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Blowup as a driving mechanism of turbulence in shell models
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Since Kolmogorov proposed his phenomenological theory of hydrodynamic turbulence in 1941, the description
of the mechanism leading to the energy cascade and anomalous scaling remains an open problem in fluid
mechanics. Soon after, in 1949, Onsager noticed that the scaling properties in the inertial range imply
nondifferentiability of the velocity field in the limit of vanishing viscosity. This observation suggests that the
turbulence mechanism may be related to a finite-time singularity (blowup) of incompressible Euler equations.
However, the existence of such blowup is still an open problem too. In this paper, we show that the blowup
indeed represents the driving mechanism of the inertial range for a simplified (shell) model of turbulence. Here,
blowups generate coherent structures (instantons), which travel through the inertial range in finite time and are
described by universal self-similar statistics. The anomaly (deviation of scaling exponents of velocity moments
from the Kolmogorov theory) is related analytically to the process of instanton creation using the large deviation
principle. The results are confirmed by numerical simulations.
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I. INTRODUCTION

Describing the mechanism of developed turbulence for the
three-dimensional (3D) Navier-Stokes equations remains an
important open problem in fluid mechanics. It encompasses
various questions, and in this work we address the anomalous
statistics of velocity moments in the inertial range and the
dissipation anomaly (existence of finite dissipation in the
inviscid limit). These questions remain a hot research topic
since Kolmogorov presented the phenomenological theory
of the inertial range in 1941 [1]. This theory of isotropic
homogeneous turbulence leads to the power-law dependence
of velocity moments on spatial scales, providing the scaling ex-
ponents ζp = p/3 obtained on dimensional grounds. The exact
scaling exponents deviate from the Kolmogorov theory. These
deviations, called the anomalous corrections, are universal and
become large with increasing p. Though a lot of knowledge is
available now on the described anomalous phenomena, their
mechanism is still not well understood [2,3].

In 1949, Onsager [4] related scaling properties of turbulent
flow in the inertial range with the regularity of solutions
obtained in the limit of vanishing viscosity. He conjectured that
the anomalous turbulent dissipation requires the limiting ve-
locity field to be nondifferentiable with the Hölder continuity
exponent h � 1/3. This conjecture was proved later [5,6]. The
irregularity of inviscid solutions allows for the consideration
of the flow as a multifractal set with a continuous infinity
of dimensions [2,7], which explains the nonlinear shape of
scaling exponents ζp. Development of the theory of turbulence
in this way includes the fundamental obstacle. It is the problem
of blowup, i.e., the formation of a finite-time singularity in the
incompressible 3D Euler equations from smooth initial data of
finite energy. So far, the existence of blowup remains an open
problem [8].

Simplified models help in understanding the turbulence
phenomena. In this respect, the Gledzer-Ohkitani-Yamada
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(GOY) shell model of turbulence [9,10] was successful in
describing several nontrivial properties including the inertial
range with anomalous dissipation and scaling. Shell models
represent the dynamics in terms of characteristic (shell)
velocities corresponding to a discrete set of wave numbers
increasing in geometric progression and allow reliable numer-
ical simulation at very high Reynolds numbers. The Sabra shell
model proposed in [11] is characterized by improved regularity
in the inertial range. Despite the large effort [12], the theory of
turbulence for shell models, which would follow directly from
the model equations and describe the observed statistics, is not
yet accessible. On the other hand, the problem of blowup was
recently formalized [13] and understood [14,15]. The blowup
in the Sabra shell model has a self-similar universal structure
[16]. The possible relation of such structure to the statistics
of turbulence was discussed in [17,18]. Cascade models of
turbulence [19] represent the extended version of shell models,
where each shell is described by a large (though fixed) number
of variables. These models lead to anomalous intermittent
dynamics [20], and the universal self-similar blowup was
observed numerically in the inviscid cascade model [21].
See also [18,22–24] for other numerical observations of
self-similar blowup in shell models.

In this paper, we establish a direct link between the blowup
and the turbulent dynamics in the inertial range for the Sabra
shell model. We show that the blowuplike structures dominate
the turbulent fluctuations and can be described as a “gas”
of instantons. The instantons (coherent structures of shell
velocities, which traverse the inertial range in the direction
of large wave numbers) are represented and analyzed in terms
of velocity local maxima. The striking property of instantons
is that they maintain the universality and self-similarity of
blowup, though with slightly different scaling exponents and in
a statistical sense. This statistical universality of instantons was
observed earlier in [25]. Then we show that instanton creation
is the main process driving the inertial range dynamics. This
allows derivation of the probability density function (PDF)
for instanton amplitudes explicitly in terms of the anomalous
scaling exponents ζp by using the large deviation principle.
The obtained results fully agree with numerical simulations

053011-11539-3755/2013/87(5)/053011(11) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.053011


ALEXEI A. MAILYBAEV PHYSICAL REVIEW E 87, 053011 (2013)

and are also confirmed analytically for a class of instanton
creation models. Finally, we discuss some qualitative changes
in the turbulent regime, which occur with a change of model
parameter.

The paper is organized as follows. Section II introduces
the Sabra shell model. The blowup universal properties in
the inviscid model are described in Sec. III. In Sec. IV, we
consider the statistics of maxima of velocity amplitudes and
introduce a way to identify the instantons. Section V describes
the universal self-similar statistics of instantons. In Sec. VI,
we find universal expressions for PDFs of instantons using the
large deviation principle. Section VII presents the analytical
theory for a specific class of instanton creation models.
Section VIII describes a different turbulent regime, which is
dominated by a single blowup. The results are summarized in
Sec. IX.

