laplace operator,

k0 = 2πn0/λ0 is the wave number in vacuum, n0 is the linear
index of refraction of the medium, λ0 (= 800 nm) is the
central wavelength of the laser, �n = n2√

3
|E|2 + n4√

5
|E|4 +

n6√
7
|E|6 + n8

3 |E|8 is the nonlinear refractive index of the

medium, the scalar envelop E(x,y,z) is defined as |E|2 = I ,
and I is the incident laser intensity. The last term on the
right-hand side of Eq. (1) represents the plasma defocus-
ing effect. Here γ = k0σKρnt

√
π/(8K)T/(2nc), where σK ≈

2.88 × 10−99 s−1 cm2K/WK is the coefficient of multiphoton
ionization, K is the number of photons, say K = 8 for O2 gas,
ρnt ≈ 5.4 × 1018 cm−3 is the neutral density, nc ≈ 1.8 × 1021

cm−3 is the critical plasma density, and T ≈ tp/10 with tp =
85 fs is the half-width of the laser pulse duration. It is noted
here that multiphoton absorption (MPA) is not considered in
our system in order to obtain a better understanding of the
difference between the two different saturable effects, as well
for the fact that in the presence of HOKE the MPA does not
play an important role [34,42,43] in filamentation. To be more
concrete, in most of the simulations we assume the propagation
medium is O2 gas. For comparison, in Sec. III we also discuss
several simulations for N2. The corresponding experimental
parameters [25] are listed in Table I.

The system of Eq. (1) is nondissipative and can be expressed
in a dimensionless form as

i∂zE(x,z) + ∇2
⊥E(x,z) + F (|E|2)E(x,z) = 0, (2)

where F (|E|2) = α|E|2 + β(β4|E|4 + β6|E|6 + β8|E|8) −
γK |E|2K and x, E, z are normalized by w0,

√
Pcr/4πw2

0,
and 4zf , respectively. Here zf = πw2

0/λ0 is the Rayleigh
length and Pcr ≈ 3.77λ2

0/8πn0n2 is the critical power for
self-focusing. For the O2 case with λ0 = 800 nm, we have
α = 0.544, β = −1, β4 = 6.541 × 10−6 /(w0/cm)2, β6 =
−2.4364×10−10 /(w0/cm)4, β8 = 4.489×10−14 /(w0/cm)6,
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TABLE I. Indices of the higher-order refraction terms in both N2 and O2.

Mediums n2(10−19cm2/W) n4(10−33cm4/W2) n6(10−46cm6/W3) n8(10−59cm8/W4)

N2 1.1 −0.53 1.4 −0.44
O2 1.6 −5.16 4.75 −2.1

γK = 2.7115 × 10−37 /(w0/cm)2K−2, and w0 = 0.3 cm is the
transverse width of the laser beam. These values will be used
in Sec. IV.

We now consider the invariants of our system.
Equation (2) can be derived from the Lagrangian density
L = i

2 (E∗Ez − EE∗
z ) − |∇⊥E|2 + 1

2α|E|4 + β( 1
3β4|E|6 +

1
4β6|E|8 + 1

5β8|E|10) − 1
K+1γK |E|2K+2. According to the

Noether’s theorem, we can obtain three invariants [66]:
the wave power P = ∫ |E|2dx, the momentum
M = i

2

∫
(ExE

∗ − EE∗
x )dx, and the Hamiltonian

H =
∫

[|∇⊥E|2 − 1

2
α|E|4 − β

(
1

3
β4|E|6 + 1

4
β6|E|8

+ 1

5
β8|E|10

)
+ 1

K + 1
γK |E|2K+2]dx. (3)

From Eq. (3), the Hamiltonian of the system (2)
can be separated into two parts: H = H0 + H1, where
H0 = ∫

(|∇⊥E|2 − α
2 |E|4)dx is the Hamiltonian of cubic

NLSE and H1 = ∫
[−β( 1

3β4|E|6 + 1
4β6|E|8 + 1

5β8|E|10) +
1

K+1γK |E|2K+2]dx is the Hamiltonian perturbation of system
(2) induced by HOKE and plasma diffraction.

For Eq. (2), a simple plane-wave solution can be written
as Es = E0e

iF (E2
0 )z. Now we give a qualitative analysis of the

dynamic behavior of this homogeneous solution exposed to the
modulational instability. Let δE(x,z) be a small perturbation
from Es , so E(x,z) = Es(z) + δE(x,z), where |δE| � |Es |.
Linearizing Eq. (2) around Es , we obtain the equation for the
eigenfunction δE(x,z),(

i∂z + ∇2
⊥ + Re h(z)

h∗(z) −i∂z + ∇2
⊥ + Re

)(
δE

δE∗

)
= 0, (4)

where Re = F (E2
0) + F ′(E2

0)E2
0 , h(z) = F ′(E2

0)E2
s , and

F ′(u) = ∂uF .
Assuming periodic boundary conditions, δE(x,z) can be

expressed as [70]
(i) a one-dimensional case,(

δE

δE∗

)
=

(
εeiλz

ε∗e−iλ∗z

)
cos(kxx), (5)

(ii) a two-dimensional case,(
δE

δE∗

)
=

(
εeiλz

ε∗e−iλ∗z

)
cos(kxx) cos(kyy), (6)

where ε and ε∗ are small parameters and k is the wave number
of the perturbation. Inserting Eqs. (5) and (6) into (4), we
obtain the eigenvalue

λ = F
(
E2

0

) ± ik

√
2F ′(E2

0

)
E2

0 − k2, (7)

and the linear growth rate  = k
√

2F ′(E2
0)E2

0 − k2 of the
modulational instability for k2 < 2F ′(E2

0)E2
0 , where k = kx

for the one-dimensional case and k =
√

k2
x + k2

y for the two-
dimensional case. The wave number of the most unstable
mode is then kmax = E0

√
F ′(E2

0) for the one-dimensional case
and kx,max = ky,max = E0

√
F ′(E2

0)/2 for the two-dimensional
case, respectively. Inserting Eqs. (5) and (7) into Eq. (4), we
obtain δE

δE∗ |z=0 = ±i, which is very important for analyzing
the nonlinear behavior of Eq. (2). In order to illustrate

