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Parity-breaking flows in precessing spherical containers
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We present numerical solutions of the flow in precessing spheres and spherical shells with small (;/r, = 0.1)
inner cores and either stress-free or no-slip inner boundary conditions. For each of these three cases we consider
the sequence of bifurcations as the Reynolds number Re = r2§/v is increased up to ~1280, focusing particular
attention on bifurcations that break the antipodal symmetry U(—r) = —U(r). All three cases have steady and
time-periodic symmetric solutions at smaller Re, and quasiperiodic asymmetric solutions at larger Re, but the
details of the transitions differ, and include also periodic asymmetric and quasiperiodic symmetric solutions in

some of the cases.

DOI: 10.1103/PhysRevE.87.053020

I. INTRODUCTION

A rotating solid object is said to precess when its rotation
axis itself rotates (typically at a much slower rate) about a
secondary axis that is fixed in an inertial reference frame. If
the rotating object is a fluid-filled container, very complicated
fluid flows may be generated. The first theoretical studies
of precession-driven flows were by Sloudsky in 1895 [1]
and Poincaré in 1910 [2], who were interested in flows
induced in the interiors of precessing planets or stars. This so-
called Poincaré solution consists of an essentially solid-body
rotation, but about an axis that always lags slightly behind the
instantaneous rotation axis of the spheroidal container. Further
refinements to the Poincaré flow include viscous effects [3,4],
and continue to this day [5].

Based on the Poincaré flow and its lack of sufficiently
complicated structure, Bullard in 1949 [6] suggested that
precession was unlikely to be the origin of the Earth’s magnetic
field. He acknowledged though that the Poincaré flow could
well be unstable, in which case there could be substantial
small-scale structures after all. The pioneering experiments
by Malkus in 1968 [7] on precessing spheroids revealed this
to be the case, and since then it has been accepted that the
geodynamo could be at least partially driven by precession
(with convection-driven flows the alternative). The instabilities
of the Poincaré flow are by now well understood in terms of
resonant coupling of a pair of inertial waves [8,9].

Following Malkus, there have been a number of further
experiments involving precessing spheroids [10-13], triaxial
ellipsoids [14], spheres [15,16], and spherical shells [17],
spanning the entire range from the Poincaré solution and slight
deviations from it observed for very slow precession all the way
to fully developed turbulence observed for rapid precession.
Related theoretical and numerical work [5,18-25] similarly
covers a broad range of phenomena obtained at different
rotation and precession rates.

Regarding the origin of the Earth’s magnetic field, the
possibility of precession-driven dynamo action was first
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demonstrated numerically by Tilgner [26,27] in a sphere, and
by Wu and Roberts [28] in a spheroid. Very recently, Dwyer
et al. [29] have also suggested that the Moon may once have
had a precession-driven dynamo. Another possible astrophys-
ical application of (nonmagnetic) precession-driven flows is in
the interiors of neutron stars, where Glampedakis et al. [30]
suggest that certain instabilities must be taken into account in
interpreting the observed precession of radio pulsars.

In this paper we will focus on one particular aspect of the
problem, namely, the parity, or symmetry, on reflection through
the origin. The basic nature of the forcing is such that solutions
exist satisfying

U(-r) = =U(r), (1)

where r is the position vector, and U the fluid flow. For
sufficiently strong forcing these pure-parity solutions may
become unstable though, giving rise to mixed-parity solutions
that no longer satisfy (1). It is then of interest to consider
the precise sequence of bifurcations whereby the solutions
gradually acquire more and more structure, including breaking
the symmetry (1). Indeed, Refs. [26-28] all suggest that mixed-
parity flows are more efficient dynamos than pure-parity ones.

A further issue that we will explore concerns the difference
between a full sphere and a spherical shell. It is well known
that inertial waves in general behave very differently in the
two geometries [31,32], and even that the internal shear layers
associated specifically with the precessional spin-over mode
behave differently [33,34]. Given such differences between the
two geometries, even regarding purely linear phenomena, as
both of these are, it is of interest to investigate how different
they may be regarding intrinsically nonlinear phenomena such
as parity-breaking bifurcations.

II. EQUATIONS

Let €, be a unit vector defining the precession axis (which
we recall is fixed in the inertial frame). In the reference frame
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rotating about &, at the precession rate 2, the container rotates
about a fixed axis, at a constant rate 2. Denote this rotation
axis as the z axis, and define a complete Cartesian coordinate
system (x,y,z) such that

€, = sinaé, + coswé,.