II. MODEL

In shell models of turbulence, the Fourier space is repre-
sented by a series of shells n = 0,1,2, . . . , corresponding to
wave numbers kn = λn with λ = 2. We consider the Sabra
shell model [11]

dun

dt
= i[kn+1un+2u

∗
n+1 − (1 + c)knun+1u

∗
n−1

− ckn−1un−1un−2] − νk2
nun + fn, (1)

where un is the complex shell velocity, which can be
understood as the Fourier component of the velocity field
at the shell wave number kn, ν � 0 is the viscosity, and
c is the parameter controlling nonlinear coupling of the
shells. The terms fn model external forces at large scales
and, thus, they are usually restricted to the first few shells.
The inviscid system with no forcing (ν = fn = 0) conserves
the energy E = 1

2

∑
n |un|2. The second quadratic invariant

H = ∑
n c−n|un|2 is associated with the helicity for c = −0.5

when c−n = (−1)nkn. Additionally, there are four symmetry
transformations:

t �→ t − t0; (2)

un �→ eiθnun, θn = θn−1 + θn−2; (3)

t �→ t/a, un �→ aun; (4)

un �→ λun+1. (5)

Here, Eqs. (2) and (3) can be associated with the time and
physical space translations, while Eqs. (4) and (5) correspond
to the time and space scaling; see [12].

III. BLOWUP IN INVISCID MODEL

Let us consider solutions un(t) with the finite norm
|u|1 < ∞ defined as

|u|1 =
(∑

n

k2
n|un|2

)1/2

. (6)

The blowup represents a singularity given by

|u|1 → ∞ as t → t−c , (7)

which develops in finite time tc < ∞ from the initial condition
of the finite norm [13]. Note that the singularity is described
by the norm, while each particular shell speed un(t) remains
finite and smooth. This reflects the fact that the shell model
corresponds to dynamics in the Fourier space, where the
condition such as (7) implies the divergence of velocity
derivatives in physical space, i.e., infinite vorticity. The blowup
is only possible in the inviscid shell model, and the uniqueness
of the solution is insured only for t < tc [13].

Let us consider the inviscid model with vanishing forcing
terms, ν = fn = 0. Then we write Eq. (1) as

du′
n

dt
= Nn[u′], u′

n = iknun, (8)

with the quadratic nonlinearity

Nn[u′] = −λ−2u′
n+2u

′∗
n+1 + (1 + c)u′

n+1u
′∗
n−1 − cλ2u′

n−1u
′
n−2.

(9)

Following the approach suggested by Dombre and Gilson [14]
(see also [16]), we consider the renormalized time τ and shell
speeds wm introduced as

t = t0 +
∫ τ

0
exp

[
−

∫ τ ′

0
A(τ ′′)dτ ′′

]
dτ ′,

u′
n = exp

[ ∫ τ

0
A(τ ′)dτ ′

]
wn, (10)

where τ = 0 corresponds to the initial time t0 and A(τ ) is
specified below. It is straightforward to check that

dwn

dτ
= Nn[w] − Awn, (11)

where Nn[w] has the form (9) written in terms of wn instead
of u′

n. One can also check that Eq. (11) conserves the sum∑ |wn|2 if we choose

A(τ ) = Re
∑

n

w∗
nNn[w]

/∑
n

|wn|2. (12)

The idea of the above transformation is that Eq. (11) admits
an asymptotic traveling wave solution of the form [14]

wn(τ ) = W (n − sτ ), (13)

where s is the wave speed and W (ξ ) is a function vanishing as
ξ → ±∞. This traveling wave exists for a large range of shell
model parameter c, and it is determined up to symmetries
induced by Eqs. (2)–(5). For the original shell speeds un(t)
related to wn(τ ) by Eqs. (8) and (10), solution (13) yields
[14,16]

un(t) = −ik−y0
n U

[
kz0
n (t − tc)

]
, (14)

where

U (t − tc) = exp

[ ∫ τ

0
A(τ ′)dτ ′

]
W (−sτ ), (15)

z0 = 1

log λ

∫ 1/s

0
A(τ )dτ, y0 = 1 − z0, (16)

tc = t0 +
∫ ∞

0
exp

[
−

∫ τ ′

0
A(τ ′′)dτ ′′

]
dτ ′. (17)
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FIG. 1. (Color online) (a) Traveling wave formation in the
dynamics of the renormalized inviscid Sabra model. Shown are
the curves wn(τ ) with n = 0,1, . . . increasing from the left to the
right. (b) The corresponding dynamics of shell speeds un(t) for
n = 2,3, . . . . Bold green (light gray) curves show the universal
self-similar asymptotic form of blowup. Red squares indicate the
correlated sequence of maxima vn = maxt |un(t)|.

If y0 < 1, then Eq. (14) describes the asymptotic form of
blowup at finite time tc < ∞. In this asymptotic form, y0 is the
universal scaling exponent independent of initial conditions,
and the function U (t) describes the universal self-similar shape
of the blowup given up to the scaling symmetry of the Sabra
model. The equality y0 + z0 = 1 reflects the dimensional
relation tn − tc ∝ (vnkn)−1, where vn = maxt |un(t)| and tn is
the corresponding time. For details of the derivations and the
rigorous theory, which associate the traveling wave (13) with
a fixed-point attractor of the Poincaré map, see [15].

