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Taper-induced control of viscous fingering in variable-gap Hele-Shaw flows
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Variable-gap Hele-Shaw flows consider viscous fluid displacements resulting from the lifting or squeezing of
the upper cell plate, while the lower plate remains at rest. Conventionally, researchers focus on the situation in
which the cell plates are perfectly parallel. We study a slightly different version of the problem, where the upper
plate is gently inclined so that the plates are no longer parallel. Within this tapered Hele-Shaw cell context we
examine how the presence of such a small gap gradient affects the stability properties of the fluid-fluid interface.
Linear stability analysis indicates that the existence of the taper offers a simple geometric way to control the
development of interfacial fingering instabilities under both lifting and squeeze flow circumstances.
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I. INTRODUCTION

The lifting Hele-Shaw flow is a variant of the conventional,
constant gap spacing Saffman-Taylor problem [1–3]. It pro-
vides an alternative way to produce viscous fingering patterns
by stretching a very thin layer of a viscous fluid, sandwiched
between two parallel plates of a Hele-Shaw cell. This is done
by lifting the upper plate while the lower one remains at rest.
As the plates separate, the outer less viscous fluid enters the
system, and the more viscous inner fluid moves inward to
conserve volume. As a result, the fluid-fluid interface deforms,
forming complex, visually striking patterns [4–17].

The reverse flow situation is accomplished by compressing
the upper plate of the Hele-Shaw cell, so that the more viscous
inner fluid pushes the less viscous outer one. This characterizes
a fluid displacement arrangement commonly known as squeeze
flow [18,19]. In this case the flow is stable, meaning that
the fluid-fluid boundary is nearly circular, and interfacial
instabilities are damped out.

In addition to being an intrinsically important academic
problem, the variable-gap Hele-Shaw cell system is also
intimately related to the practical problem of adhesion [17–33].
In such types of problems the force and the energy required
to separate two adhesively bonded surfaces can be quite
successfully evaluated through the so-called probe-tack test
[34,35], which essentially employs a lifting Hele-Shaw setup.

Despite the rich morphology and dynamics of the radial
patterns produced by variable-gap Hele-Shaw flows, in some
practical circumstances such as in adhesion science the
formation of convoluted interfacial shapes is undesirable. In
fact, it has been verified both theoretically and experimentally
that the fingering formation process is indeed responsible for
the decrease in the adhesion force [13,17,22]. This suggests
that one could regulate the adhesive strength of confined
fluids by favoring or restraining the development of fingering
patterns. Therefore, one key aspect of both scientific and
practical points of view is to be able to precisely control the
rising of fingering structures in variable-gap confined flows.

In this work we introduce a small modification to the
traditional parallel plate setup used in existing lifting and
squeeze Hele-Shaw flow investigations. We consider a tapered
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Hele-Shaw geometry [36,37] in which the moving upper plate
is inclined a little bit in such a way that the cell presents a small,
constant depth gradient along the radial direction. This is done
while keeping the lower cell plate flat and motionless (see
Fig. 1). In this context, a lifting or squeezing process can take
place as in common variable-gap Hele-Shaw circumstances,
but now the cell plates are not exactly parallel. In this
framework the small gap gradient can be either positive [slowly
diverging plates; Fig. 1(a)] or negative [slowly converging
plates; Fig. 1(b)].

Our study is motivated by the recent success of the gap
gradient strategy in offering opportunities to tune fingering
behavior in the traditional Saffman-Taylor problem with
motionless parallel plates [38–41], as well as in the rotating
Hele-Shaw problem [42]. We examine how the sign and
magnitude of the small gap gradient affect the stability of the
interface for variable-gap Hele-Shaw processes. Our ultimate
goal is to devise a simple way, based on the geometry of the
Hele-Shaw cell configuration, to inhibit the viscous fingering
instability for lifting flows and stimulate it under squeeze flow
displacements.

II. BASIC EQUATIONS AND LINEAR STABILITY
CALCULATION

Consider a fluid of viscosity η surrounded by an inviscid
fluid sandwiched in the confined geometry of a tapered Hele-
Shaw cell (see Fig. 1). The fluids are incompressible, and there
exists a nonzero surface tension σ between them. In contrast
to the conventional parallel plate setup, the upper cell plate
has a constant small depth gradient b′ (|b′| � 1) in the radial
direction. This plate is allowed to move up (lifting flow) or
down (squeeze flow) along the z axis, which is perpendicular
to the lower cell plate. The lower plate is hold fixed at z = 0.
The coordinate system is defined in such a way that its origin
is located at the center of the cell. In these conditions, the cell
gap can be written as b(r,t) = b0(t) + b′r , where b0(t) is the
time varying cell spacing at its center.