FIG. 1. (Color online) Values of HOKE relative to the KF effect
(solid red line) and most unstable growth rate of modulational
instability (dashed blue line) at different intensity of input laser (I0)
for the O2 case (a) and the N2 case (b). Asterisk symbols in (a) mark
the points with I0 of 8Icr, 150Icr, 1500Icr, 3000Icr, respectively, and
in (b) the asterisk symbols correspond to 1500Icr, 2000Icr, 3000Icr,
3700Icr, respectively, where Icr = Pcr/4πw2

0 ≈ 5.305 × 109W/cm2

for O2 and 7.717 × 109W/cm2 for N2.
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its importance, we construct the phase space (|E|,d|E|/dz)
at x = 0 and assume the initial condition E(x,0) = E0 +
εeiθ cos(kxx) for the one-dimensional case and E(x,y,0) =
E0 + εeiθ cos(kxx)cos(kyy) for the two-dimensional case,
where ε is a small real parameter. Although such a low-
dimensional phase space is only a projection of high-
dimensional space, it can reasonably describe homoclinic
crossing of the one-dimensional cubic integrable NLSE equa-
tion (see Fig. 2(b); also see Fig. 3(a) in Ref. [70]). Obviously,
the unstable manifolds of the hyperbolic fixed point (E0,0) in
this phase space correspond to θ = 45◦ and 225◦, and the stable
manifolds correspond to θ = 135◦ and 315◦. To obtain both
stable and unstable manifolds (corresponding to a homoclinic
orbit (HMO) [49,63–65,71]) for the hyperbolic fixed point
(E0,0), one can directly solve Eq. (2) [47,49,70] by choosing
±h (h is the numerical step).

III. SPATIAL CHAOS IN ONE-DIMENSIONAL
TRANSVERSE SPACE

We now turn to numerical simulations of the nonlinear
system (2). First, we would discuss the influence of HOKE on
the pattern dynamics of ultrashort laser pulses in air for the
one-dimensional case. The two-dimensional problem will be

TABLE II. Coefficients of the Kerr refraction terms in Eq. (8).

Mediums α β4(10−4) β6(10−8) β8(10−11)

N2 3.77/4 0.3504 −7.1431 1.7324
O2 3.77/4 1.6251 −7.9583 1.8472

discussed in the next section. When only HOKE is considered,
Eq. (2) in the one-dimensional case can be written as

i∂zE(x,z) + ∂2
xE(x,z) + F (|E|2)E(x,z) = 0, (8)

where F (|E|2) = α|E|2 − (β4|E|4 + β6|E|6 + β8|E|8). In
this case, we consider the different propagation mediums such
as N2 and O2. In particular, for N2, HOKE has a positive
contribution to the refractive index of air when the intensity
of the laser pulse is in the region 4.49 × 1012 < I0 (W/cm2)
< 2.74 × 1013, which could induce a quite different behavior
on the pattern dynamics compared with the case of O2 [69].
The coefficients in F (|E|2) for both N2 and O2 are listed in
Table II, where w0 = 0.3 cm and λ0 = 800 nm are taken.

According to the analysis in Sec. II, we have given a
reasonable initial condition and a suitable phase space to
analyze nonlinear dynamic properties of Eq. (8). In our
numerical simulations, we assume different input laser

FIG. 2. (Color online) Pattern structures of laser fields [(a), (d), (g), and (j)], phase space computed from the series (|E(0,z)| ∼ z) [(b), (e),
(h), and (k)] and the corresponding power spectrum (arbitrary unit) [(c), (f), (i), and (l)] with I0, respectively, of 8Icr [(a)–(c)], 150Icr [(d)–(f)],
1500Icr [(g)–(i)], and 3000Icr [(j)–(l)] for the O2 case, corresponding to the points in Fig. 1(a).
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intensities (different E0), with a perturbation level of 0.01E0

and initial phase θ = 45◦. We also consider the most unstable
mode with k = kmax. In addition, the standard spectral method
has been employed for transverse space (x direction) integra-
tion with a periodic length L = 2π/kmax and the fourth-order
Runge-Kutta method with variable step for propagation along
the z direction.

If only the Kerr focusing (KF) is considered, the Hamilto-
nian of the system (8) becomes H = H0. Equation (8) reduces
to the well-known cubic NLSE that is fully integrable in the
one-dimension case due to the existence of a Lax pair [72].
For the cubic NLSE, a class of periodic solutions and solitons
can be obtained by use of an inverse scattering transform,
and the solitons developed by modulational instabilities keep
their spatially coherent structures and temporally periodic
evolutions [70–73]. In terms of our dynamical system (8),
HOKE acts as a Hamiltonian perturbation H1 to H0. In Fig. 1,
we give the values of HOKE relative to the KF term and most
unstable growth rate max = F ′(E2

0)E2
0 at different I0 for both

the N2 and O2 cases. In the context of the specific coefficients
provided in the experiments [25], it is shown that for O2 HOKE
can always provide a negative contribution to the refractive
index; however, for N2, HOKE cannot. Figure 1(b) shows
that when I0 lies in the region 4.49 × 1012 < I0 (W/cm2)

< 2.74 × 1013, HOKE becomes a positive perturbation due
to rapid increase of the high-order focusing term β6|E|6
in HOKE, and, correspondingly, max increases quickly. In
addition, the weaker defocusing term in HOKE for N2 leads
to a much larger max than that for O2, which would result in
a quite different behavior of the evolutions of laser field in the
two mediums.

Figure 2 shows the solutions of Eq. (8) at different I0

for O2 case. When I0 is small enough [see point A in
Fig. 1(a)], HOKE relative to the KF effect is very small
and the perturbation H1 from HOKE can be neglected. As
illustrated above, laser propagation obeys an integrable cubic
NLSE with only the KF term. A typical periodic recurrent
solution is obtained in Fig. 2(a): spatially coherent pattern
structures appear and propagate with an invariable velocity.
In a sense, the periodic motion consists of two stages as
predicted by Benjamin and Fair [74]. The unstable modulation
of the uniform solution would first grow at an exponential rate,
but eventually the solution would demodulate and return to a
near-uniform state. The corresponding phase-space trajectory
is a HMO or the Kolmogorov-Arnold-Moser (KAM) tori,
where the unstable manifold smoothly joins with the stable
manifold at the saddle point (I0,0) [70]. Such a soliton-like
structure has also been obtained for relativistically intense

