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Bioconvection in spatially extended domains
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We numerically explore gyrotactic bioconvection in large spatially extended domains of finite depth using
parameter values from available experiments with the unicellular alga Chlamydomonas nivalis. We numerically
integrate the three-dimensional, time-dependent continuum model of Pedley et al. [J. Fluid Mech. 195, 223
(1988)] using a high-order, parallel, spectral-element approach. We explore the long-time nonlinear patterns and
dynamics found for layers with an aspect ratio of 10 over a range of Rayleigh numbers. Our results yield the pattern
wavelength and pattern dynamics which we compare with available theory and experimental measurement. There
is good agreement for the pattern wavelength at short times between numerics, experiment, and a linear stability
analysis. At long times we find that the general sequence of patterns given by the nonlinear evolution of the
governing equations correspond qualitatively to what has been described experimentally. However, at long times
the patterns in numerics grow to larger wavelengths, in contrast to what is observed in experiment where the
wavelength is found to decrease with time.
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I. INTRODUCTION

The collective motion of many microorganisms in a fluid
environment is an ubiquitous phenomenon of nature and is
an important feature of a broad range of important systems.
It is a common feature of oceans, streams, and lakes and
occurs in fluids contained within animals [1]. For example,
the large-scale motion of vast quantities of phytoplankton in
the oceans plays an important role in climate models via their
production of cloud-condensation nuclei which are central to
descriptions of the global thermostat (c.f. [2,3]). In addition,
swimming microorganisms such as algae, bacteria, protozoa,
and spermatozoa can form suspensions with complex collec-
tive dynamics that play a vital role in the organism’s life cycle
and its impact upon its surroundings [1,4].

In this paper we focus our attention on what is called
bioconvection, which is a general term used to describe
the pattern formation caused by the upward swimming of
many microorganisms in a fluid [1,5]. Free-swimming mi-
croorganisms often swim with a particular direction relative
to the variation of an external stimulus. Examples include
chemical gradients (chemotaxis), variations in light intensity
(phototaxis), a gravitational field (gravitaxis), and variations in
the rheological properties of the surrounding fluid (rheotaxis).
The study of these taxes and others has a rich and growing
literature [1].

In this study we are interested in gyrotactic microorganisms
that are slightly denser than water with an asymmetrical mass
distribution. The cells are bottom heavy where the center
of mass is below the geometrical center. In the limit of
small Reynolds number flow where inertia is negligible, the
swimming microorganisms balance the viscous torque with
a gravitational torque which results in an upward swimming
direction at some angle with the vertical.

We will focus our attention on the microorganism Chlamy-
domonas nivalis. C. nivalis is a unicellular, freshwater, and
biflagellate swimming green alga [6]. The swimming stroke

consists of a breast-stroke motion of its two anterior flagella.
Geometrically it is a prolate spheroid with a typical length
of approximately 10 μm and typical swimming speed of
70 μm/s. It is about 5% more dense than water. Using these
typical parameters yields a Reynolds number for the flow field
caused by a swimming microorganism of Re ≈ 7 × 10−4 � 1
and is essentially inertia free.

There are many experiments discussed in the literature that
present the striking patterns of bioconvection for a variety
of different suspensions of swimming microorganisms [1,6–
10]. Typically, the experiments are conducted in large shallow
containers with aspect ratios � = L/H � 1, where L is the
length of the domain and H is the depth of the fluid layer. The
experimental images are photographs taken from above where
the light intensity can be related qualitatively with the spatial
variation of the local concentration of the microorganisms at
the top of the suspension. In this paper we will focus our
attention upon the experiments of Bees and Hill [6]; typical
experimental bioconvection patterns can be seen in Figs. 2–4
of this reference.

There has been significant progress modeling the complex
processes that result in bioconvection. The first models were
continuous and deterministic and assumed dilute suspensions
of microorganisms whose swimming results in low Reynolds
number flow [8,9,11]. The inherent randomness present in a
population of swimming cells was modeled as deterministic
diffusion. A linear stability analysis yielded predictions for
the wavelength describing bioconvection that were found to
be approximately 5 times too large when compared with long-
time experimental measurements [11,12].

Subsequent efforts included stochastic effects by allowing
the swimming direction to be a random process. Pedley
and Kessler [13] included a Fokker-Planck equation for
the probability density function representing the swimming
directions of the microorganisms. A linear stability analysis
of this model for the wavelength of the bioconvection also
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yielded wavelengths larger than the experimentally measured
values and was very similar to the result using the purely
deterministic model of Ref. [11]. Hill and Häder [14] modeled
bioconvection as the continuous limit of a correlated and biased
random walk. In this work, both gravitaxis and phototaxis were
explored and the model was used with careful experimental
measurements to quantify macroscopic quantities of potential
interest to theoretical modeling efforts.