That is, « is the angle between the rotation axis €, and the
precession axis €.

Scaling length by the container’s outer radius r,, time
by 7!, and U by r,92, the Navier-Stokes equation in this
reference frame becomes

dU+U-VU+2€é,xU=—-Vp+Re'VU, (2
with an associated boundary condition

U=sinfe, at r=1, 3)

where (r,6,¢) are spherical coordinates related to (x,y,z) in
the usual way.

The condition (3) applies to both a full sphere and a
spherical shell. For the sphere there are no further conditions,
but for the shell we also need to specify boundary conditions
at the inner radius r;, which we will fix at r; = 0.1, to focus
attention on the effects that even a quite small inner sphere
can have. This value was chosen by Tilgner [26] for purely
numerical reasons. For the conditions at »; we will consider
two possibilities, namely, stress free,

U =0, 8,(Us/r)=0, 8,Uy/r)=0 at

and no slip (with the inner sphere corotating and precessing
with the outer sphere),

r=ri,

U:risin9é¢ at r=r;.

[Note also that stress-free conditions cannot be applied at the
outer boundary, as otherwise the fluid would not sense the
boundary condition (3). More generally, stress-free boundary
conditions in spherical geometry can also lead to difficulties
with angular momentum conservation [35], as well as other
spurious behaviors [36].]

The three nondimensional parameters defining the problem
are the Reynolds number

Re = r2Q/v

measuring the rotation (often also replaced by the Ekman
number E = Re’l), the precession rate € = £2,/£2, and
the precession angle «. We choose to perform a single
parameter study varying only the Reynolds number, at the
precession parameters € = 0.3 and o = 120° (corresponding
to a retrograde precession). The parameters € and « are fixed at
these values only because this case was previously considered
by Ref. [26], and is therefore a useful starting point to a more
detailed exploration. We will then compute the sequence of
bifurcations as Re is increased, and consider the similarities
and differences between the full sphere and the spherical shell
with stress-free and no-slip boundary conditions.

Note finally how the precession is taken into account by
the Coriolis force in Eq. (2), whereas the primary rotation
is imposed by the inhomogeneous boundary condition (3).
Two alternative reference frames would be (i) the inertial
frame, in which there would be no Coriolis force, but the
boundary condition would be extremely complicated, or (ii) the
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frame fixed to the container, in which the boundary condition
would be homogeneous, but the noninertial effects would be
more complicated, involving not only the Coriolis force but
also the so-called Poincaré force [7]. The advantage of the
reference frame used here is that this is the only frame in which
neither the equation nor the boundary condition involve any
explicit time dependence, and is therefore the only frame in
which the flow can appear steady. If one is interested in study-
ing transitions to increasingly complicated time dependencies,
this frame is thus superior to either of the alternatives.

III. NUMERICAL SOLVERS

All calculations presented in this paper were computed by
two very different, and independently developed, numerical
codes, one based on spherical harmonics [37] (denoted H2000)
and one based on spectral/finite elements [38] (denoted
SFEMANS). Both codes have the capacity to solve, for example,
the magnetic induction equation as well, but here we use them
only as Navier-Stokes solvers. Since both codes have been
extensively documented in the given references, we only give
brief summaries here.

The H2000 code starts with the so-called toroidal-poloidal
decomposition U =V x (e€,) + V x V x (f§,), thereby au-
tomatically satisfying V -U = 0. The scalar potentials e
and f are expanded in terms of spherical harmonics
P/"(cos ) exp(im¢). The r components of the first and second
curls of (2) then yield relatively simple evolution equations for
the individual harmonics of e and f. Taking curls of (2) also
eliminates the pressure, and hence any need for a pressure
solver.

The radial structure of e and f is expanded in terms of
Chebyshev polynomials. The original H2000 code is valid
only in a spherical shell, with the interval r = [r;,7,] linearly
mapped to the standard Chebyshev range [—1,1]. A full sphere
version was developed by modifying this to

em(r) = Zeklm T ()
k

flm(r) = Z fklm T2k—1(r)rl/’ (4)
k

where !’ = 1 or 2 depending on whether the spherical harmonic
degree [ is odd or even. Compared with the original expansion,
the differences are (i) only the odd Chebyshev polynomials
Trx—1(r) are used, (ii) only the half range r = [0,1] is used,
and (iii) different expansions are used for different spherical
harmonics, via this factor r/, ensuring that each mode has the
appropriate even or odd radial symmetry required by regularity
at the origin.