As an example, let us consider the case c = −0.5. The
solution wn(τ ) of the renormalized system (11) for real initial
conditions is shown in Fig. 1(a). One can clearly see the
formation of the traveling wave solution (13). The solution
for the original shell speeds un(t) is presented in Fig. 1(b),
which blows up at finite time t → tc given by Eq. (17).
Using Eqs. (15) and (16), we compute the scaling exponent
y0 = 0.281 and the function U (t). The bold green curves in
Fig. 1(b) show the asymptotic self-similar solution (14) for the
blowup, and one can readily see the convergence. Numerical
analysis confirms asymptotic stability of the traveling wave
solution in Fig. 1(a) due to both real and complex perturbations.
As we already mentioned, this implies that Eq. (14) provides
the universal asymptotic form of blowup.

Similar traveling wave solutions exist for c < −0.092.
The corresponding scaling exponent y0 and function U (t)
are shown in Fig. 2. The function U (t) is monotonous for
c < −0.671, possesses a single extremum (maximum) for
−0.671 < c < −0.139, and has several extrema for −0.139 <

c < −0.092. At c = −0.139, we have U (0) = 0 and the
scaling exponent attains the minimum y0 = 0. This fact can be
understood using the energy conservation argument. Indeed,
y0 in Eq. (14) cannot be negative, otherwise the shell speeds
and the energy would grow infinitely. In the case y0 = 0, all
of the energy is transported to large shells as t → t−c , so that
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FIG. 2. (Color online) (a) Dependence of the blowup scaling
exponent y0 on the Sabra model parameter c. Squares show the
scaling exponents y of instantons. (b) The universal function U (t)
in the asymptotic expression (14) for c = −0.1 (upper curve, blue),
c = −0.139 (dotted curve), c = −0.5 (solid black curve), and c = −1
(lower curve, red).

no energy remains in each shell at the time of blowup, i.e.,
U (0) = 0.

The real traveling wave solution (13) becomes unstable
with respect to complex perturbations at the critical value
c = −0.092. For c > −0.092, analysis of the blowup requires
more sophisticated techniques (see [15]), which are beyond
the scope of this paper.

IV. INSTANTONS IN INERTIAL RANGE
OF TURBULENT REGIME

It is known that for the parameter c = −0.5, the Sabra
model with small viscosity (large Reynolds number) demon-
strates chaotic intermittent behavior. The statistical properties
of this system have much in common with the developed tur-
bulence of the 3D Navier-Stokes equations [11]. In particular,
it possesses a wide (increasing with the Reynolds number)
inertial range of wave numbers kn separating the scales
influenced by forcing (small kn) and the scales dominated
by viscosity (large kn). This inertial range is responsible for
the energy cascade, i.e., the flux of energy produced in the
forcing range by external forces to the viscous range, where it is
dissipated due to viscosity. The existence of a positive limit of
mean dissipation rate for infinite Reynolds numbers constitutes
the famous dissipation anomaly of turbulent hydrodynamic
flows.

The important quantitative characteristic of the inertial
range is given by the structure functions (velocity moments).
In the inertial range, these functions depend on kn as power
laws,

Sp(kn) = 〈|un|p〉 ∝ k
−ζp

n . (18)

In this expression, p is an arbitrary real number; traditionally,
the computations are carried out for positive integer values
of p. The scaling exponents ζp are universal, i.e., they
are independent both of the forcing and viscosity. Figure 3
presents the functions Sp(kn) in logarithmic coordinates for
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FIG. 3. (Color online) Solid black lines present the velocity
moments Sp(kn) = 〈|un|p〉 for p = 1, . . . ,6. Black circles determine
the functions S ′

p(kn) from Eq. (19); for a better comparison of slopes,
the graphs are shifted in the vertical direction and only even n are
shown. Red crosses show similar functions S ′

p(kn) computed for the
local maxima vn corresponding to stable instantons only. Three types
of structure functions determine equal slopes in the inertial range
given by the scaling exponents −ζp .

the Sabra model with c = −0.5. These results are based on
direct numerical simulation of Eq. (1) with 40 shells, viscosity
ν = 10−14, and the constant forcing at the first two shells,
f0 = 1 + i and f1 = f0/2. One can clearly distinguish the
forcing range corresponding roughly to the shells n � 5, the
viscous range of shells n � 32, and the linear part in between
indicating the inertial range.

The phenomenological theory developed by Kolmogorov
(K41 [1,2]) predicts the linear dependence ζp = p/3 for the
scaling exponents. However, the exact scaling exponents ζp

depend nonlinearly on p. This deviation from the K41 theory
is called the anomaly. The scaling exponents are presented in
Fig. 4. The two exact values of scaling exponents are known.
The first one is ζ0 = 0 since |un|0 = 1. The second exact
exponent is ζ3 = 1, which is a necessary condition for the
dissipation anomaly; see, e.g., [11]. The scaling exponents of
the 3D Navier-Stokes turbulence are close to the ones given
by the Sabra model [2,11].

In this section, we establish a link between the anomalous
turbulent statistics and the blowup phenomenon for the Sabra
shell model. The blowup analysis of the inviscid model is
relevant in the inertial range, where viscosity is insignificant.
However, there is an essential difference related to initial
conditions. For the blowup considered in Sec. III, finiteness
of the norm (6) requires decay of initial shell speeds faster
than k−1

n . This condition is violated in the inertial range of
developed turbulence, which is characterized by the power-law
decay (18) with ζ1 ≈ 0.39. We will see that this difference
leads to the transformation of the blowup with universal self-
similar asymptotic form to coherent structures with universal
self-similar statistics.