There have been a number of numerical explorations of bio-
convection. Ghorai and Hill [15,16] have performed a series of
numerical simulations using the continuous and deterministic
model of Ref. [11]. Initially, two-dimensional bioconvection
in deep chambers was explored [15]. More recently [16], full
three-dimensional bioconvection was numerically explored in
a small aspect ratio domain capable of supporting a single
bioconvection plume.

There have been efforts to perform numerical simulations
of bioconvection that include stochastic effects as well as the
discrete nature of the individual microorganisms. Hopkins and
Fauci [17] accounted numerically for the discrete microorgan-
isms as point sources of gravitational force in the governing
equations for the fluid motion. In this work two-dimensional
bioconvection was explored for gyrotactic and chemotactic
microorganisms and yielded long-time patterns resembling
those of experiment.

In this paper we are interested in the long-time nonlinear
evolution of the bioconvection patterns in spatially extended
domains that are typical in experiment. We use the determin-
istic and continuous model of Pedley et al. [11] and perform
large-scale parallel numerical simulations for parameter values
relevant to the experiments of Bees and Hill [6]. We exploit the
significant progress of computational research on Rayleigh-
Bénard convection in large domains (c.f. [18,19]) to perform
long-time numerical simulations of bioconvection in large
spatially extended domains. We are particularly interested in
quantifying the pattern dynamics in the nonlinear regime and
its comparison with experimental observations.

II. APPROACH

A. Mathematical formulation

In the following we only provide the essential ideas to
describe the model; for more details see Ref. [11]. The number
density or concentration of the cells is given by n(x,t), where
x = (x,y,z) represents the spatial coordinates in a Cartesian
reference frame and t is the time. For a dilute suspension
of cells nv � 1, where v is the average volume of a single
cell. The conservation of momentum and mass for the fluid
suspension in dimensional form yields

ρ
∂u
∂t

+ ρu · ∇u = −∇pe − nv�ρ gẑ + μ∇2u, (1)

∇ · u = 0, (2)

where pe is the pressure excess over hydrostatic, g is the
acceleration due to gravity, ẑ is a unit vector opposing gravity,
μ is the dynamic viscosity of the fluid, ρ is the fluid density, and
ρ + �ρ is the mean cell density, where �ρ is approximately
5% larger than ρ in typical experiments. The second to last
term on the right-hand side of Eq. (1) represents the Boussinesq

approximation by allowing density variations in the buoyancy
term. Equation (2) is for an incompressible fluid and yields a
divergence-free velocity field.

The equation for the cell concentration is given by the
conservation of the number of cells. It is typical to neglect
birth and death processes which occur on time scales longer
than those that describe the dynamics of bioconvection. In
addition, the sedimentation velocity is much smaller than the
swimming velocity and can also be neglected. The resulting
dimensional equation is

∂n

∂t
= −∇ · J, (3)

where the flux of the cells J is given by

J = nu + nWcp − D∇n, (4)

where D is the isotropic diffusion coefficient for the cells, Wc

is the constant cell swimming speed, and p represents the unit
vector of the orientation of the cells.

The algal cells are known to be slightly ellipsoidal in
geometry with typical values of cell eccentricity of α0 ≈ 0.3
[12]. In our analysis we will proceed with the assumption
that the cells are spherical where α0 = 0 and have a radius
a and mass m. The cells are bottom-heavy with a distance h

between the center of mass and the geometric center. In the
limit of low Reynolds number the balance of the gravitational
and viscous torques yields an expression for the time variation
of the orientation of a swimming cell [16],

dp
dt

= 1

2B
[ẑ − (ẑ · p)p] + 1

2
ω × p, (5)

where the vorticity is ω = ∇ × u and the time scale of
reorientation is given by the gyrotactic reorientation parameter,

B = 4πμa3

mgh
. (6)

It will be insightful to proceed by nondimensionalizing Eqs.
(1)–(5). We will follow the convention of using the depth of
the layer H as the length scale, the time required for a cell
to diffuse across the layer depth H 2/D as the time scale, the
quantity ρD2/H 2 as the pressure scale, and the mean cell
concentration n̄ as the concentration scale [16]. The governing
nondimensional equations are

∂u
∂t

+ u · ∇u = −∇pe + S∇2u − SRnẑ, (7)

∂n

∂t
+ u · ∇n = −∇ · (nVcp) + ∇2n, (8)

∇ · u = 0. (9)

The nondimensional equation for the cell orientation is given
by

dp
dt

= 1

2G
[ẑ − (ẑ · p)p] + 1

2
ω × p. (10)

These equations contain several important nondimensional
parameters. The Schmidt number