FIG. 3. (Color online) Pattern structures of laser fields [(a), (d), (g), and (j)], phase space computed from the series (|E(0,z)| ∼ z) [(b), (e),
(h), and (k)] and corresponding power spectrum (arbitrary unit) [(c), (f), (i), and (l)] with I0, respectively, of 1500Icr [(a)–(c)], 2000Icr [(d)–(f)],
3000Icr [(g)–(i)], and 3700Icr [(j)–(l)] for the N2 case, corresponding to the points in Fig. 1(b).
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FIG. 4. (Color online) Comparison of the two different complicated spatial patterns with I0 respectively of 1500Icr [(a)–(c)], 2000Icr

[(d)–(f)], and 3700Icr [(g)–(i)] for N2 case. [(a), (d), and (g)] Evolutions of laser field at x = 0. [(b), (e), and (h)] The contours of laser intensity
I (x,z). [(c), (f), and (i)] The profile of laser intensity at z = 0 (solid red line) and 26.4 m (dashed blue line).

laser in underdense plasmas [75,76], where the relativistic
effect and the ponderomotive force dominate the propagation.
For I0 = 150Icr [see point B in Fig. 1(a)], the first defocusing
term in HOKE (β4|E|4) cannot be neglected and HOKE begins
to play an important role. As a result, the laser fields exhibit a
weak chaotic behavior [63,64]: The pattern structure does not
recur within the finite distance and KAM tori in phase space
become much thicker, as shown in Fig. 2(e). In a sense, this
kind of solution is also called a quasiperiodic solution [70]. The
corresponding power spectra shown in Fig. 2(f) indicate that
many subharmonics appear compared with that in Fig. 2(c).

When laser intensity increases to 1500Icr (or 7.96 ×
1012 W/cm2) [see point C in Fig. 1(a)], the second focusing
term in HOKE (β6|E|6) becomes a large perturbation but
is dominated by the stronger defocusing effect in HOKE.
At this point, HOKE can completely break down the KAM
tori in phase space and the noiselike power spectra shown
in Fig. 2(i) demonstrate that strong chaos occurs. However,
for N2, as shown in Fig. 1(b), when the laser intensity
I0 increases to 4.49 × 1012 W/cm2, the second focusing
term in HOKE (β6|E|6) dominates β4|E|4 and becomes an
important mechanism. As a result, the HOKE turns from a
negative perturbation to a positive perturbation, leading to
the sharp increase of the maximum growth rate of mod-
ulational instability and quickly breakdown of the system.
Complicated pattern structures with a continuous phase shift
and off-axis evolution are observed for 4.49 × 1012 < I0

(W/cm2) < 1.91 × 1013, in which the focusing term β6|E|6

becomes a large perturbation [69]. Such complex patterns
differ substantially from that given in Fig. 2(g). Particularly,
for I0 = 1500Icr (≈1.16 × 1013 W/cm2) [see point A in
Fig. 1(b)], the laser intensity I (x,z) experiences a stochastic
oscillation at sufficiently far distance and the pattern drifting
phenomenon [77] is shown in Fig. 3(a) [also Fig. 4(b)]. For
I0 = 2000Icr (≈1.54 × 1013 W/cm2) [see point B in Fig. 1(b)],
more complicated pattern structures with oscillated centroids
that differ from the pattern drifting are shown in Fig. 3(d)
[also Fig. 4(e)]. It is noted that the found off-axis evolution,
as shown in Figs. 4(b) and 4(e), corresponds to the most
unstable stage of the system. When the modulational instability
is strong enough (a very large max), the laser fields with quite
small noise can easily develop into such complex structures. In
addition, the off-axis propagation of high-intensity laser pulses
in underdense plasmas can lead to laser hosing instability [78].
Thus, the off-axis behavior should be a general characteristic
of laser pulse propagation in the real medium, where the
asymmetric factors of the laser field would be quickly
enlarged by the modulational instability. Furthermore, the
corresponding phase-space trajectories shown in Figs. 3(b) and
3(e) demonstrate that the KAM tori are completely broken
down and irregular HMO crossings gradually appear with
the off-axis evolution of the laser field. As we have known,
irregular HMO crossings are associated with spatiotemporal
chaos [70,71] and pattern competition [77]. Differing from
pattern competition that experiences a phase jump from
θ = 45◦ to θ = 225◦, these two complicated patterns shown in

053103-6



PATTERN DYNAMICS AND FILAMENTATION OF . . . PHYSICAL REVIEW E 87, 053103 (2013)

FIG. 5. The energy evolution in the Fourier modes for the O2 case with I0, respectively, of 8Icr (a), 150Icr (b), 1500Icr (c), and 3000Icr

(d) as shown in Fig. 1(a).

Figs. 3(a) and 3(d) experience a continuous phase shift from
θ = 45◦ to θ = 225◦. On the other hand, the trajectories of
off-axis evolution are extremely sensitive to the initial laser
intensity, which is typical for a chaotic system [63,64], further
demonstrating that strong chaos occur in this case.

For the N2 case, when laser intensity increases further
to 2.74 × 1013 W/cm2, the third defocusing term in HOKE
(β8|E|8) dominates the focusing term β6|E|6 and results in
another transition for HOKE from a positive perturbation
to a negative perturbation again. In addition, the negative
HOKE experiences a dramatic increase with the increase of
laser intensity [see Fig. 1(b)]. For I0 (W/cm2) > 2.74 × 1013,
another complicated pattern which differs completely from the
ones discussed above is observed. Particularly, for I0 ≈ 2.86 ×
1013 W/cm2 [see point D in Fig. 1(b)], the complicated pattern
and relevant stochastic phase-space trajectory are shown in
Figs. 3(j) and 3(k). In Fig. 4, we give a comparison between the
off-axis patterns and this complicated pattern. It is shown that
at the same propagation distance z, the former exhibits off-axis
behavior, while the latter first experiences a quick spatial
diffraction and then develops into many small-scale spatial
structures. Because of the interaction of these small-scale
waves, their spatial structures experience a stochastic change
with the propagation of laser field, leading to the chaotic
behavior of laser field shown in Fig. 4(g). The interaction
of different short waves can lead to more complicated spatial
structures. It is also important to point out that although the
corresponding laser field propagates with a quite complicated
oscillation behavior, Fig. 4(h) shows that their patterns are still
of on-axis structures. In addition, for I0 ≈ 2.3 × 1013 W/cm2

[see point C in Fig. 1(b)], Fig. 3(g) shows that the laser
propagation experiences a quasiperiodic process. Therefore,
our simulations demonstrate that the off-axis pattern [in
Figs. 3(a) and 3(d)] can again become the on-axis pattern [in
Fig. 3(j)] by a quasiperiodic pattern [as shown in Fig. 3(g)].
Such complicated patterns have also been shown in Fig. 2(j)
when laser intensity increases to 1.06 × 1013 W/cm2. Their
corresponding continuous power spectra shown in Fig. 2l and
Fig. 3l reveal the chaotic behavior.