During the upper plate lifting process, the initially unper-
turbed, circular interface can become unstable and deform due
to the interplay of viscous and capillary forces. Therefore,
we express the interface as R(θ,t) = R(t) + ζ (θ,t), where
R(t) is the time-dependent unperturbed radius of the interface
and ζ (θ,t) represents the net interface disturbance. Given a
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FIG. 1. (Color online) Schematic representation (side view) of a
radially tapered variable-gap Hele-Shaw cell, presenting (a) a positive
and (b) a negative gap gradient. Here we illustrate the case of lifting
flow, where the upper plate (represented by the thick dashed lines)
is pulled upward. The viscous fluid (viscosity η) is depicted in gray,
and the varying cell gap width is denoted as b(r,t). R(t) represents
the time-dependent radius of the unperturbed fluid-fluid interface.

time-dependent variable-gap profile function b0(t), conserva-
tion of volume leads to a useful relation that is expressed, as
R(t) evolves in time, as

2b′

3
R3(0) + R2(0)b0(0) = 2b′

3
R3(t) + R2(t)b0(t). (1)

In addition, we rewrite the variable cell gap as a function of
R(t),

b(r,t) = bi(t) + b′[r − R(t)], (2)

where bi(t) = b0(t) + b′R(t) is the cell spacing at r = R(t).
Here r denotes the radial coordinate and varies from zero to
infinity. However, to cover the entire inner fluid we have that
0 � r � R.

The basic hydrodynamic equation of the problem is Darcy’s
law,

v = −b2(r,t)

12η
∇P, (3)

where v = v(r,θ ) and P = P (r,θ ) are the gap-averaged veloc-
ity and pressure, respectively. Here θ denotes the polar angle
in the r-θ plane.

The incompressibility condition for the smoothly varying
gap situation is given by [36,37,43]

∇ · [b(r,t)v] = −ḃ(r,t), (4)

with ḃ(r,t) = ḃ0(t). From now on, since we are interested in
the onset of the interfacial instability and |b′| � 1, we consider
that 3b′[r − R(t)]/bi(t) � 1 [36]. Substituting Eq. (3) into Eq.
(4), we obtain a partial differential equation for the pressure,

∇2P + 3b′

bi(t)

∂P

∂r
− 12ηḃ0(t)

b3
i (t)

= 0. (5)

The most general solution of Eq. (5) can be written as
[37,43]

P (r,θ ) = f (r) + g(r)einθ . (6)

Substituting Eq. (6) into Eq. (5), we have

1

r

d

dr

(
r
df

dr

)
+ 3b′

bi(t)

df

dr
− 12ηḃ0(t)

b3
i (t)

= 0 (7)

and

1

r

d

dr

(
r
dg

dr

)
+ 3b′

bi(t)

dg

dr
− n2

r2
g(r) = 0. (8)

By taking into consideration that 3b′[r − R(t)]/bi(t) � 1, the
solution of f (r) is given by

f (r) = 12ηḃ0(t)

b3
i (t)

r2

4
. (9)

In the limit of parallel Hele-Shaw plates (b′ = 0), bi(t) =
b0(t), and this solution reproduces the results obtained in [4].
On the other hand, the solution for g(r) is

g(r) =
∑

n

Pn(t)r |n|�(|n|,1 + 2|n|; −3b′r/bi(t))einθ ,

(10)

where �(|n|,1 + 2|n|; −3b′r/bi(t)) is the Kummer confluent
hypergeometric function [44],

�(a,b; z) =
∞∑

k=0

(a)k
(b)k

zk

k!
, (11)

and (x)k = x(x + 1)(x + 2) · · · (x + k − 1). The function
�(a,b; z) is also known as the confluent hypergeometric
function of the first kind 1F1(a,b; z), being a degenerate form
of the hypergeometric function 2F1(a,b,c; z), which arises as a
solution to the confluent hypergeometric differential equation
[45].