S = ν

D
(11)
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represents a ratio of the diffusion of momentum to the diffusion
of cells where where ν = μ/ρ is the kinematic viscosity of the
suspension. The Rayleigh number

R = n̄v�ρgH 3

ρνD
(12)

represents the ratio of buoyancy to viscous forces. The scaled
swimming speed is

Vc = Wc

D/H
, (13)

where the swimming velocity is normalized by a mass
diffusion velocity scale. The scaled swimming velocity can
also be interpreted as a ratio of length scales d, where d = Vc

and is the ratio of the suspension depth to a length scale
describing the equilibrium concentration of microorganisms
located near the top surface [12]. For d � 1 the suspension
can be described as a deep layer and for d � 1 the suspension
is a shallow layer. Lastly, the dimensionless gyrotactic number

G = B

H 2/D
(14)

represents the ratio of the time scale of reorientation to the
diffusion time scale.

B. Numerical procedure

There has been significant progress in the numerical sim-
ulation of bioconvection. From very early on, the qualitative
connection of bioconvection with the fluid motion of Rayleigh-
Bénard convection has been observed [5]. Rayleigh-Bénard
convection is the fluid motion that results when a shallow layer
of fluid is heated from below in an opposing gravitation field.
As the temperature difference across the fluid layer increases,
buoyancy eventually overcomes viscosity, resulting in patterns
of convection cells. Rayleigh-Bénard convection is a canonical
pattern forming system where significant progress has been
made in improving our physical understanding of the dynamics
of systems driven far from equilibrium [20,21].

To solve the system of equations given by Eqs. (7)–(10), we
used a highly efficient, high-order, parallel, spectral-element
approach that has been developed to solve the Boussinesq
equations (c.f. [18]). The numerical approach has been used
to explore a number of fundamental questions for Rayleigh-
Bénard convection in large shallow domains for the precise
conditions of experiment [22–25].

In our numerical simulations we use a box geometry with
a solid bottom and a free surface at the top of layer. For the
sidewalls we have explored both the cases of solid sidewalls
and periodic sidewall boundary conditions. At all material
surfaces we impose the no-slip velocity boundary condition
and the free surface has zero shear stress. For the case of
solid sidewalls we enforce a no-flux boundary condition for
the concentration of the cells on all boundaries,

J · n̂ = 0, (15)

where n̂ is the outward pointing unit normal with respect
to a boundary. For the case of periodic sidewall boundary
conditions, the fluid velocity and the concentration of cells are
periodic in the horizontal directions.

In the numerical simulations, the initial conditions are a
spatially uniform concentration field for the cells upon which
we have added a small random perturbation,

n(x,t = 0) = 1 + εδ(x), (16)

where ε = 10−8 is the small magnitude of the perturbation
and 0 � δ(x) � 1 is a random number selected from a uniform
distribution at each location in space.

Our approach is high order and uses an exponentially
convergent spectral element discretization in space that can
asymptotically achieve higher accuracy for a given number of
numerical degrees of freedom than a finite element or finite dif-
ference code [26]. The code uses a stable third-order-accurate
semi-implicit (operator splitting) discretization in time that
allows time steps corresponding to Courant-Friedrichs-Lewy
numbers in excess of unity [27]. A typical value of the
numerical time step used in our calculations is �t = 10−4.
The elliptic problems arising from the viscous and pressure
substeps of the time integrator are solved iteratively with a
multigrid preconditioned conjugate gradient method [28,29].
The code is highly optimized for parallel architectures and
readily scales to thousands of processors.

III. RESULTS AND DISCUSSION

A. Comparison with experiment

We have chosen the parameters in our numerical simu-
lations to correspond with the experimental investigation of
Bees and Hill [6]. These experiments were conducted using
C. nivalis for a range of conditions. Thirty-nine experiments
were conducted in circular Petri dishes with a typical radius
of r0 = 2.5 cm with varying depths H of fluid suspension to
yield aspect ratios of 3 � �c � 21. For cylindrical geometries
it is common to define the aspect ratio as �c = r0/H . These
experiments are for weakly gyrotactic suspensions of moderate
depth that cover a broad range of Rayleigh numbers where
G ≈ 0.02 � 1, d ≈ 10, and 95 � R � 3500.