In order to analyze the mechanism that leads to these chaotic
behaviors, we further investigate the evolution of energy
contained in Fourier modes. In Fourier space, the energy of
the system (8) can be defined as

H =
∑

n

HKn
=

∑
n

∣∣EKn

∣∣2
, (9)

where the initial energy is in the mode kmax. Figure 5 shows
the evolution of the energy in the first four Fourier modes
corresponding to the solutions shown in Fig. 2. Obviously, a
large part of the energy lies in the first and second Fourier
modes. For I0 = 8Icr, the evolution of energy in all modes
is periodic [see Fig. 5(a)], which is consistent with periodic
recurrent patterns shown in Fig. 2(a). For I0 = 150Icr, the
quasiperiodic evolution of energy in Fourier modes shown in
Fig. 5(b) also agrees with the quasiperiodic solution shown
in Fig. 2(d), whereas for I0 = 1500Icr and 3000Icr, Figs. 5(c)
and 5(d) show that energy in the system would spread from
the lowest mode to many higher modes due to HOKE and
would not regroup into the original lowest mode. We can also
see from Figs. 5(c) and 5(d) that the quasiperiodic evolution
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FIG. 6. (Color online) Comparison of the values of nonlinear
terms (solid red line for Case II and dotted red line for Case I) and
the corresponding most unstable growth rate max of modulational
instability (dashed blue line for Case II and dash-dotted blue line for
Case I) in two cases, where the asterisk symbols in Case I mark the
points with I0 of 10Icr, 2000Icr, 9000Icr, and in Case II the asterisk
symbols correspond to 10Icr, 2000Icr, 3600Icr, respectively. Here,
Icr = Pcr/4πw2

0 ≈ 5.305 × 109W/cm2.

of the energy in the first two modes dominates the spatially
localized structures being kept. However, the evolution of
energy in higher modes clearly exhibits stochastic behavior

due to the strong mode-mode interactions, which would lead
to the presence of complicated spatial patterns, as shown in
Figs. 2(g) and 2(j).

IV. SPATIOTEMPORAL PATTERNS IN
TWO-DIMENSIONAL TRANSVERSE SPACE

In this section, we turn to discussing the dynamic char-
acteristics of the system (2) in two-dimensional transverse
space. In this case, both the HOKE and plasma diffraction are
considered. As we have known, the filamentation processes in
air are mainly investigated in high-dimensional space [58–62];
however, nonlinear properties of ultrashort laser propagating
in air, including the spatial chaos and pattern formation,
have not been investigated in high-dimensional spaces. For
two-dimensional NLSE, the singular focusing solution exists
[79–81], pseudorecurrence can also appear when the saturable
nonlinear effects are strong enough [82], and even a solitary
solution can be produced with an appropriate positive potential
[83]. We here investigated the nonlinear pattern dynamics
of the system (2) in two-dimensional transverse spaces by
taking into account the high-order plasma saturation effect
without and with higher-order Kerr nonlinear effects. In the
numerical simulation, we employ the same initial condition
and numerical method as discussed in Sec. III. The most
unstable mode with kx = kx,max and ky = ky,max is considered
and we assume the medium is O2.

FIG. 7. Evolutions of laser fields at (x,y) = 0 [(a)–(c) and (g)–(i)] in two cases and corresponding phase space [(d)–(f) and (j)–(l)] with
the same I0 as given in Fig. 6. The upper two rows are for Case I and the bottom two rows are for Case II.
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FIG. 8. (Color online) The transverse intensity patterns at different propagation distance in Case I [(a)–(b)] and Case II [(c)–(d)] with an
initial laser intensity of I0 = 10Icr, which are corresponding to the points A and D shown in Fig. 6.

To have a clear comparison between the two different
saturable effects, i.e, the plasma saturation effect and the
higher-order Kerr nonlinear effects, in the following we
consider two cases and refer to them as Case I and Case II. Case
I corresponds to β = 0, and Case II corresponds to β = −1
in the nonlinear term F (|E|2) of Eq. (2). Thus, in Case I the
Kerr terms are truncated to n2 and the plasma saturation term
is included; however, in Case II both the higher-order Kerr
nonlinear effects and the plasma saturation effect are con-
sidered. Figure 6 shows the values of higher-order nonlinear
terms relative to KF term and the most unstable growth rate
of modulational instability max in Case I and Case II. It is
shown that in the presence of HOKE for our parameter range,
the high-order saturation term in Case II is much stronger than
that in Case I for a wide range of intensities. In addition, max

in Case I is about 4 times higher than that in Case II.
Figures 7–10 give the solutions of Eq. (2) in two different

cases. At relatively low input intensity, say 10Icr (see points A
and D in Fig. 6), the high-order saturable effects are initially
negligible. Equation (2) then reduces to the two-dimensional
cubic NLSE that is not integrable. For the two-dimensional
cubic NLSE, singular solutions would occur at the points
of self-focusing, where the time of blowup is finite and the
field intensities exhibit catastrophic processes [47,79–81]. As
shown in Figs. 7(a) and 7(g), in both cases, the laser first
experiences a focusing process and then energy in the laser
fields would quickly converge into the filament structures
shown in Figs. 8(b) and 8(d). However, the catastrophic process
would be arrested by the defocusing effects arising from the
plasma or higher-order Kerr nonlinearity with the increase of
laser intensity. As a result, energy in the laser fields flows from

the filament regions to the peripheral regions, and, correspond-
ingly, the peak laser intensity decreases. However, the laser
power is still high and the focusing process occurs again. Such
a process is the well-known multiple-refocusing phenomenon
[50,84,85], which is clearly shown in Figs. 7(a) and 7(g).
Their corresponding phase-space trajectories in Figs. 7(d) and
7(j) reveal an attractor-like structure. However, their irregular
phase-space structures and the irregular distribution of energy
in Fourier modes shown in Fig. 11(a) indicate a chaotic
behavior. In addition, due to lower peak intensity in Case II,
the filament size shown in Fig. 8(d) is larger than that in Case
I, shown in Fig. 8(b).