The SFEMANS code starts with a Fourier expansion in the
azimuthal direction, followed by a finite element decompo-
sition in the meridional plane, applied separately to each
Fourier mode. Pressure and incompressibility are dealt with
by a rotational pressure-correction projection method. See
also Refs. [39,40] for similar methods combining Fourier
expansions in azimuth with spectral or finite elements in cross
section. All such methods are more general than H2000 or other
spherical harmonics based codes, since they can deal with any
axisymmetric container, not just spheres and spherical shells.

053020-2



PARITY-BREAKING FLOWS IN PRECESSING SPHERICAL ...

Correspondingly though, such methods are typically also con-
siderably slower than spherical harmonics codes. We use SFE-
MANS in spherical geometry here primarily for comparison pur-
poses, but its real strength lies in spheroids, or cylinders [41].

Note also that as different as the H2000 and SFEMANS
codes are, the basic exp(im¢) Fourier expansion in azimuth is
common to both, making comparisons of the kinetic energy
in a given Fourier mode (for example) particularly easy. In
contrast, the parity (1) looks very different in the two codes. In
terms of spherical harmonics, solutions satisfying (1) consist
of only odd [ for e and only even [ for f, so parity-breaking
bifurcations are easily detected simply by monitoring the
energy in the other / modes. In SFEMANS one first separates the
flow into so-called symmetric and antisymmetric parts,

U, = [U(r) —U(-nr)]/2, U, =[U@r) +Un)]/2,

and considers the corresponding kinetic energies K and K,,.

Typical resolutions for the H2000 code ranged from
(k,l,m) = (30,30,20) to (50,50,30). The same m = 20-30
range was used for SFEMANS, together with a mesh size in
the meridional plane of ~0.01 in the interior, and somewhat

FIG. 1. (Color online) The steady flow for a full sphere at
Re = 700, showing isosurfaces of |U| = 0.1 and slices at z = +0.5:
|U| varies between 0 (dark) and 1 (light). The rotation axis is Oz,
and the precession axis is indicated by a (red) double arrow (120°
from the Oz axis). The S-shaped vortex, a characteristic feature
of precession-driven flows, is steady in the precessing reference
frame. The wireframe shows the spatial domain decomposition used
in the SFEMANS code (two meridional domains that are not strictly
hemispherical, and with 48 azimuthal modes).
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FIG. 2. (Color online) The kinetic energy in the individual Fourier
modes m = 0-7 as functions of time; the period is 7 = 8.7. The solid
(blue) curves are the H2000 results, and the dotted (red) curves the
SFEMANS results. Re = 910.

smaller near the boundaries. Finally, a few limited comparisons
were also done with two further codes [42,43]; see also
Ref. [44] for more detailed comparisons of these two codes
with H2000, SFEEMANS, and several other codes in a number of
(nonprecessing) benchmark problems.

FIG. 3. The time average U of the Re = 910 flow. The three
panels denote slices in the xz, yz, and xy planes, as indicated. Within
each panel the arrows represent the flow in that plane, and the contours
the flow normal to the plane. The contour interval is 0.1, with white
indicating negative values and gray positive.
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IV. FULL SPHERE RESULTS

The basic sequence of bifurcations for the full sphere can be
summarized as follows: (a) Up to Re = 880 the solutions are
both steady and symmetric, satisfying (1), (b) for 885 < Re <
1000 they are periodic in time, but still symmetric, and (c) for
Re > 1005 they are quasiperiodic in time, and asymmetric.
In the remainder of this section we will consider the detailed
behavior in each of these three regimes.

Figure 1 presents a three-dimensional (3D) plot of the
steady solution at Re = 700. A characteristic feature is the
S-shaped vortex where the flow speed |U| is very small. Near
the center this vortex is aligned along the precession axis, that
is, in the xz plane, at an angle o = 120°.