We initially focus our attention on experiments (17)–(19)
in Ref. [6] as a representative example of experimental
bioconvection. The experimental parameters are shown in
Table I. Using the parameters of Table I with the typical
properties of C. nivalis given in Ref. [16] yields the nondi-
mensional parameters listed in Table II using Eqs. (11)–(14).
The fluid properties for water are used where the density ρ =
1000 kg/m3 and the dynamic viscosity μ = 1 × 10−3 kg/m s.
The isotropic diffusion coefficient for the microorganisms is
D = 5 × 10−8 m2/s, the ratio of the cell density to the density
of water �ρ/ρ = 0.05, the average swimming speed of a cell

TABLE I. Experimental parameters used by Bees and Hill [6] to
study the bioconvection of C. nivalis upon which we have based our
numerical simulations. r0 is the radius of the cylindrical Petri dish,
H is the depth of the fluid suspension, n̄ is the mean concentration
of cells, �c is the aspect ratio of the cylindrical domain used in the
experiment.

r0 H n̄

(cm) (cm) (cells/cm3) �c

2.5 0.469 1.89 × 106 5.3
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TABLE II. Nondimensional parameters used in our numerical
simulations. S is the Schmidt number, R is the Rayleigh number, G

is the gyrotactic number, Vc is the scaled swimming velocity, and �

is the aspect ratio of the box geometry.

S R G Vc �

20 955.38 7.7 × 10−3 9.38 10

is Wc = 100 μm/s, and the gyrotactic parameter is B = 3.4
s. We note that the aspect ratio � = 10 is for a box geometry
where � = L/H and L is the side length of the box. This
yields a domain of similar size to those of the experiment with
�c ≈ 5 where the aspect ratio is based upon the domain radius.

The spatial variation of the bioconvection patterns at several
times during the time evolution are shown in Fig. 1. Color
contours of the concentration field n(x,y) are illustrated at the
top surface (z = 1) of the suspension layer. Red (light gray)
indicates a large concentration and blue (dark gray) indicates a
small concentration. The time increases from panel (a) through
panel (d). The pattern did not reach a steady state at long times
but continued to show slow and small scale dynamics with the
essential features of the pattern remaining similar to what is
shown in panel (d).

We have performed numerous numerical tests to ensure that
our results are not a result of the underlying spectral element
grid nor a result of the particular choice of initial conditions
used. We have run simulations with different spatial resolutions
and also from different initial conditions and we have found

FIG. 1. (Color online) Bioconvection patterns at the top surface
(z = 1) of a box domain with aspect ratio � = 10. Color contours
are shown for the cell concentration n, where red (light gray) is
large concentration and blue (dark gray) is small concentration. The
different panels are the patterns for (a) t = 0.24, (b) t = 0.5, (c)
t = 1.25, and (d) t = 8. The dimensionless parameters used are given
in Table II.

that the trends illustrated in Fig. 1 are qualitatively correct in
general [30].

Figure 2 illustrates the bioconvection pattern across a
vertical cross section of the domain for each of the panels
of Fig. 1. The vertical cross section shown in Fig. 2 is the
x-z plane that crosses through the domain shown in Fig. 1
from left to right. The exact location of the slice is chosen
to be near the center of the domain and to also cut through
the regions of large concentration in order to visualize the
plume structure and dynamics. Color contours are shown
that represent the cell concentration n(x,z), with red (light
gray) representing large concentrations and blue (dark gray)
representing small concentrations. The arrows represent the
vector for the suspension velocity u. Figure 2 illustrates that
in regions of large concentrations the suspension velocity is
downward, as indicated by the falling plume.

In our numerical simulations the suspension layer evolves
from the initial conditions toward the equilibrium state where
there is a dense layer of microorganisms near the top
surface. Theoretically, the equilibrium state is one with zero
suspension velocity and an exponential vertical variation in the
concentration field [11]. The suspension layer in the numerical
simulations becomes unstable before the equilibrium state
is completely established. At early times the instability is
strongest near the sidewalls and rapidly encompasses the entire
layer. Figures 1 and 2 illustrate that the pattern that grows
initially has a smaller wavelength than the pattern at long
times. The central region of the domain has a relatively small
suspension velocity at early times in the pattern evolution.

The general pattern evolution shown in Fig. 1 is in quali-
tative agreement with what has been observed in experiment,
where it was found that roll-type patterns became patterns of
dots at long times (for example, see Fig. 11 of Ref. [6]). A
qualitative description of the pattern evolution is as follows.
At short times, the microorganisms on average swim toward
the upper surface and result in a larger concentration which
eventually passes a critical threshold, resulting in the formation
of falling plumes. These initial falling plumes are in stripe-
or line-type structures, as shown in Fig. 1(a). These lines
then become unstable to a pattern of dot structures that are
formed in a somewhat regular array, as shown in Fig. 1(b).
The dot structures then interact slowly in time to yield a final
state of dots that are often connected by lines to yield starlike
structures, which can be seen in Figs. 1(c)–1(d). These starlike
structures then exhibit very slow dynamics that continue for the
duration of our simulations. In the experiments [6], an annular
pattern is observed after the dots are formed, which grows and
then becomes unstable again to dots which fill most of the
domain. We did not find evidence of the annular phase of the
pattern evolution along the progression to the final long-term
patterns in the numerical simulations.