Identification of these coherent structures in the turbulent
regime is strongly facilitated, if we consider local maxima
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FIG. 4. (Color online) Anomalous scaling exponents ζp com-
puted for the velocity moments Sp (black line) and for the functions
S ′

p (circles and crosses correspond to the sums over all maxima and
over maxima from stable instantons, respectively). The red (gray)
line ζp = p/3 corresponds to the phenomenological K41 theory. The
dotted line shows the upper bound (28) based on the instanton scaling.

vn = maxt |un(t)| of shell speed amplitudes. An extra subscript
is necessary to index all the local maxima in shell n, but we
will drop it for the sake of simplicity of notations. The new
“structure” functions are defined as

S ′
p(kn) = 1

T kn

∑
vp−1

n , (19)

where the sum is taken over all local maxima vn observed
for the speed amplitude |un(t)| during a large time interval
0 � t � T . By a simple dimensional consideration, one finds
that each local maximum vn has the characteristic time �tn ∼
(knvn)−1 determining the time interval, where |un(t)| ∼ vn. For
the velocity moment 〈|un|p〉 = T −1

∫ T

0 |un|pdt , this yields the
contribution of order

T −1vp
n �tn = (T kn)−1vp−1

n , (20)

leading naturally to Eq. (19). Hence, the functions S ′
p are

expected to scale in the same way as Sp in the inertial range,
i.e.,

S ′
p(kn) ∝ k

−ζp

n , (21)

with the same scaling exponents as in Eq. (18). This hypothesis
perfectly agrees with the numerical simulations as shown in
Figs. 3 and 4.

The blowup in the inviscid shell model can be identified as
the correlated sequence of maxima, which follow in increasing
order of n and t ; see Fig. 1. Analogous correlated structures
(called the instantons) are observed in the inertial range of shell
models [17,18,26]; see Fig. 5. Following [25], we identify the
instanton as a sequence of local maxima vn = maxt |un(t)|
at times tn following in increasing order tn0 � tn0+1 � · · · �
tn1 . In this definition, no maxima of |un(t)| or |un+1(t)| are
allowed in the interval tn < t < tn+1. Each instanton is created
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FIG. 5. (Color online) Typical dynamics of speed amplitudes
|un(t)| shown for the shells n = 7, . . . ,24. Red squares mark
correlated sequences of local maxima (instantons), which have a
structure similar to the blowup in Fig. 1. Shown are the instantons
created in shells n0 = 7, . . . ,14.

at some shell number n0 and either reaches the viscous range
or annihilates at a shell number n1 in the inertial range. Using
this rule, we group all maxima of velocity amplitudes into
instantons; see Fig. 5.

As we already mentioned, an instanton can be viewed
as a blowup deformed by the inertial range environment
in which it propagates. One can see from Fig. 5 that this
deformation is caused, mostly, by interaction with adjacent
instantons. Let Nall be the number of all maxima vn in a
given shell n. Figure 6(a) provides numerical values for the
relative number N/Nall , where N is the number of maxima
in shell n corresponding to a specified type of instantons.
Most of the maxima correspond to stable instantons, which
reach the viscous range, i.e., in our simulation n1 � 32. These
instantons cover from 60 to 90% of the total number of
maxima in a given shell n [bold black line in Fig. 6(a)].
The majority of the remaining maxima (about 20%) belong to
very short instantons with n1 ≈ n0, which can be considered
as uncorrelated fluctuations. The instantons annihilating after
traversing more than two shells but before the viscous range
are rare.

We see that the turbulent dynamics in the inertial range
of the Sabra model has the highly correlated structure, where
the blowup plays the role of the driving mechanism. Another
evidence supporting our observation is obtained if we compute
the scaling exponents ζp for the functions (19), where only the
maxima from stable instantons are included in the sum. These
results are shown by crosses in Figs. 3 and 4. The same scaling
exponents as for the velocity moments (18) are obtained (a tiny
difference in Fig. 4 is the same for all p and, thus, corresponds
to a small change of the total number of maxima included in
the sum). In the following analysis, we will consider only the
maxima belonging to stable instantons in the sum (19).

Description of the inertial range in terms of instantons
provides an alternative interpretation of the first scaling
exponent ζ1. Let Mn be the average number of stable instantons
created in shell n per unit time. Using Eqs. (19) and (21), we
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FIG. 6. (Color online) (a) The number N of selected local maxima
in the shell n relative to their total number Nall . The bold black line
corresponds to the maxima chosen from stable instantons. The thin
red (lower) line corresponds to uncorrelated maxima (instantons of
length 1 or 2). (b) Power-law scaling for the number Mn of stable
instantons created in shell n per unit time. The slope 1 − ζ1 is shown
by the dotted line.

have

S ′
1(kn) = 1

T kn

∑
1 = 1

kn

n∑
m=0

Mm ∝ k−ζ1
n , (22)

where the first sum counts the maxima of stable instantons in
shell n. It is easy to check that Eq. (22) implies

Mn ∝ k1−ζ1
n . (23)

We found that ζ1 determines the power-law scaling for the
number of instantons created in shell n. For the Sabra model
with c = −0.5, we have 1 − ζ1 = 0.61, which is in very good
agreement with numerical data; see Fig. 6(b).

The scaling exponent ζ0 = 0 is a simple consequence of the
equality 〈|un|0〉 = 1. However, this exponent gets nontrivial
interpretation in terms of velocity maxima in Eq. (19) written
as

S ′
0(kn) = 1

T kn

∑
v−1

n ∼ 1

T

∑
�tn, (24)

where, as we showed earlier, �tn ∼ (knvn)−1 is the char-
acteristic time associated with the maximum vn. Relation
S ′

0 ∝ k
ζ0
n = 1 implies that the total fraction of time occupied by

these maxima is finite for each shell, i.e., the stable instantons
are dense in space-time.