Turning next to the periodic regime, Fig. 2 shows how
the kinetic energy varies in time at Re = 910. The agreement
between H2000 and SFEMANS is excellent, even for the Fourier

FIG. 4. From top to bottom, four snapshots of U’ = U — U for the
Re = 910 solution. The first snapshot corresponds to the maximum
of the m = O kinetic energy in Fig. 2, the second midway between
the maximum and the subsequent minimum, the third the minimum,
and the fourth midway between the minimum and the subsequent
maximum. The left column shows the xz plane, and the right column
the xy plane, as indicated. Arrows and contours as in Fig. 3, but with
a contour interval of 0.01, reflecting the much smaller values of U’
compared with U.
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FIG. 5. Time series and Fourier spectra of the kinetic energies
K (left) and K, (right). Within each column the first panel shows
a relatively short (300) time series, showing the rapid oscillations.
The second panel shows a longer (1500) time series, showing the
long-term quasiperiodic evolution. The third panel shows the Fourier

spectrum of a long time series, indicating the primary oscillation at
/s and the instability pair at fi and f,. Re = 1010.
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FIG. 6. Asin Fig. 5, but at Re = 1100.
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mode m = 7 (and still higher), where the energy is more than
three orders of magnitude reduced from the m =0 and 1
dominant contributions. The phase offset between the two sets
of results is of course arbitrary, and was adjusted to make
comparison particularly easy.

Figure 3 illustrates the spatial structure of U, the flow
averaged over the period. The S-shaped vortex from Fig. 1
shows up particularly clearly in the xz plane in the first
panel, as the line separating white from gray, where U, =0
(a backwards S actually). The S-shaped vortex results from
the domination of m = 0 and m = 1 modes and characterizes
precession driven flows at small precession rates in various
geometries. The “global-rotation” component of the flow is
nicely seen in the yz plane in the middle panel.

Figure 4 shows snapshots of U’ =U — U, the time-
dependent part of the flow (which is roughly an order of
magnitude less than U). Comparing the xz and xy planes in
Figs. 3 and 4, we see that U’ is concentrated near the S-shaped
vortex; the time dependence evidently consists of a periodic

FIG. 7. Two snapshots of U’ for the Re = 1100 solution (with the
horizontal line separating the two). The first corresponds to one of the
maxima in K, in Fig. 6, and the second to the subsequent minimum.
Within each snapshot the first row shows the U/, part of U’ and the
second shows U/, as indicated. Arrows and contours as in Fig. 4, but
with a contour interval of 0.02, reflecting the increase in U’ compared
with Re = 910.
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FIG. 8. (Color online) The kinetic energy at Re = 1200, in the
Fourier modes m = 0, 1, 4, and 7 as functions of time, with the left
column showing K and the right column K,,. The solid (blue) curves
are the H2000 results, and the dotted (red) curves the SFEMANS results.
Other Fourier modes agreed equally well.

“vibration” of this structure. The yz plane exhibits very little
activity, and is thus not shown.

Figures 5 and 6 (Re = 1010 and 1100, respectively) indi-
cate the temporal behavior in the quasiperiodic, asymmetric
regime. The Fourier spectra of the kinetic energy time series are

FIG. 9. The time average U of the Re = 1200 flow. The three
panels denote slices in the xz, yz, and xy planes, as indicated. Within
each panel the arrows represent the flow in that plane, and the contours
the flow normal to the plane. The contour interval is 0.1, with white
indicating negative values and gray positive. The black dots in the
center correspond to the inner sphere.
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particularly revealing: Before the bifurcation, K, = 0, and K
is periodic, with single frequency f;. The antisymmetric mode
then sets in as a pair, f; and f>, satisfying the resonant triad
condition f; + f> = f;. Looking at the specific numbers in
more detail, at Re = 1010 we have f; = 0.7233, f; = 0.2435,
and f, = 0.4798, and at Re = 1100 we have f; = 0.7272,
f1 =0.2380, and f, = 0.4893. Besides f1 + f> = f5, another
point to note is that f; =~ 0.72 is indeed consistent with the
period T = 2r/f; = 8.7 previously seen in Fig. 2.

A less obvious combination to consider is 2f; — fa,
which comes out as 0.0072 at Re = 1010, and —0.0133
at Re = 1100. The significance of these values is twofold.
First, the periods corresponding to 27 /|2 f) — f>| are 870
and 470, respectively, which are precisely the very long
quasiperiodicities seen in Figs. 5 and 6. Second, if 2 f; — f»
is positive at Re = 1010 and negative at Re = 1100, there
must be some intermediate point where it is exactly zero.
Together also with f; + f> = f;, this would imply that

FIG. 10. Two snapshots of U’ for the Re = 1200 solution, at the
instants in time where K, m = 0 has its maximum and minimum
values in Fig. 8. These instants were chosen to facilitate comparison
with the first and third snapshots in Fig. 4. As in Fig. 7, within each
snapshot the first row shows the U/, part of U" and the second U/,. The
contour interval is 0.02 (as in Fig. 7).
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f> =2f1 and f; = 3 fi—that is, a periodic solution, where all
relevant frequencies are integer multiples of some fundamental
frequency f). Further investigations revealed this critical point
to lie somewhere near Re = 1030. Solutions at Re = 1025
and Re = 1035 were clearly quasiperiodic, indicating that
any possible phase locking associated with this critical point
extends at most over a very narrow range in Re. We will return
to this point in the next section, though. Finally, note that while
Figs. 5 and 6 present H2000 results only, the SFEMANS results
were again in excellent agreement, exhibiting the same very
long quasiperiodicities.