The initial dynamics and symmetry present in the patterns
of Fig. 1 suggest that the boundary conditions and the
planform of the domain geometry may have a significant effect
upon the dynamics. In order to explore this further, we also
computed the bioconvection dynamics in a much larger domain
and in domains with periodic sidewall boundary conditions.
Representative results from these simulations at long times
are shown in Fig. 3. Figure 3(a) is for the same geometry
and conditions of Fig. 1 (� = 10) but with periodic boundary
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FIG. 2. (Color online) The vertical structure of the bioconvection patterns for the conditions of Fig. 1. An x-z cross section is shown. Color
contours are of the cell concentration n, where red (light gray) is large concentration and blue (dark gray) is small concentration. The arrows
represent velocity vectors for the suspension velocity u. The different panels are (a) t = 0.24, (b) t = 0.5, (c) t = 1.25, and (d) t = 8. The
dimensionless parameters used are given in Table II.

conditions. Figure 3(b) shows results for a large domain with
an aspect ratio of � = 40 and periodic boundary conditions.

For the domains with periodic sidewall boundary condi-
tions, the initial pattern emerges over the entire bioconvection
layer and it is composed of domains of dots with a square
latticelike-type structure. These domains of dots are similar
to what is shown in Fig. 1(c); however, the domains are
at different orientations with respect to each other and are
separated by domain boundaries and defect structures. These
initial dynamics are in contrast to the inward-propagating
line structure from the lateral boundaries that then evolve
into a lattice of dot structures, as seen in the simulations
with rigid sidewalls at early times. Our results suggest that
the initial line structures found in the simulations with rigid
sidewalls are due to the planform of the geometry and the
sidewall boundary conditions. However, after these initial
dynamics where t � 0.25, the lattice of dotlike structures is
a general feature of the dynamics that appears independent
of the sidewall boundary conditions. We have also conducted
long-time simulations in the large domain � = 40 with rigid
sidewall boundary conditions and the long-time patterns are
similar with what is shown in Fig. 3(b).

Overall, we find that the long-time patterns do not depend
significantly upon the aspect ratio or the particular sidewall
boundary condition used. This is evident by comparing the
patterns illustrated in Figs. 1 and 3. These results suggest
that our numerical simulations in a � = 10 domain with
rigid sidewall boundary conditions are representative of the
dynamics of large spatially extended domains. It would be
interesting to break the symmetry of the domain and use,
for example, a cylindrical geometry; however, this is not
something we have explored here. In the remaining discussion
we will focus our attention upon numerical results with � = 10
and rigid sidewalls.

Figure 4 illustrates the time evolution of the pattern
wavelength. The pattern wavelength is found at each time using
the structure factor in Fourier space [6,20,31]. The solid line
represents the results from numerical simulation. An estimate
of the order of magnitude for the time scale describing the

initial growth of the pattern in the linear regime is given by the
time required for a microorganism to swim from the bottom
surface to the top surface. In our nondimensional units this
time scale is τ0 = V −1

c ≈ 0.1. In light of this our simulations
are for very long times. In Fig. 4 the duration of the simulation
is τf = 8 = 80τ0. For comparison, the typical duration of
the experiments is on the order of 5 min, which corresponds
approximately to a duration of τf = 6τ0.

In the numerical simulation there is an initial rapid growth
of the pattern dominated by structures near the sidewalls, as
shown in Figs. 1(a) and 2(a). Since the measured wavelength
is a global measure of the pattern, this yields the initial large
spike in the value of the wavelength. After this spike the pattern
has become established over the entire domain, which yields
a value that describes the length scale of Fig. 1(b), which
shows a fairly regular grid of 42 plumes. At this point there
is a very slow coarsening process where the plumes merge
and annihilate to form a pattern of starlike structures that is
described by a larger length scale. This coarsening continued
for the entire duration of the numerical simulation, and we did
not explore the very long time limit of these pattern dynamics.