At this point, we have the elements needed to perform a
linear stability analysis of the system. We begin by describing
the net interface perturbation ζ (θ,t) = ∑

n�=0 ζn(t) exp (inθ )
with Fourier amplitudes ζn(t) and discrete wave numbers n.
To find a relation between Pn(t) in Eq. (10) and ζn(t), we
consider the kinematic boundary condition [2], which states
that the normal components of fluid velocity at the interface
equal the velocity of the interface itself,

∂R
∂t

=
(

vr − 1

r

∂ζ

∂θ
vθ

)
r=R

, (12)

where vr and vθ are the components of the depth-averaged
velocity v. We keep terms up to first order in the parameter
ζ and then Fourier transform. Solving for Pn(t) consistently
yields

Pn(t) = 12η

b2
i (t)

R(t)

[R(t)]|n||n|�1

×
[

1 − 3b′R(t)

bi(t)

1

(1 + 2|n|)
�2

�1

]−1

×
{

− ζ̇n −
(

ḃ0(t)

2bi(t)
+ b′R(t)ḃ0(t)

b2
i (t)

)
ζn

}
, (13)
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where the overdot denotes the total time derivative, �1 =
�(|n|,1 + 2|n|; −3b′R(t)/bi(t)), and �2 = �(1 + |n|,2 +
2|n|; −3b′R(t)/bi(t)). Notice that the product 3b′R(t)/bi(t)
is not necessarily small since the ratio R(t)/bi(t) can be large.

Another important boundary condition is the pressure jump
at the interface [1,2], which is given by the Young-Laplace
equation

P (r = R,θ ) =
(

σκ + 2σ cos β

b(r,t)

)
r=R

. (14)

In Eq. (14) κ denotes the interface curvature in the plane of
the cell. On the other hand, the term proportional to 1/b(r,t)
is associated with the curvature for the direction across the
gap, and β is the static contact angle measured between the
plates and the curved fluid meniscus. As in Refs. [38,41] we
focus on the β = π situation, when the viscous fluid is said to
be wetting. We point out that the relevant three-dimensional
contribution of the contact angle β has not been taken into
account in the conventional lifting Hele-Shaw flow studies
presented in Refs. [4–17].

Hereafter, we consider the upper plate velocity as a constant
function in time, ḃ0(t) = ḃ, which can assume positive (lifting
flow) or negative (squeeze flow) values. Moreover, we work
with the dimensionless version of the equations so that
transversal and parallel lengths to the cell plane are rescaled
by bi(0) and R(0), respectively. Time is rescaled by bi(0)/|ḃ|.
Note that in the dimensionless version of the equations the
parameter 3b′δζ/bi(t) � 1, where δ = R(0)/bi(0) represents
the aspect ratio of the circular blob at time t = 0.

To obtain the equation of motion for the perturbation
amplitude ζn(t), first we substitute Eq. (13) into Eq. (10)
evaluated at the interface. Then, we insert the resulting
expression plus the solution for f (r) [Eq. (9)] into Eq. (6).
Finally, we match the expression for this pressure field with
the Young-Laplace condition (14) to get the equation of
motion. Keeping terms up to the first order in ζ and Fourier
transforming, we obtain

ζ̇n = λ(n)ζn, (15)

where

λ(n) = ±1

2bi(t)
(|n| − 1) − b2

i (t)

[R(t)δ]3

|n|(n2 − 1)

Ca

+ b′
{

2 cos β

R(t)δ

|n|
Ca

∓ R(t)δ

b2
i (t)

+ 3|n|
(1 + 2|n|)

�2

�1

[
bi(t)

[R(t)δ]2

(n2 − 1)

Ca
∓ R(t)δ

2b2
i (t)

] }

− b′2
{

3|n|
(1 + 2|n|)

�2

�1

2 cos β

bi(t)

1

Ca

}
(16)

is the time-dependent linear growth rate λ(n) = λ(n,t) and
Ca = 12η|ḃ|/σ is the capillary number. The upper signs
appearing in Eq. (16) are related to the lifting flow, and the
lower signs are related to squeeze flow. Equation (16) is a
central result of this work, yielding explicit dependence of
mode growth rates on b′, δ, Ca, and mode number n. Notice that
when b′ = 0, Eq. (16) reproduces the simpler results originally
obtained in Ref. [4] for the corresponding lifting problem with
parallel Hele-Shaw cell plates. As will become clear in Sec. III,
the interplay of the parameters b′, δ, and Ca is a fundamental
asset to allow the control and tuning of the fingering instability.

III. CONTROL OF THE FINGERING INSTABILITY

In this section we use the linear dispersion relation (16)
to investigate how the depth gradient can be utilized to either
restrain or promote the formation of interfacial viscous fin-
gering structures in variable-gap Hele-Shaw flows. We do this
by making sure that the values of the relevant dimensionless
quantities we choose are consistent with realistic physical
quantities related to existing experimental arrangements in
lifting and squeeze parallel plate flows and material properties
of the fluids [4–35].