Turning finally to the spatial structures of these mixed-
parity, quasiperiodic solutions, the time-averaged flow U is
essentially the same as in Fig. 3. In particular, U itself remains
symmetric; if the average is taken over several of the long
quasiperiodic cycles, its antisymmetric component quickly
tends to zero. Figure 7 shows snapshots of the fluctuating part
of the flow U’, separated into its symmetric and antisymmetric
components. U is quite similar to some of the structures
previously seen in Fig. 4; U/, obviously has the opposite parity,
but is otherwise concentrated in the same areas. In particular,
both U}, and U/, affect the bulk of the flow, rather than being
boundary layer phenomena. The previous vibration of the S-
shaped vortex thus becomes asymmetric and quasiperiodic, but
is otherwise similar to what it was before the parity-breaking
bifurcation.

V. SPHERICAL SHELL, STRESS-FREE INNER CORE

The initial sequence of bifurcations is very similar to
the full sphere case: At Re = 880 the solutions become
periodic but still symmetric, and at Re = 1080 they be-

m=0

0.196

S 0.192 : ANy
0.188 : -
0 50 100 150
t

m=1

0.228

" 0.224 ]

0.220 : :
0 50 100 150

0 50 100 150
t

FIG. 11. (Color online) The kinetic energy in the Fourier modes

m = 0, 1, and 7 as functions of time, for the pure-parity Re = 1270

quasiperiodic solution. The solid (blue) curves are the H2000 results,
and the dotted (red) curves the SFEMANS results.
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come quasiperiodic and asymmetric. The first bifurcation
point is thus virtually identical to its full sphere equivalent
(880 vs 885), whereas the second is increased somewhat
(1080 vs 1005). The fundamentally different aspect that arises
in this case is that now the quasiperiodic regime is interrupted
by a—surprisingly large—range where the solutions are phase
locked. For 1080 < Re < 1120 we have quasiperiodicity, with
2fi — f» > 0, then for 1125 < Re < 1235 we have 2f; —
f> = 0, and hence periodic solutions, then for Re > 1240 we
have quasiperiodicity again, with 2 f; — f, < 0.

Figure 8 illustrates the periodic nature of the solution at
Re = 1200, where the period is T = 25.9 (note how this is
three times the ~8.7 period associated with f;, consistent
with f; = f;/3). The time dependence of the various Fourier
modes is far more complicated than previously shown in Fig. 2,
but the agreement between H2000 and SFEMANS is still near
perfect. Figure 9 presents the spatial structure of U, which
again remains symmetric, and is again essentially the same as

FIG. 12. From top to bottom, four snapshots of U’ for the Re =
1270 pure-parity solution. The first corresponds to the maximum of
the m = 0 kinetic energy in Fig. 11, the second midway between
the maximum and the subsequent minimum, the third the minimum,
and the fourth midway between the minimum and the subsequent
maximum (compare with Fig. 4). The contour interval is 0.04,
reflecting the relatively large fluctuations in this solution.

PHYSICAL REVIEW E 87, 053020 (2013)

in Fig. 3. Figure 10 shows snapshots of the fluctuating part of
the flow U’. Comparing with Figs. 4 and 7, we recognize many
of the same structures.

VI. SPHERICAL SHELL, NO-SLIP INNER CORE

This case is surprisingly different from the previous two.
The first bifurcation, from a steady to a periodic but still
symmetric solution, occurs much as before, at Re = 865 in
this case. The next bifurcation is already different, though:
At Re = 1190 the solutions again become quasiperiodic,
but this time remain symmetric. As Re is increased still
further, these solutions remain linearly stable to antisymmetric
perturbations, up to Re = 1280 at least. Beyond this point
calculations became increasingly difficult for both H2000 and
SFEMANS, with the two codes also no longer agreeing with
one another. We cannot say therefore where (if ever) this
solution branch becomes linearly unstable to antisymmetric
perturbations.