The linear stability of a suspension has been analyzed
and it is insightful to compare our numerical results with
these predictions. Although the analysis can include the
ellipsoidal geometry of actual cells, we will present only
the results for spherical cells in order to compare directly
with our simulations. Pedley et al. [11] analyzed the stability
of a uniform base state in an infinite body of fluid. The
base state has a uniform concentration of cells that are all
swimming vertically upwards with zero suspension velocity.
For this case of an infinitely deep layer it was found that the
suspension is unstable to two-dimensional disturbances larger
than a critical value given by λc = 2π/

√
VcGR. As a result,

there is no critical value of the Rayleigh number, and very
long wavelength two-dimensional disturbances are unstable.
Furthermore, there is a wavelength of maximum growth rate
given by λm = λc(2 + (S + 1)/

√
S)1/2 > λc, where both λc

and λm decrease as R−1/2 with increasing values of the
Rayleigh number.
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FIG. 3. (Color online) Bioconvection patterns at the top surface
(z = 1) of a box domain with periodic sidewall boundary conditions
at time t = 10: (a) � = 10 and (b) � = 40. We note that panel (b) has
been scaled in size by a factor of 4 in order to fit on the page. Color
contours are shown for the cell concentration n, where red (light gray)
is large concentration and blue (dark gray) is small concentration. The
dimensionless parameters used are given in Table II.

Pedley et al. [11] also provide an estimate for the linear
stability of a uniform layer of finite depth by allowing the finite
depth to provide a cutoff for the allowable maximum wave-
length of the vertical variation of the disturbance. These results
are only estimates in the sense that a uniform base state does not
satisfy the governing equations and the boundary conditions
for a layer of finite depth. Under these approximations there is
a critical Rayleigh number given by R(u)

c = 16π2/VcG, where
the notation R(u)

c indicates the critical Rayleigh number of a
layer of finite depth starting from uniform base state. For our
parameters R(u)

c = 2178 > R, indicating that our suspension
would be stable in this sense.

The linear stability analysis was extended by Hill et al. [12]
for the case of a layer of finite depth with realistic boundary
conditions. In this case the base state is the equilibrium state
that has an exponentially varying concentration of cells in
the vertical direction that satisfy the appropriate boundary

t

λ

0 2 4 6 8

1

2

R = 955

m

λ∞
exp

λc

FIG. 4. Variation of the wavelength of bioconvection λ with time
for R = 955, S = 20, G = 7.7 × 10−3, Vc = 9.38, and � = 10. The
horizontal dashed lines represent the critical wavelength λc = 0.49,
the wavelength of maximum growth λm = 1.18, and the long-time
wavelength measured in experiment λ

exp
∞ = 0.70 ± 0.05. The value

shown for λ
exp
∞ is the average of three different experiments where

the standard deviation about the mean value is approximately 0.05.
The shaded region indicates the range of wavelengths measured for
the initial pattern at short times in experiment where 0.75 � λ

exp
0 �

1.29. The specific experiments used are (17)–(19) in Ref. [6].

conditions for a suspension of finite depth. In addition, the
cells are all swimming vertically upward and there is zero
suspension velocity. In Ref. [12] results were presented for the
case of a rigid bottom and top surface. We computed the linear
stability for our case of a rigid bottom surface and stress-free
top surface using Eqs. (3.11)–(3.14) of Ref. [12].

For the parameters of Table II the results of the linear
stability analysis are shown in Fig. 5. Figure 5(a) illustrates
the variation of the neutral curve where the growth rate of
disturbances σ is zero. This figure also yields a value for the
critical Rayleigh number R(e)

c ≈ 60, where the notation (e)
indicates that this is for the case of a layer of finite depth
starting from the equilibrium base state. It is clear that the
critical value of the wave number is zero, indicating again that
the layer is unstable to long wavelength disturbances.

Figure 5(b) illustrates the variation of the growth rate σ with
wave number k where k = 2π/λ. It can be seen that for wave
numbers less than kc the growth rate is positive. In addition,
the wave number of the maximum value of the growth rate
yields km.

Figure 4 includes horizontal lines representing several
wavelengths of interest. The experimentally measured value
of the wavelength at long times is represented as the dashed
line at λ

exp
∞ = 0.70 ± 0.05, where we have used the average

value from experiments (17)–(19) in Ref. [6]. The ±0.05 is
the standard deviation about the mean value and represents
the variation observed in the three different experimental
measurements which began from different initial conditions.
This indicates that the long-time value of the wavelength in
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FIG. 5. Results from the linear stability analysis of a suspension
of infinite horizontal extent but finite depth, where the bottom surface
is rigid and the top surface is free, and the base state is given by
the equilibrium state. These results are for S = 20, G = 7.7 × 10−3,
and Vc = 9.38. (a) The neutral curve. (b) The variation of the growth
rate of two-dimensional disturbances σ with the wave number k,
where k = 2π/λ and R = 955. kc is the critical wave number in the
sense that disturbances with smaller wave number are unstable. km

is the wave number describing the disturbance with the maximum
growth rate.

the experiments had little variation with the initial conditions.
However, in the experiments it was reported that the short-time
wavelength λ

exp
0 was found to depend strongly upon the

initial conditions resulting from the initial stirring of the
suspension layer. The variation of the experimentally measured
wavelength at short times is indicated by the shaded region
where 0.75 � λ

exp
0 � 1.29.