Numerical simulations for the model with the parameter
values c = −0.4 and −0.6 were also carried out. The results
are very similar to those presented in Figs. 3–6, which
confirm our conclusion about the role of instantons as principal
elements of turbulent dynamics in the inertial range of the
Sabra model.

V. SELF-SIMILAR STATISTICS OF INSTANTONS

The universal self-similarity of blowup (14) is destroyed in
the turbulent regime due to chaotic emergence and interaction
of instantons; see Fig. 5. The most striking property of the
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instantons is that they restore the blowup self-similarity in a
statistical sense in the inertial range. To observe this property,
let us consider the functions

R(n0)
p (kn) = 1

T

∑
(n0)

vp
n , n � n0, (25)

where the sum is taken over the local maxima belonging to
stable instantons created in fixed shell n0. These functions can
be viewed as effective velocity moments for the instantons
born in a specific shell, and their graphs obtained numerically
are shown in Fig. 7(a) in logarithmic coordinates. One can
clearly see that the functions R(n0)

p obey the power-law scaling
with exponents (slopes) independent of the initial shell number
n0.

The next observation is that the slopes of the graphs in
Fig. 7(a) are proportional to p. This is shown in Fig. 7(b), where
the functions (1/p) log2 R(n0)

p are plotted versus a number of
shells n − n0 traversed by the instanton. All curves (after the
vertical shift) collapse onto a single straight line of slope −y

with y ≈ 0.22. This implies the relation

R(n0)
p (kn) = c(n0)

p λ−py�n ∝ k
−py

�n , �n= n− n0 � 0, (26)

with the universal value of scaling exponent y in the inertial
range. The scaling exponent y ≈ 0.22 is different but close to
the scaling exponent y0 ≈ 0.281 of the blowup; see Fig. 2(a).

The scaling rule in Eq. (26) suggests the universal self-
similarity of instanton statistics. Let us consider the proba-
bility density functions (PDFs) determining the probability
Pn0,n(v)dv to sample a local maximum v = maxt |un(t)| be-
longing to the instanton created in shell n0. The self-similarity
for PDFs implies that the renormalized function

Pn0 (v) = λ−y�nPn0,n(λ−y�nv) (27)

does not depend on n in the inertial range. This hypothesis
fully agrees with the numerical results as one can see in
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FIG. 7. (Color online) (a) The functions R(n0)
p (kn) in logarithmic

coordinates demonstrating power-law scaling of instantons. Curves
of the same color correspond to the instantons created in shells
n0 = 13, . . . ,23. Different colors indicate different values of
p = 1, . . . ,6 from top to bottom. (b) Graphs of the left figure collapse
onto a single straight line when divided by p. The slope −y is shown
by the dotted line.
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FIG. 8. (Color online) Renormalized PDFs Pn0 (v) of instantons
found numerically for n0 = 17 and n = 17, . . . ,29 (thin black curves)
and for n0 = 20 and n = 20, . . . ,29 (thin blue curves). Collapse of the
graphs with fixed n0 onto a single curve confirms the self-similarity
of PDFs in the inertial range. Bold dotted curves show the PDFs
determined by the large deviation principle.

Fig. 8(a), where the functions (27) for different n collapse onto
a single curve for fixed n0 = 17 or 20. The functions Pn0 (v)
for different n0 are related by the large deviation principle, as
we will show in the next section.

We conclude that the instantons created in a given shell
possess self-similar statistics. These instantons can be viewed
as the blowup phenomena, which propagate to the viscous
range interacting with each other. Interaction is an important
factor which leads to a small but finite difference between
the scaling exponent of the instanton y ≈ 0.22 and the scaling
exponent of the blowup y0 ≈ 0.28. Similar results are obtained
for the Sabra model with the parameters c = −0.4 and −0.6.
The corresponding values of scaling exponents y are shown in
Fig. 2(a).

VI. LARGE DEVIATION PRINCIPLE
FOR INSTANTON DISTRIBUTIONS

According to Eqs. (19), (25), and (26), an average contribu-
tion of a single instanton to the function S ′

p(kn) is proportional
to k−1−(p−1)y

n . This yields an upper bound for the scaling
exponents in Eq. (21) as

ζp � 1 + (p − 1)y. (28)

The dotted line in Fig. 4 represents the right-hand side of
Eq. (28). Since the graph of ζp is a concave function [2],
we conclude that the instanton scaling exponent y does not
determine any part of the ζp graph. In particular, y ≈ 0.22
is larger than the slope of the ζp graph for large p (the
numerical data provides the slope dζp/dp decreasing below
0.19). Therefore, the instanton scaling does not determine the
scaling of high-order velocity moments, as was conjectured
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in [18] (however, this becomes true for different values of the
model parameter c, as we show in Sec. VIII).

The anomalous exponents ζp arise in the process of instan-
ton creation. In order to see this, we use relations (19), (25),
and (26) and find

S ′
p(kn) = k−1

n

n∑
n0=0

R
(n0)
p−1(kn)

= k−1
n

n∑
n0=0

c
(n0)
p−1λ

−(p−1)y(n−n0). (29)

Then the coefficients are expressed from (29) as

c
(n)
p−1 = knS

′
p(kn) − λ−(p−1)ykn−1S

′
p(kn−1). (30)

In the inertial range, where the power-law scaling (21) holds,
we have

c
(n)
p−1 ∝ k

1−ζp

n . (31)

This relation was also confirmed numerically. We see that due
to the self-similar structure of instantons, anomalous scaling
is attributed exclusively to the coefficients c(n0)

p describing
amplitudes of instantons created in shell n0. This property
relates the inertial range anomaly with the process of instanton
creation.