A. Lifting flow

First, we examine the lifting Hele-Shaw flow, which is
unstable in the limit of a parallel plates cell. Figure 2 plots
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FIG. 2. Linear growth rate λ(n) as a function of n for Ca = 1.1 × 10−4 and δ = 250: (a) b′ = 0 (dashed curve), b′ = 0.002 (light gray
curve), and b′ = b′

c = 0.0039 (dark gray curve); (b) b′ = 0 (dashed curve), b′ = −0.0017 (gray curve).
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the linear growth rate λ(n) as a function of the mode number n

at t = 0 for positive [Fig. 2(a)] and negative [Fig. 2(b)] values
of the gap gradient b′, as well as for the case b′ = 0. The choice
of t = 0 is justified by the fact that in the lifting case the most
unstable situation happens at the beginning of the process. In
fact, by managing to suppress fingering at t = 0, one would
ensure its inhibition at t > 0. We consider Ca = 1.1 × 10−4

and the aspect ratio δ = 250. From Fig. 2(a) we readily see
a large band of Fourier modes with λ(n) > 0, indicating, as
expected, that the system is unstable under the usual parallel
plate lifting arrangement (b′ = 0, dashed curve). Figure 2(a)
also illustrates that the introduction of a small positive gap
gradient (b′ = 0.002, gray curve) tends to stabilize the system
with respect to the b′ = 0 case: the band of unstable modes
and the growth rate magnitudes are decreased.

Since for the lifting Hele-Shaw flow we wish to stabilize
the interface as much as we can, we proceed by increasing the
value of the gap gradient. By doing this, eventually a critical
value of b′ (defined as b′

c) is reached, such that the interfacial
instability is strongly restrained. It is clear from Fig. 2(a) that
the transition from an unstable to a stable situation occurs if
both of the following conditions are met:

λ(n)|t=0 = 0,
∂λ(n)

∂n
|t=0 = 0. (17)

This defines a critical gap gradient at which the exchange of
stability takes place. From Eq. (16) we have verified that the in-
terfacial instability is enhanced if we consider that �2/�1 = 1,
which is the upper bound value for the ratio �2/�1. This is a
convenient limit since it allows easy access to b′

c. Figure 2(a)
shows that the addition of a tiny gradient in the cell depth
(b′

c = 0.0039) is able to inhibit the emergence of viscous
fingering in lifting Hele-Shaw flows.

Figure 2(b) plots λ(n) as a function of n for b′ = 0 (dashed
curve) and b′ = −0.0017 (gray curve) at t = 0. It is interesting
to note that for a significantly small negative value of the
gap gradient (b′ = −0.0017) the interface becomes fairly
more unstable compared with the parallel plates situation
(b′ = 0). The efficacy of the taper-induced controlling process
is even more clearly illustrated in Fig. 3, where we plot linear
simulations for the physical situations discussed in Fig. 2.

Figure 4 illustrates the variation of the critical gap gradient
b′

c as the capillary number Ca is changed for three values of the
aspect ratio: δ = 150, 200, and 250. In this plot, for a given
value of δ, the region above (below) the curve corresponds

FIG. 3. Snapshot of the lifting interfacial patterns at time t = 0.7
for (a) a small negative gap gradient (b′ = −0.0017), (b) parallel
plates (b′ = 0), and (c) the critical gap gradient (b′

c = 0.0039). These
linear simulations include 40 Fourier modes and the same random
choice of phases. The viscous fluid is depicted in gray. These resulting
interfaces refer to the situations shown in Fig. 2.
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FIG. 4. Critical gap gradient b′
c as a function of the capillary

number Ca for three values of δ: 150, 200, and 250. This graph works
like a “phase diagram” for stability of the interface.

to a stable (unstable) situation. It is evident that in order to
eliminate any interface deformation, higher values of b′

c are
required as Ca is increased. Moreover, we also verify that for
larger values of the aspect ratio, higher values of b′ are needed
to stabilize the interface. So a proper tuning of the parameters
b′, Ca, and δ enables one to regulate the usual lifting instability
which occurs when b′ = 0 [4–17].