Our results indicate that for times t � 3 the wavelength
of the numerical simulation is similar to the wavelength of
maximum growth rate λm. For longer times, the nonlinear
evolution of the bioconvection pattern continues to grow to
larger values as the pattern coarsens into the starlike structures.
The long-time wavelength of the numerical simulation is over
3 times larger than the experimentally measured value. In
addition, the experimental measurements exhibit the trend
where the initial pattern that is formed has a larger wave-
length than the long-time pattern. However, the numerical
simulations indicate that the deterministic model yields the
opposite behavior where the short-time pattern (excluding

the very early transients) is of a smaller wavelength than
the long-time pattern. These results suggest that although the
linear regime is in agreement with the experiments, there are
quantitative differences in the nonlinear long-time evolution.
As a result, this suggests that the long-time wave-number
selection observed in experiment may not be captured by the
current form of the deterministic model.

B. Variation with Rayleigh number

There are many interesting limits of the model that
one could explore using our numerical approach. However,
the computations are quite expensive for spatially extended
domains and in the following we have chosen to investigate
the variation in the pattern dynamics with the Rayleigh number.
As shown in Eq. (12), the Rayleigh number depends upon a
number of parameters. However, if we consider C. nivalis as
the microorganism of interest, the parameters that can vary
are the average cell concentration n̄ and the suspension depth
H . For example, one way to increase the Rayleigh number
would be to simply increase the concentration of the cells
while holding the remaining variables constant. The Rayleigh
number is an important parameter in determining the dynamics
and is the typical control parameter used to describe convection
problems. The effect of increasing the Rayleigh number results
in a stronger contribution of buoyancy-induced motion relative
to viscous dissipation.

In the following we have held all of the parameters
constant while varying the Rayleigh number over the range
100 � R � 3000 to cover experimentally accessible states.
For all but one of our numerical simulations, R < R(u)

c =
2178, indicating that a layer of finite thickness with a uniform
base state would be stable for these conditions. We have
performed one simulation with R = 3000, which would also
be unstable to the uniform base state. For the conditions of
our simulations the linear stability analysis predicts a critical
value of the Rayleigh number for the equilibrium base state
of R(e)

c ≈ 60. Our numerical simulation for R = 100 did not
yield a bioconvection pattern and resulted in a stable dense
layer of microorganisms at the top surface. For R � 500 all of
our simulations did yield bioconvection patterns. It is possible
that the finite size of our domain in the lateral direction affects
the value of the critical Rayleigh number. In this paper we
are more interested in the long-time nonlinear evolution of the
patterns and did not explore this aspect in detail.

Figure 6 illustrates the long-time nonlinear evolution of the
bioconvection patterns for R = 500,1000,1500,2000 in panels
(a) through (d), respectively. Our results show a transition
from a pattern resembling a lattice of dots joined by lines
for small values of R to a pattern composed of an irregular
array of connected dots for large values of R. The red (light
gray) regions of Fig. 6 represent a large concentration of the
microorganisms in downward plumes.

The time variation of the pattern wavelength is shown
in Fig. 7 for all of the Rayleigh numbers that have been
simulated for the time range t � 7. Even at these late times the
pattern wavelength continues to meander in time and does not
appear to be approaching a steady value, except for the lowest
Rayleigh number simulation at R = 500. The simulation at
R = 3000 required a smaller time step and, as a result, it
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FIG. 6. (Color online) The long-time bioconvection patterns at
the top surface of a box domain with aspect ratio � = 10 for the range
of Rayleigh numbers 500 � R � 2000. Color contours of the cell
concentration n are shown at the top surface at time t = 7. Red (light
gray) is large concentration and blue (dark gray) is low concentration,
where (a) R = 500, (b) R = 1000, (c) R = 1500, and (d) R = 2000.
The remaining parameters are given in Table II.

was only simulated until t ≈ 4. An interesting feature of this
simulation was the presence of oscillations in the dynamics;
these oscillations can also be seen in the rapid time variation
of the wavelength. For this case, the long-time pattern consists
of starlike structures whose size oscillates slowly in time. It
is also clear from our results that the long-time values of the

t

λ

2 4 6
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2
R = 955

R = 700

R = 3000

R = 1500

R = 1000

R = 500

R = 2000

FIG. 7. Variation of the wavelength of bioconvection λ with time.
The solid curves are numerical results for seven different values of
the Rayleigh number R. The remaining simulation parameters are
given in Table II.
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FIG. 8. (Color online) Variation of the wavelength of bioconvec-
tion λ with Rayleigh number R. The squares (red) are the long-time
pattern wavelength from the numerical simulations (the patterns are
shown in Fig. 6). The triangles (blue) are the short-time pattern
wavelength from the numerical simulations. The dashed lines are
included to guide the eye. The diamonds (cyan) and circles (green) are
the experimentally measured short-time and long-tome wavelengths,
respectively, from Ref. [6]. The two labeled solid lines are the critical
wavelength λc and the wavelength of maximum growth rate λm that
have been determined from a linear stability analysis of a finite layer
with an equilibrium base state and our boundary conditions.

bioconvection wavelength do not follow a monotonic trend
with the Rayleigh number.