Relation (31) allows one to find the universal form of PDFs
Pn(v) in Eq. (27) as follows. Using Eqs. (25)–(27), we obtain

c
(n)
p−1 = R

(n)
p−1(kn) = 1

T

∑
(n)

vp−1
n = Mn

∫ ∞

0
vp−1Pn,n(v)dv

= Mn

∫ ∞

0
vp−1Pn(v)dv, (32)

where Mn is the number of instantons created in shell n per
unit time. Introducing the new variable a and function ρ(a) as

a = 1

n
logλ

v

v∗
, ρn(a) = ρ∗nMnPn(v), (33)

where v∗ and ρ∗ are constant coefficients, we write Eq. (32) in
the form

c
(n)
p−1 = v

p
∗

ρ∗
log λ

∫
λnpaρn(a)da. (34)

Using Eq. (31), we find the power-law scaling rule for the
integral in the right-hand side as∫

λnpaρn(a)da ∝ k
1−ζp

n = λn(1−ζp). (35)

In Eq. (35), the scaling exponent 1 − ζp is a smooth convex
function of p ∈ R; see Fig. 4. Hence, we can apply the Gärtner-
Ellis theorem [27–29] to Eq. (35), which states that ρn(a) has
the asymptotic form

ρn(a) ∝ λ−nJ (a) = k−J (a)
n (36)

for large n, where the rate function J (a) is the Legendre
transform of the function 1 − ζp, i.e.,

J (a) = pa − (1 − ζp), a = −dζp

dp
. (37)
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FIG. 9. (Color online) The functions −(1/n) logλ ρn computed
numerically for n = 17, . . . ,26 (thin black lines) are compared with
the rate function J (a) (dotted red line).

Expression (36) is called the large deviation principle. Note
that the Gärtner-Ellis theorem is formulated for λ = e, but one
can easily check its validity for any λ > 1.

We verify Eq. (36) in Fig. 9, where the black curves show the
functions −(1/n) logλ ρn(a) found numerically using Eqs. (27)
and (33) for n = 17, . . . ,26 and n0 = n. As expected, these
graphs collapse onto a single curve given by the rate function
J (a). The rate function represented by the red dotted line
was computed using the Legendre transform (37) for the
scaling exponent ζp in the interval −2 � p � 10. In numerical
computations, it was important to choose good values of the
constants v∗ and ρ∗ in Eq. (33) in order to achieve better
convergence.

The final result of our derivation is obtained by substituting
Eq. (36) into (33) as

MnPn(v) ∝ k−J (a)
n , a = 1

n
logλ

v

v∗
, (38)

where we dropped the factor n−1 representing a logarithmic
correction for the first expression. Note that the asymptotic
form given by the Gärtner-Ellis theorem in Eq. (36) is
understood as n−1 logλ ρn(a) → −J (a) in the limit n → ∞.
Recall that the same limit of large n is used in the definition
of inertial range, which corresponds to shell numbers far from
the forcing range. Thus, Eq. (38) is valid in the inertial range.
This statement is confirmed numerically in Fig. 8, where the
asymptotic PDFs given by Eq. (38) are shown by the dotted
red curves for the shells 17 and 20 (with the constant factors
properly adjusted).

We showed that the PDFs of instantons in the inertial
range have the universal self-similar form (38) related to
the anomalous scaling exponents by Eqs. (37). Thus, the
instantons satisfy the large deviation principle leading to the
inertial range anomaly. The presented analysis has much in
common with the phenomenological model of multifractality
[2]. In this model, it is assumed that the velocity field can
be decomposed into fractal subsets with different scaling
properties, and the fractal dimensions are related to the
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anomalous exponents ζp by the Legendre transform. However,
the fractal subsets in the multifractal model are hard to define
and detect numerically or experimentally, as well as to justify
their appearance. On the contrary, the presented approach
based on the study of instantons is related to the analytical
theory of blowup and is supported by the detailed numerical
analysis.

VII. INSTANTON CREATION MODEL

In this section, we introduce a phenomenological model
for instanton creation, where the large deviation principle can
be derived analytically. As one can see in Fig. 5, an instanton
traveling through the inertial range leaves a trace (energy) in all
of the shells it passed through. Due to the asymptotic stability
of blowup mentioned in Sec. III, this energy “feeds” a series
of newly created instantons in different shells. This process
leads to the formation of a “gas” of instantons, which is dense
in space-time and carries the energy from the forcing to the
viscous range. As the viscosity plays no role in this process,
the dissipation anomaly becomes a natural consequence of the
described behavior.

In this phenomenological picture, instantons create other
instantons. A simple statistical model of the creation process
can be developed as follows. We assume that an instanton,
which reaches the shell n with the amplitude vn = 1, creates
on average ϕ(v)dv new instantons of amplitude vn = v in this
shell. Here, ϕ(v) is the creation rate function, which is assumed
to be universal, i.e., independent of n. For an instanton of
arbitrary amplitude vn = v′, the density of created instantons
is given by

1

v′ ϕ
( v

v′
)

dv, (39)

as it follows from the scaling symmetry of the Sabra model.
As before, we consider only stable instantons, which cover up
to 90% of all shell oscillations [Fig. 6(a)], and disregard other
types of fluctuations.