However, by using a suitable initial condition (such as the
previous solution in Fig. 10, with the inner boundary condi-
tions adjusted over some suitably short initial time interval)
that already contains a significant U, contribution, a second
solution branch was found that does include antisymmetric
components. Once obtained at Re = 1280, this branch could
be tracked back down to Re = 1250, where it disappears
(almost certainly in a turning-point bifurcation), and one

m=0 x10t  m=0
0.196 2

0.194

0.192

0.190
0

0.016

0.014

0.012

0.010
0

0 50 100 150 0 25 50 75
t t

FIG. 13. (Color online) The kinetic energy in the Fourier modes
m =0, 2, and 6 as functions of time, for the mixed-parity Re =
1270 quasiperiodic solution. The left column shows K, and the right
column K,. The solid (blue) curves are the H2000 results, and the
dotted (red) curves the SFEMANS results.
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FIG. 14. Two snapshots of U’ for the Re = 1270 mixed-parity
solution, at the instants in time where K, m = 0 has its maximum
and minimum values near ¢+ = 50 in Fig. 13. As in Figs. 7 and 10,
within each snapshot the first row shows the U/ part of U’ and the
second U,,. The contour interval is 0.02 (as in Figs. 7 and 10, but half
that in Fig. 12).

switches back to the pure-parity branch. At least over the
range 1250 < Re < 1280 there are thus two branches, both
quasiperiodic, but one pure parity and one mixed parity.

Figure 11 presents the time series of the kinetic energy
in selected Fourier modes for the pure-parity solution, at
Re = 1270. The agreement between H2000 and SFEMANS is
again essentially perfect, particularly considering that this
is a quasiperiodic solution, and the two codes were not
started off with the same initial conditions, and were therefore
not synchronized with respect to the precise point in the
quasiperiodic cycle. The procedure used to generate Fig. 11
was to first run both codes long enough that each one had
settled in to its own quasiperiodic solution, then run a further
t ~ 700, then shift the two series relative to each other to obtain
a particularly good fit. The spatial structure of this solution is
similar to previous ones. U is again virtually identical to Fig. 9,
and is therefore not shown. Figure 12 shows snapshots of U’,
which may be compared in particular with Fig. 4.
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FIG. 15. (Color online) Schematic bifurcation diagrams of the
solutions obtained for no inner core (top), stress-free inner core
(middle), and no-slip inner core (bottom). The Reynolds number
is plotted on the horizontal axis, but the vertical “axis” does not
correspond to any particular quantity. Double lines (red) indicate
symmetric solutions, and single lines (blue) asymmetric. Solid lines
(red only) indicate steady solutions, dashed (red and blue) periodic
solutions, and dotted (red and blue) quasiperiodic solutions. The black
dots, and the numerals beside them, denote the corresponding figures
showing aspects of these solutions.

Finally, Figs. 13 and 14 show the equivalent of Figs. 11
and 12, but for the mixed-parity solution at Re = 1270. At first
sight the agreement between H2000 and SFEMANS might appear
slightly less than perfect now, but we recall that these are also
quasiperiodic solutions, so unless one compares sufficiently
long time series to be able to match up the right points in
the cycle, one should expect at least a few slight differences.
Figure 14 again shows similar spatial structures to Figs. 7
and 10.

VII. CONCLUSION

In this paper we have demonstrated that even an inner
sphere as small as 1/10 the radius of the outer sphere
can have a surprisingly large effect on the details of the
bifurcations obtained as the Reynolds number is increased.
Taken together, the three cases no inner core, stress-free, and
no-slip inner core exhibit a rich variety of possible solutions,
including (a) periodic, pure parity (Fig. 2), (b) periodic, mixed
parity (Fig. 8), (c) quasiperiodic, pure parity (Fig. 11), and
(d) quasiperiodic, mixed parity (Figs. 5, 6, and 13). Figure 15
summarizes the solutions obtained in the three different cases.
Because all of these solutions have been obtained with two
very different and independently developed codes, they may
also be useful as benchmarks for other Navier-Stokes solvers.

There is also considerable further work that could be
done. First, remaining within the confines of the study
presented here, it would be of interest to further increase
Re, particularly in the no-slip inner core case in Sec. VI
Second, the three parameters that were fixed here, € = 0.3,
o =120° and r; = 0.1, could also be varied. It is very
likely that the full four-dimensional parameter space contains
further interesting solutions waiting to be discovered. Finally,
following Refs. [26-28], one could investigate the possible
dynamo action of some of these solutions.
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