The variation of the pattern wavelength with Rayleigh
number is shown in Fig. 8. The squares are the long-time
wavelength of the simulation measured at time t = 7, except
for the R = 3000 case which was measured at t = 4. As
previously discussed, this should not be taken as a steady
value but as a representation of the scale of the magnitude
at long times. The triangles are the pattern wavelength from
the numerical simulation at short times. This value of the
wavelength is the value just after the large initial transients
shown in Fig. 7. The dashed lines are included to guide the
eye. By comparing the short-time and long-time values of
the wavelength, the amount of wavelength growth with the
nonlinear evolution is evident. The solid lines represent the
variation with Rayleigh number of the critical wavelength λc

and the wavelength of maximum growth λm for the case of
a finite layer starting from an equilibrium base state with
our boundary conditions. It is clear that the initial pattern
wavelength is quite similar to λm. For the case of R = 955
we performed three long-time simulations that started from
different random initial conditions in order to quantify the
variation in our wavelength results. Using these results, the
standard deviation of the long-time wavelength is 0.14 and for
the short-time wavelength the standard deviation is 0.06.

The circle and diamond symbols on Fig. 8 are the exper-
imental results of Ref. [6] that have been rescaled using our
conventions for nondimensionalization. The diamond symbols
are the experimental pattern wavelength at early times λ

exp
0 ,

and the circles are the pattern wavelength at long times λ
exp
∞ .

Although the different experiments are for different values
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of d and G, the variation in these parameters is quite small
and this provides a way to visualize the general experimental
trends of the pattern wavelength with the Rayleigh number.
For some values of the Rayleigh number it was not possible to
experimentally measure λ

exp
∞ and in these cases a value is not

reported in Ref. [6].
From these results several comments can be made. Both the

short-time and long-time wavelengths of the experimentally
measured patterns decrease with increasing values of the
Rayleigh number. It is also evident that the experimental
patterns have a larger wavelength at short times which then
decrease toward the long-time value. The amount of variation
in the experiments of the short-time wavelengths with different
initial conditions is also evident. Overall, the numerical
simulations, experiment, and the linear stability analysis are in
agreement for short times. However, for long times there are
quantitative differences between the numerical results and the
experimental measurements.

IV. CONCLUSION

We have explored numerically the continuum model of
bioconvection by Pedley et al. [11] in spatially extended
domains for long times to quantify the nonlinear pattern
evolution. We have used a highly parallel, spectral-element
numerical approach. In this investigation we have focused
upon a box geometry with parameters appropriate to compare
with the experiments of Bees and Hill [6]. We have found
that the deterministic model does a remarkably good job of
describing the general pattern evolution of bioconvection for
the conditions of experiment. However, quantitatively there are
several important differences. The experiments evolve toward
smaller wavelength patterns and the numerical simulations
evolve toward larger wavelength patterns. Our results suggest
this model may be used, as one of the simpler choices available,
to study important open questions regarding the phenomena

of bioconvection in the linear regime. Our results also suggest
that model modifications may be required for quantitative
agreement in the long-time nonlinear regime.

There are a number of important approximations used in
our numerical simulations that we would like to highlight. The
experiments are in circular geometries whereas the simulations
are in a box geometry. For the aspect ratios explored it is
possible that the boundaries could play a significant role in
the pattern evolution. The geometry of C. nivalis is slightly
elliptical whereas we have assumed spherical cells. It is
known that the elliptical nature of the geometry affects the
linear stability [11,12], and this could also affect the nonlinear
evolution as well. The numerical simulations are deterministic,
and a more accurate representation would include the random
variations of the cells and their properties, such as geometry,
swimming directions, etc.

However, we emphasize that our numerical approach is
quite general and can be extended as models and experiments
improve to include, for example, much larger domains, deeper
or more shallow chambers, different geometries such as
cylindrical domains, anisotropic diffusion coefficients, etc.,
as well as a means to perform a more exhaustive exploration
of the parameter space. An important advance that results from
performing realistic numerical simulations using available
nonlinear models is the ability to test hypotheses in the long-
time limit, which is important experimentally yet currently
inaccessible to direct theoretical analysis.
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