Using the definitions of Sec. V, the distribution of instanton
amplitudes is described by the product

MnPn,n(v)dv, (40)

determining a number of instantons with maxima vn = v

created in shell n per unit time. Here, Pn,n is the PDF of
such instantons and Mn is the total instanton creation rate in
shell n. Distribution of maxima vn = v corresponding to the
instantons created in previous shells n0 < n is found similarly
as

n−1∑
n0=0

Mn0Pn0,n(v)dv. (41)

Using expressions (40) and (41), the instanton creation
principle described by Eq. (39) yields

MnPn,n(v) =
∫ ∞

0

⎡
⎣ n−1∑

n0=0

Mn0Pn0,n(v′)

⎤
⎦ 1

v′ ϕ

(
v

v′

)
dv′. (42)

Using Eq. (27), we write this expression as

MnPn(v) =
n−1∑
n0=0

∫ ∞

0
λy(n−n0)Mn0Pn0 (λy(n−n0)v′)

1

v′ ϕ

(
v

v′

)
dv′.

(43)

Let us compute the quantity (32) represented as

c(n)
p =

∫ ∞

0
vpMnPn(v)dv. (44)

Expressing MnPn from Eq. (43) and denoting ξ = v/v′ and
η = λy(n−n0)v′, we find

c(n)
p =

n−1∑
n0=0

λ−yp(n−n0)
∫∫ ∞

0
(ηξ )pMn0Pn0 (η)ϕ(ξ ) dξ dη. (45)

Using Eq. (44) for c(n0)
p , the right-hand side of Eq. (45) is

integrated as

c(n)
p = ϕp

n−1∑
n0=0

λ−yp(n−n0)c(n0)
p , (46)

where

ϕp =
∫ ∞

0
ξpϕ(ξ )dξ. (47)

Using Eq. (46) for c(n)
p and c(n−1)

p , we compute the following
difference:

c(n)
p − λ−ypc(n−1)

p = ϕpλ−ypc(n−1)
p , (48)

and obtain

c(n)
p = λ−yp(1 + ϕp)c(n−1)

p . (49)

Expression (49) implies the power law (31) with the exponents

ζp = 1 + (p − 1)y − logλ(1 + ϕp−1). (50)

Since ϕp−1 > 0, this expression satisfies the inequality (28).
We determined the scaling exponents ζp explicitly in

terms of the moments of the creation rate function ϕ(v).
For a particular example, when the creation rate is given by
self-similarity arguments, this computation was done in [25].
As we showed in Sec. VI, if ζp exist and are differentiable for
all real values of p, then the Gärtner-Ellis theorem ensures the
large deviation principle (38). Therefore, the large deviation
principle in our model is verified for any creation rate function,
which has finite and differentiable moments ϕp for all real p.

We proved that the large deviation principle emerges natu-
rally for a class of simple models of instanton creation. These
models have several essential simplifications. In particular,
we disregarded correlations in time and correlations between
instantons in different shells. Numerical simulations show that
such correlations are important. In fact, numerical values for
the moments ϕp deviate strongly from the values determined
by Eq. (50) for known ζp. Also, the function ϕ(v) depends
on the way it is computed. On the other hand, the numerical
data provided good evidence for universality of the creation
process because the function ϕ(v) found numerically does not
depend on the shell number n.
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VIII. TURBULENT REGIME DOMINATED
BY A SINGLE BLOWUP

We showed in Sec. V that the exponent y describing the
universal scaling of instantons in Eq. (27) does not determine
any of the scaling exponents ζp or their asymptotic behavior
for large p; see Eq. (28) and Fig. 4. The anomalous scaling
of velocity moments is linked exclusively to the process
of instanton creation. In this section, we demonstrate a
different turbulent regime, where the instanton scaling has
a strong influence on the velocity moments. This regime can
be predicted by looking at the blowup scaling exponent y0

depending on the model parameter in Fig. 2(a). At c = −0.139,
we have y0 = 0. Hence, in the asymptotic form of blowup
given by Eq. (14), all of the local maxima vn = maxt |un(t)|
are of the same order of magnitude. As a result, a single blowup
provides the terms (T kn)−1v

p−1
n ∼ k−1

n in the sum (19) for
the structure functions S ′

p, which yields the condition ζp � 1
for all p. This upper bound is exact for ζ3 = 1, which is
required by the existence of energy cascade. This fact suggests
that the blowup scaling should play an essential role for
the Sabra models with the parameter c in the neighborhood
of −0.139.

Figure 10 (thin lines and circles) shows the structure
functions Sp(kn) and S ′

p(kn) for c = −0.2 in logarithmic
coordinates. Vertical shifts are used to compare the graphs for
Sp(kn) and S ′

p(kn), and the good match confirms the validity
of the description based on velocity maxima. The inertial
range shrinks substantially in this model and corresponds
roughly to the shells 17 � n � 30. In this case, the blowup
scaling exponent y0 = 0.0534 is small. As we just mentioned,
due to a slow decay of blowup amplitudes in Eq. (14), we
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FIG. 10. (Color online) Thin black curves present the velocity
moments Sp(kn) = 〈|un|p〉 for p = 1,3,5,7,9,11. Circles determine
the functions S ′

p(kn) from Eq. (19) for the same p and even n (vertical
shifts are applied to facilitate comparison with Sp). The red (bold
gray) curves show the values (T kn)−1vp−1

n for a single dominant
instanton and p = 5,7,9,11.

expect that the inertial range is influenced by the blowup
scaling.