B. Squeeze flow

In this section we analyze the situation in which the upper
plate is compressed against the lower one. Figure 5 plots λ(n)
at t = 0 as a function of n for three values of b′. As expected,
we see that the usual parallel plate situation (b′ = 0, dashed
curve) is indeed stable [λ(n) � 0 for n > 0] since here the
more viscous fluid pushes an inviscid fluid. However, we can
destabilize the system by adding a small negative gap gradient.
In Fig. 5 we identify unstable situations for b′ = −0.004 (light
gray curve) and for b′ = −0.006 (dark gray curve). All these
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Λ
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b' 0
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b' 0.006

FIG. 5. Linear growth rate λ(n) as a function of n for Ca = 4 ×
10−5 and δ = 60: b′ = 0 (dashed curve), b′ = −0.004 (light gray
curve), and b′ = −0.006 (dark gray curve).
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FIG. 6. Snapshot of the squeeze flow interfacial patterns at time
t = 0.27 for (a) parallel plates (b′ = 0), (b) a small gap gradient
(b′ = −0.004), and (c) a slightly larger gradient gap (b′ = −0.006).
(d) A sequence showing time development (0 � t � 0.27) leading to
the interface shown in Fig. 6(c). These linear simulations include ten
Fourier modes and the same random choice of phases. The viscous
fluid is represented in gray. These resulting interfaces refer to the
situations shown in Fig. 5.

facts are reinforced by the corresponding linear simulations
depicted in Fig. 6.

Note that the small taper b′ < 0 [Figs. 6(c) and 6(d)] fur-
nishes an efficient way to induce interfacial destabilization and
finger production for an originally stable squeeze flow situation
(where b′ = 0). It is worthwhile to note that destabilization
for reverse fingering during squeeze flow has been recently
observed experimentally [46], where the compression of a
non-Newtonian starch gel leads to an interesting oscillatory
behavior at the sample’s interface. Incidentally, reverse flow
destabilization has also been experimentally detected in rectan-
gular Hele-Shaw flows [47] where the presence of a preexisting
wetting layer of surfactant generates the development of
fingering patterns with blunted fronts and sharp trailing tails.
Other experiments, performed in the radial Hele-Shaw setup
with particulate suspensions [48], exhibited unstable reserve
flow induced by the effectively less viscous trailing suspension.

Since the growth rate (16) varies with time, to estimate the
resulting number of fingers at a time t of the squeeze process
we have to obtain the Fourier mode nmax that maximizes the
amplitude ζn(t). By inspecting Eq. (15), we easily see that the
solution for ζn(t) is given by

ζn(t) = ζn(0)exp

[∫ t

0
λ(n,t ′)dt ′

]
. (18)

The number of fingers at the interface is obtained by searching
for the mode that maximizes the integral appearing in Eq. (18).
Figure 7 plots nmax as a function of b′ for Ca = 4 × 10−5,
δ = 60 and 100. Note that larger negative values of b′ are
needed to obtain higher values of nmax. On the other hand,

10 8 6 4 2
b'10 3

2

4

6

8

10

n m
ax

100

60

FIG. 7. The Fourier mode that maximizes the perturbation am-
plitude ζn(t) at t = 0.3 (nmax) as a function of the gap gradient b′ for
Ca = 4 × 10−5 and two values of δ: 60 (light gray curve) and 100
(dark gray curve).

larger values of δ favor an increasingly larger production of
fingers. So the tuning of the small gap gradient b′ and of the
aspect ratio δ serves not only to destabilize an originally stable
situation but also to enable one to conveniently set the number
of emerging interfacial fingers.

IV. CONCLUDING REMARKS

A modification of the traditional variable-gap Hele-Shaw
cell setup in which a gradient in the flow passage is introduced
has been proposed. The suggested modified arrangement
allows both lifting and squeezing flows to take place and
offers the possibility of investigating the influence of the small
depth gradient on the development of interfacial fingering
instabilities.

By appropriately generalizing the basic equations of the
system, in particular the continuity equation and the Young-
Laplace pressure jump condition, a linear dispersion relation
is derived. We have shown that the linear behavior of the
system can be conveniently described in terms of three
dimensionless parameters, namely, the depth gradient b′, the
capillary number Ca, and the aspect ratio δ. By tuning these
parameters we have found that the consideration of the tapered
Hele-Shaw geometry fundamentally changes the stability of
the fluid-fluid interface. Specifically, we have identified a
taper-induced controlling strategy permitting the restraining of
fingering in lifting flows, as well as the triggering of interfacial
disturbances in squeeze flows. These results might provide
a useful starting point for the design of a taper-regulated
debonding process of fluid materials in adhesion related
problems [13,17,22].
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