When the initial laser intensity increases to 2000Icr (see
points B and E in Fig. 6), the high-order saturable effects
cannot be neglected and the maximum growth rate of mod-
ulational instability quickly increases, as shown in Fig. 6.
Figures 7(b) and 7(h) show that the laser field oscillates
stochastically and the relevant phase-space trajectories also
demonstrate stochastic behavior. On the other hand, we note
from Fig. 9 that the characteristic scale length of the patterns in
Case II is about 2 times larger than that in Case I. This can be
understood from the relation λmax = 2π/

√
max, where λmax

refers to the wavelength of the most unstable mode. In view
of the curve for max in Fig. 6, one finds that the wavelength
of modulational instability in Case II is approximately 2 times
longer than that in Case I, leading to a large- or small-scale
pattern structure in Cases II and I, respectively, as shown in
Fig. 9.

With an increase of the initial laser intensity, in Case I
a very interesting phenomenon is shown in Figs. 7(c) and
7(f). It is seen that when the laser intensity increases further
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FIG. 9. (Color online) The transverse intensity patterns at different propagation distance in Case I [(a)–(c)] and Case II [(d)–(f)] with an
initial laser intensity of I0 = 2000Icr, which are corresponding to the points B and E shown in Fig. 6.

to 9000Icr (see point F in Fig. 6), pseudorecurrence [82]
can appear. Actually, in this case nonlinear perturbation from
the high-order saturation term becomes larger. However, the
maximum growth rate of the modulational instability decreases
sharply to zero in this region (see Fig. 6), which suggests

that the instability cannot develop, eventually leading to
the pseudorecurrent solution. Physically, we can consider
that in this region plasma defocusing is strong enough to
prevent the Kerr focusing singularity. In earlier works [47,82],
pseudorecurrence was also observed when the saturation effect

FIG. 10. (Color online) The transverse intensity patterns at different propagation distance in Case I [(a)–(c)] and Case II [(d)–(f)] with an
initial laser intensity of I0 = 9000Icr and I0 = 3600Icr, respectively, which correspond to the points C and F shown in Fig. 6.
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FIG. 11. The energy evolution in the Fourier modes with I0, respectively, of 10Icr (a), 2000Icr (b), 9000Icr (c) in Case I and 3600Icr (d) in
Case II.

was very strong and the modulational instability was weak.
In contrast, for Case II, the strong HOKEs would induce a
quite different behavior on the pattern dynamics, as shown
in Figs. 7(i) and 7(l). Figure 10 shows the transverse intensity
patterns at three appropriate propagation distances. We can see
that in Case II, the laser fields first develop into a uniform X-
type structure due to the modulational instability. Nevertheless,
such uniform structures are quite unstable and small-scale
turbulent structures quickly appear on this X-type pattern [86]
as the laser propagates, which is in good agreement with the
solution in the one-dimensional case, shown in Fig. 4(h).
In addition, the complex interactions of these small-scale
structures lead to the stochastic behavior of the laser evolution
and phase-space trajectory shown in Figs. 7(i) and 7(l).

To clearly illustrate the mechanism that leads to the
formation of these complicated patterns, we again investigate
the evolution of energy contained in Fourier modes. In Fourier
space, we can define the energy of system (2) as [70]

H =
∑
Kn,m

HKn,Km
=

∑
Kn,m

|E(Kn,Km,z)|2, (10)

where Kn,m = (Kn,Km) represents the n-th Fourier mode in
x space and the m-th mode in y space. The evolution of
energy in the Fourier modes is shown in Fig. 11. Figure 11(a)
corresponds to the condition of point D in Fig. 6 in Case I.
It can be seen that as the laser propagates, the energy in the
initial mode would slowly spread to higher diagonal modes
at first, say K11 and K22, and, correspondingly, the energy in
the K11 and K22 modes increases. However, at the distance

(z ≈ 120 m) where the peak laser intensity experiences a
sharp increase [see Fig. 7(a)], the energy in the first three
diagonal modes all decreases in a short propagation distance
[see Fig. 11(a)], which implies that the energy in the system
transfers from the high-order diagonal modes (K11 and K22)
to much higher-order diagonal modes. Physically, the energy
in the laser fields would be concentrated on the higher-order
or shorter-wavelength Fourier modes during the focusing
process. Such process may be the intrinsic scheme of the
formation of laser filament in air.

Figure 11(b) shows the case of point E in Fig. 6 in Case I.
The stochastic evolution of energy in the high-order diagonal
modes leads to the chaotic behavior of laser fields shown in
Fig. 7(b). In particular, it is noted that for z > 10 m the energy
in the diagonal modes decreases but in the nondiagonal modes
increases. As a result, a considerable part of the energy lies
in the nondiagonal Fourier modes. The abnormal partition of
energy in Fourier modes would result in the formation of off-
axis patterns [47]. Here, we do not show the off-axis patterns. It
seems that such off-axis patterns are quite sensitive to the max-
imum growth rate of modulational instability. When the mod-
ulational instability is strong enough (a large max), the laser
field would easily develop into these complicated patterns. The
results in the one-dimensional case also verify this point.