The numerical simulation shows that a single stable
instanton dominates the inertial range. This instanton is created
in the initial shell n0 = 0 and travels all the way to the viscous
range. The bold red (gray) curves in Fig. 10 show the values of a
specific term (T kn)−1v

p−1
n in the sum (19), which corresponds

to this instanton. In the figure, we used the same vertical shift
for the red curve as for the full sum S ′

p(kn), which shows that
not only the slope but also the value of S ′

p(kn) is determined
by a single instanton for large p. Due to its dominant role, this
instanton is weakly influenced by surrounding fluctuations,
i.e., by other instantons. As a result, we can expect that the
dominant instanton scales with the same exponent y0 as the
blowup. This hypothesis agrees perfectly with the numerical
data.

Figure 11 shows the scaling exponents ζp for the Sabra
model with c = −0.2 and −0.139. In this case, the blowup
scaling exponent is equal to y0 = 0.0534 and 0, respectively;
see also Fig. 2(a). The dotted straight lines in Fig. 11 show
the right-hand side of the inequality (28) with y = y0. We see
that this inequality becomes exact for large p because of the
dominant role of a single instanton. Note that the graph of ζp

is not concave, as it must be, and violates slightly Eq. (28)
in the region near the intersection with the dotted line. This
seems to be a numerical artifact due to very slow convergence
in the region where the blowup scaling competes with the
scaling of the instanton creation process. The horizontal part
of the graph with ζp = 1 for c = −0.139 reminds one of the
analogous behavior of scaling exponents for turbulence of the
Burgers equation; see [3,7]. Our results show that there are
parameter values of the Sabra model when the anomalous
scaling exponents ζp are explicitly related to the blowup
scaling exponent y0 for some range of p.
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FIG. 11. (Color online) Anomalous scaling exponent ζp com-
puted for the Sabra model with c = −0.2 and −0.139. For each case,
the red dotted line shows the values of ζp determined by the universal
scaling of a single blowup.

053011-9



ALEXEI A. MAILYBAEV PHYSICAL REVIEW E 87, 053011 (2013)

IX. CONCLUSION

In this paper, we have shown that the blowup (a singularity
developing in finite time) may be considered as a basic element
in the theory of developed turbulence for the Sabra shell
model. We utilize the fact that the blowup in the inviscid
system has universal asymptotic form, where shell speeds
pass successively through their maxima with increasing time
and wave number. This sequence of maxima is the main
property used for identifying and analyzing the coherent
turbulent bursts, which are induced by blowup and called the
instantons.

Blowup is characterized by the asymptotically stable
traveling wave solution for the renormalized system. Thus,
almost any initial condition of finite norm leads to blowup
in the inviscid Sabra model. In the inertial range of turbulent
regime, the blowuplike structures appear in every available part
of space-time and propagate toward the viscous range. This
dynamical behavior can be viewed as a “gas” of instantons,
which is dense in space-time and moves from the forcing to
the viscous range. The existence of many interacting instantons
alter their properties, as compared to the “pure” blowup, but
the instanton statistics remains self-similar and universal.

We showed that the anomalous scaling of velocity moments
is a natural consequence of the instanton creation process,
which obeys the large deviation principle. This allows, in
particular, justifying the universal form of instanton proba-
bility density functions in the inertial range and describing
these universal functions analytically in terms of the scaling
exponents of velocity moments. The obtained results are in
excellent agreement with the numerical data.

The described dynamical picture brings us back to
the famous Richardson description [30]: “Big whirls have
little whirls that feed on their velocity, and little whirls have
lesser whirls and so on to viscosity,” which is known to
be inadequate for the Navier-Stokes turbulence [2]. We see
now that in the Sabra shell model, this description becomes true
if one substitutes “whirls” with “instantons” (or “blowups”).
The dissipation anomaly follows naturally from this picture
because the instanton dynamics is unrelated to viscosity in the
inertial range and the instantons move only toward large wave
numbers. The intermittency becomes a simple consequence of
the instanton scaling, where the scales of time and velocity are

related as �tn ∼ (knvn)−1. This means that large-amplitude
instantons are fast, while small-amplitude instantons are slow
and can be viewed as windows of low activity. We showed,
however, that the described scenario is not the only possibility,
and the anomalous exponents may be linked to universal
properties of a single blowup for specific values of the model
parameter.

The essential part of our work is based on numerical data.
Here the blowup, whose properties follow from the model
equations, is used as a guideline for the numerically accessible
definition of instantons. If the analytical theory of turbulence
for the shell model can be developed in a similar manner,
the formal definition of instantons and derivation of their
universal scaling properties directly from the shell model
equations would be the major difficulty. An important step
in this direction was done in [26], where self-similar statistics
of instantons was derived as a result of the blowup interacting
with small random fluctuations. Our results show that this
theory should be extended by taking into account interactions
among instantons and instanton creation. Note that for different
shell models, the blowup structure may not be self-similar
but still be universal [15], providing an extra complication. It
would be interesting to test these ideas also on the cascade
models of turbulence, where the interactions among variables
within the same shell are introduced [20,21].

As for the 3D Navier-Stokes developed turbulence, our
results confirm the common understanding of the importance
of coherent structures such as, e.g., the formation of vortex
filaments. The idea presented here is that it is the universal
creation process of these structures that may drive turbulent
dynamics in the inertial range, while the scaling of an
individual structure plays a secondary role. Moreover, one
may notice that such structures do not have to blow up in finite
time in the inviscid limit and, e.g., the exponential rate would
be sufficient. The method for identifying and tracking coherent
structures from the moment of their creation until the viscous
range has to be developed in order to verify our hypotheses
numerically or experimentally.
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