We now discuss the pseudorecurrent case shown in
Fig. 7(c). We see from Fig. 11(c) that the energy in the first
two diagonal modes exhibits periodic motion but in high-order
mode K22 is not exactly periodic, which indicates that the
solution is pseudorecurrent rather than exactly recurrent as
shown in Fig. 2(a) for the one-dimensional case. Figure 11(d)
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FIG. 12. (Color online) (a) Comparison of the nonlinear refractive
index n(I ), where n(I ) = n2√

3
I − γ

k0
IK in Case I and n(I ) = �n −

γ

k0
IK in Case II. Here �n = n2√

3
I + n4√

5
I 2 + n6√

7
I 3 + n8

3 I 4 is the non-
linear refractive index in Case II without the plasma. (b) Comparison
of the most unstable growth rate of modulational instability max and
the wave number of the most unstable modes in two cases, where
max = k0

n2√
3
I − γKIK in Case I and max = k0( n2√

3
I + 2n4√

5
I 2 +

3n6√
7
I 3 + 4n8

3 I 4) − γKIK in Case II, and the corresponding wave num-

ber of the most unstable modes satisfy the relation kmax = √
2k0max.

also shows the case of point C in Fig. 6 in Case II. It is found that
the regular partition of energy in the first two diagonal modes
dominates the main X-type structure shown in Fig. 10(e).
However, the irregular behavior of energy in the high-order
mode (K22) leads to the appearance of the small-scale turbulent
structures, as shown in Fig. 10(f). In addition, it can be seen
from Figs. 11(c) and 11(d) that a small part of the energy is
distributed in the nondiagonal mode (K01); however, the ratio
is still negligible compared with that in Fig. 11(b), which does
not severely affect the symmetry of the intensity patterns, as
seen in Fig. 10.

V. MULTIPLE FILAMENTATION SIMULATIONS

In the above sections, we have given a detailed comparison
of nonlinear pattern dynamics in two different cases. Now we

FIG. 13. (Color online) The intensity profile I (x,0) at different
propagation distances in two cases with an initial laser power of
Pin = 5Pcr.

turn to the simulation of multiple filamentation of ultrashort
laser. Filamentation has extensively been found in laser or
particle beam propagations in air or plasmas [1–62,87]. As
far as multiple filamentation of laser beams propagating in air
is concerned, most of the numerical simulations are based on
the so-called classical model where the plasma defocusing is
considered as the saturating nonlinearity [48,54–58]. Here we
analyze multiple filamentation of ultrashort laser pulses in air
by comparing both plasma saturation effect and higher-order
Kerr nonlinearities. Equation (1) in two-dimensional spaces
is also solved using the standard spectral split-step scheme
[47,70]. In the transverse directions, a fixed grid of high
resolution (�x = �y � 20 μm) is taken. A sufficiently large
simulation box [(Lx,Ly) � 6w0] guarantees free propagation
of the laser pulse [48]. The input laser beam is modeled by a
super-Gaussian profile

E(x,y,z = 0) =
√

2Pin

πw2
0

exp

[
−x2 + y2

w2
0

]m

, (11)

where Pin is the input laser power, w0 is the initial beam waist,
and m is the index to define the super-Gaussian beam with
m = 1 corresponding to a Gaussian beam. In our simulations,
we consider the initial beam waist as 0.3 cm and the input laser
power on a level of low (Pin = 5Pcr), moderate (Pin = 80Pcr),
and high (Pin = 1000Pcr) powers, respectively, and m = 1
is assumed in the simulations. In addition, the propagation
medium is assumed to be O2.
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FIG. 14. (Color online) The transverse intensity patterns at different propagation distance in Case I [(a)–(e)] with a laser power of Pin = 80Pcr

and the corresponding intensity profiles (f) at y = 0, where the displayed space scale is 0.5 × 0.5 cm (scale of the simulation box is 2 × 2 cm).

Figure 12 shows the nonlinear refractive index n(I ) and the
most unstable growth rate max of the modulational instability
of a plane wave [51,85,88] in Case I and Case II as defined
in Sec. IV. With the increase of laser intensity, it can be
seen that the total nonlinear refractive index decreases from
positive to negative values. Particularly, intensity clamping
occurs when the total nonlinear refractive index equals zero
[89–91]. However, it is necessary to mention that intensity
clamping depends much on the focusing condition of the laser
beam, which may result in a champing intensity that does not
correspond to the zero value of the total nonlinear refractive
index [92–95]. It can be seen from Fig. 12 that Case II yields
a lower intensity for n(I ) = 0, which directly determines a
lower peak intensity in laser filaments in Case II and is in
excellent agreement with the simulation results (28.6 TW/cm2

vs 72.9 TW/cm2) shown in Figs. 14 and 15. In addition, max

in Case I is about 4 times higher than that in Case II, leading
to faster formation of filaments in Case I (see Figs. 14 and
15). Figure 12(b) also shows that the wave number of the most
unstable modes in Case I is much larger than that in Case II,
demonstrating that the propagation of ultrashort laser in air in
Cases I and II is dominated by a short- and long-wavelength
modulation, respectively.

Figure 13 shows the process of single filament formation in
the two cases for a low laser power of 5Pcr. In both cases, the
laser profiles collapse towards a well-known “Towns profile”
[see Fig. 13(b)] during the first self-focusing stage [96,97].
At this time, the saturable defocusing effects do not take
effect yet. Therefore, “Towns Profiles” in the two cases are
almost the same, as shown in Fig. 13(b). With the increase
of laser intensity, the plasmas are generated or HOKEs come
into play. Then the triggered defocusing effects will counteract
the focusing effect and arrest the spatial collapse of the laser
beam. Finally, the balance between the focusing effects and
defocusing effects sets a limit of the minimum beam diameter
and the highest intensity. The final equilibrium state of the laser
beam corresponds to the formation of single laser filament.
Figure 13(c) shows the intensity profile of the laser filament
in the two cases. It can be seen that the filament in Case II
has a wider diameter (254 μm vs 138 μm) but a lower peak
intensity (26.07 TW/cm2 vs 66.47 TW/cm2) than that in Case
I, which is basically consistent with the points of n(I ) = 0.

We now consider the case of multiple filament formation
with the initial laser power of 80Pcr. Figures 14 and 15 show
the phase of multiple filament formation and propagation in
the two cases. As illustrated above, the laser would first evolve
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FIG. 15. (Color online) The transverse intensity patterns at different propagation distance in Case II [(a)–(e)] with a laser power of
Pin = 80Pcr and the corresponding intensity profiles (f) at y = 0, where the displayed space scale is 0.5 × 0.5 cm (scale of the simulation box
is 2 × 2 cm).

to the “Towns profile” [see Figs. 14(a) and 15(a)], which is the
typical characteristic for a Gaussian beam [96,97]. Then the
defocusing effects arising from the plasma or higher-order
Kerr nonlinear effects counteract the optical self-focusing
by diverging into a series of concentric ring structures [see
Figs. 14(b) and 15(b)], as have been observed in existing
experiments and numerical simulations [98–102]. The ring
structures may result from the interference of the convergent
background field and the divergent field due to the reflection
of the front part of the pulse from the surface [98,99]. One the
other hand, we note from Fig. 18 that before the occurrence of
filaments, there exists an oscillation between the central focal
spot and the ring structures. Such an interesting phenomenon
has also been observed in previous work [100], which could
be due to the competition between the convergent field and
divergent field. Finally, only the interior ring with higher
refractive index can quickly break up into narrow filaments
by the modulational instability [see Figs. 14(c) and 15(c)].
The formation and breakup of the ring structures have also
been observed for intense lasers in near-critical plasmas by
use of three-dimensional particle-in-cell simulations [103].
Thus, the appearance and breakup of the ring structures should

be a typical characteristic to multiple filamentation of lasers
propagating in the medium. Furthermore, Figs. 14(d) and 15(d)
show that the interactions among the filaments differ markedly
in the two cases. In Case I, propagation of the external filaments
exhibits transverse deflection [see Figs. 14(e) and 18(a)], as
observed in some previous experiments [48]. On the contrary,
in Case II, the filaments rapidly coalesce to a central core,
resulting in a thick light bullet [see Figs. 15(e) and 18(b)].
The mechanism of the two different propagation modes can be
understood in terms of the evolution of the overall mean-square
radius 〈r2

⊥〉 of the beam. For our conservative system (1), we
can rewrite the evolution equation for 〈r2

⊥〉 as [85]

Pd2
z 〈r2

⊥〉 = 8

{
H +

∫
[2F (|E|2) − f (|E|2)|E|2]dr

}
, (12)

where P = ∫ |E|2dr is the laser power, 〈r2
⊥〉 is defined as∫

r2
⊥|E|2dr/P , H = ∫

[ 1
2k0n0

(|∂xE|2 + |∂yE|2) − F (|E|2)]dr
is the Hamiltonian of the system (1), F (|E|2) ≡ ∫ |E|2

0 f (s)ds,
f (s) = k0�n(s) − γ sK , and s = |E|2. For two or more in-
phase filaments with a mean separation distance δ, the Hamil-
tonian H can be expanded as H = Hfree + Hint(δ), where
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Hfree refers to the contribution of each individual filament
and Hint(δ), which decreases exponentially with δ2 (see Ref.
[85] for more details), describes the interaction between the
filaments. In addition, the critical separation distance δc, below
which the filaments can coalesce, is given by the zeros of the
right-hand side of Eq. (12). When the separation distance is
above δc, no mutual attraction between the filaments is possible
and the filamentation would develop independently [85,104].
In the two cases, it is found that in Case II δc is larger than that
in Case I. Moreover, due to a larger waist (ρ) of filaments in
Case II, the relative separation distance (δ/ρ) of the filaments
in Case II is smaller than that in Case I, which suggests
that the filaments in Case II are easier to attract each other.
Accordingly, in Case I no mutual attraction is observed for
filaments at wider separation distances. Instead, the filaments
diverge along the divergent tide from the reflection part of
the pulse. However, in Case II, filaments with small (δ < δc)
separation distances can provide strong attraction force to
seize the divergent tide and turn to a fusion process, which
enhances the channel stability and leads to prolongation of
the propagating distance [24,48]. In order to illustrate the
robustness of the two different propagation modes, we further
do the simulation by choosing some neighboring parameters.
It is found that for 90Pcr and 100Pcr, the similar characteristics
analyzed above can also occur. In addition, it is interesting to
note that the propagation dynamics of laser beams shown in
Figs. 14 and 15 are very similar to the behavior of spatial
solitons, including the breakup of high-order solitons and
the interaction dynamics of different solitons [105]. In fact,
such solitonlike dynamics are the typical characteristics of our
reduced model [48], especially for the conservative case.

Figure 17, which is for a much higher laser power, namely
Pin = 1000Pcr, shows the intensity patterns for the two cases
at appropriate propagation distances. From Fig. 16(a) we see
that the initial refractive index in the central region satisfies
n(I ) > 0 in Case I but n(I ) < 0 in Case II. Accordingly,
in Case II the laser first experiences defocusing, especially
when n(I ) is near the minimum, and energy of the laser
fields would flow into the region with maximum refractive
index that corresponds to dn/dr = 0 [see Fig. 17(e)]. As
a result, higher-order Kerr nonlinear effects produce a deep
hole in the transverse intensity distribution and most of the
light energy is accumulated in a cylindrical optical channel,
shown as the thick (red) ring in Fig. 17(f). Differing from
the unstable rings shown in Figs. 14 and 15, such a channel,
which can trap the intense laser light for several meters, as
can be seen in Fig. 18(d), corresponds to n(I ) ≈ 0 and can
make the system become more compact. From Fig. 17(f)
we can also see that rings are formed outside as well as
inside the channel due to the defocusing effects acting on
this channel. Figures 17(g) and 17(h) show that only the inside
rings would break up into filaments and then merge with the
optical channel. It can also be seen that small-scale turbulent
structures appear in the optical channel [see Figs. 17(g) and
17(h)], but they do not affect the robustness of the channel.
Such local complex structures may be characteristic of Case
II, also discussed in Secs. III and IV, and can be attributed
to energy distribution among the small-scale Fourier modes
typical for localized turbulence and chaos [66,70,106]. On the
other hand, in Case I filaments emerge from the rings outside

FIG. 16. (Color online) The initial refractive index distribution
along the axis of y = 0 for the two cases with a laser power of
Pin = 1000Pcr (a) and the initial refractive index distribution in Case
II at different input powers (b).

a central optical pillar [see Figs. 17(a) and 17(b)]. As the laser
propagates, the interior filaments would redistribute due to
mutual attraction. However, the exterior filaments would move
outwards along with the divergent tide, as shown in Figs. 17(c)
and 17(d). Figure 16(b) shows the initial refractive index at
different input powers in Case II. We can see that the location
of maximum refractive index deviate from the central spot
and the deviation increases with the the input power, which
could result in the formation of optical channel with variable
radius. Thus, in our parameter range the channel structure
appears to be typical in Case II at very high input powers
(�600Pcr). Since the characteristic scale length of the system
differs significantly when different mechanisms, such as the
ones considered here for our parameter range, of filamentation
are in operation, experimental records of the spatial filament
patterns would possibly be a new basis for identifying the
regime of filamentation in terawatt laser propagation in air.
However, we should mention that our simulation results as
given in Figs. 14–18 are mainly based on the measurement
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FIG. 17. (Color online) The transverse laser intensity patterns at
different propagation distance in Case I [(a)–(d)] and Case II [(e)–(h)]
with a laser power of Pin = 1000Pcr, where the displayed space scale
is 1.2 × 1.2 cm in Case I and 1.0 × 1.0 cm in Case II (scale of the
simulation box is 3 × 3 cm).

data (as shown in Tables I and II). To observe these different
filamentation patterns experimentally, they possibly have to
follow the specific values of parameters and experimental
conditions as discussed in Ref. [25].

The difference in the results for the two cases considered
here originates from the characteristics of the modulational
instability. The modulational instability growth rate of a
plane wave given by Eq. (1) can be expressed as  =
k
√

f ′(I0)I0 − k2/(4k2
0), where f (I0) = k0�n(I0) − γ IK

0 and

FIG. 18. (Color online) The laser intensity profile I (x,0,z) along
the propagation direction at two cases; the top row is for Pin = 80Pcr

and the bottom row is for Pin = 1000Pcr.

I0 is the incident laser intensity. The corresponding wave
number of the most unstable mode is kmax = k0

√
2f ′(I0)I0,

and it satisfies the relation kmax = √
2k0max. In view of the

curve for kmax in Fig. 12(b), it can be seen that the wave
number of modulational instability in Case I is much larger
than that in Case II. That is, in Cases I and II the laser
propagation suffers mainly from short- and long-wavelength
modulation, which leads to a smaller and larger filament size,
respectively, as shown in Figs. 14 and 15. As a result, the
short-wavelength modulation in Case I leads to formation of
small-scale filaments, and the long-wavelength modulation in
Case II leads to a thick optical bullet. Figure 12(a) also shows
that neglect of the high-order plasma saturation term in Case II
does not significantly affect the beam dynamics, demonstrating
that the higher-order Kerr nonlinear effect would become
important in the context of our specific parameters. This is
expected, since in our parameter range the peak laser intensity
always remains below 4 × 1013 W/cm2 in Case II, but in
Case I plasma defocusing can counteract Kerr focusing [101]
for I � ( n2k0√

3Kγ
)1/(K−1) ≈ 5.4 × 1013 W/cm2. In addition, our

estimations here is qualitatively consistent with the parameter
range demonstrated in Refs. [40,41,45,46], where it was
concluded that the filamentation process is dominated by
plasma for long pulses at short wavelengths and by HOKEs for
short pulses at long wavelengths. Finally, we should give a brief
discussion on the effect of noise. In our further simulations,
we have added a small noise level in Eq. (11). It is found that
the filament patterns, as shown in Figs. (14), (15), and 17, can
be kept when the noise level is very small. In particular, for
very high powers (�600Pcr), the filament patterns shown in
Fig. 17 are quite robust, even when subjected to a high noise
level.
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VI. SUMMARY AND DISCUSSION

In summary, we have systematically investigated the non-
linear pattern dynamics and multiple filamentation of terawatt
laser pulses in air by using a generalized saturable nonlinear
Schrödinger equation including a high-order plasma saturation
term without and with HOKEs. In the one-dimensional case,
the latter is investigated in detail for O2 and N2. Our theoretical
and numerical results show that the Hamiltonian perturbation
induced by the plasma and/or higher-order Kerr nonlinearity
can destroy the coherent propagation of the laser and result
in spatially complex incoherent structures. In the context of
the specific parameters used here, it is found that higher-
order Kerr nonlinearity can lead to quite different behaviors
of the pattern dynamics in both one- and two-dimensional
spaces, where turbulent small-scale spatial structures rapidly
appear as the laser propagates in air. In particular, in the
one-dimensional case, for N2 with our parameter choice,
the higher-order Kerr nonlinearity cannot always provide the
negative contribution to the refractive index in the regime
4.49 × 1012 < I0(W/cm2) < 2.74 × 1013 that is needed to
balance the KF. As a result, in the regime 4.49 × 1012 <

I0(W/cm2) < 1.91 × 1013, where the focusing term β6|E|6 in
HOKE gives a large perturbation term and the system becomes
rather unstable (a large max), a typical chaotic behavior that
is associated with a continuous phase shift and complicated
spatial structures is shown and its phase-space trajectory
corresponds to the formation of irregular HMO crossings.
Our Fourier mode analyses further confirm that the spatially
complicated structures are associated with the stochastic
evolution of energy in higher-order, or shorter-wavelength,
modes. For the two-dimensional case, our numerical results
demonstrate that the oscillation filamentation, chaotic evolu-
tion, spatial complicated patterns, and pseudorecurrence can
appear with increase of the saturable nonlinear effects in Case
I where the Kerr terms are truncated to n2. We find that
the filamentation corresponds to concentrations of energy in
shorter-wavelength diagonal modes, and the pseudorecurrence
phenomenon occurs only when the saturation effects are strong
enough.

Furthermore, our results on the multiple filamentation
shows that in our parameter range for laser pulses at moderate
power levels, plasma saturation effects can lead to production
of more small-scale filament structures, but higher-order Kerr
nonlinearity can lead to different filamentation patterns and
produce a thick optical bullet. At much higher powers, a typical
optical channel, capable of conveying a high-power laser for
a long distance, can be generated if the higher-order Kerr
nonlinearity is included. Such a different behavior induced
by the latter can enhance the long-distance propagation of
the laser. Because a wave beam with a small perturbation
can be developed into very rich localized pattern structures
by the modulational instability, such local structures may
be the early form of filament formation. The formation of
different nonlinear structures of laser fields propagating in air
would eventually evolve into complex filamentation patterns,
as shown in our results. Their corresponding nonuniformities
in the beam profile can be attributed to the stochastic evolution
of the shorter-wavelength modes (or higher-order Fourier
modes), where strong mode-mode interactions triggered by
the nonlinear saturable effects may enlarge the local inhomo-
geneities on the beam profile and modulational instability can
broaden the frequency spectrum of the incident laser. In partic-
ular, for self-focusing, the energy spectrum of the laser should
experience a transition from the long-wavelength modes to
the shorter-wavelength ones. For different nonlinear effects,
different pattern structures and filamentation phenomena of
femtosecond terawatt laser pulses in air therefore can appear
due to the nonlinear evolution of these localized structures by
the modulational instability.
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