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Numerical investigation of non-Newtonian fluids in annular ducts with finite aspect ratio using
lattice Boltzmann method
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In this work the instability of the Taylor-Couette flow for Newtonian and non-Newtonian fluids (dilatant and
pseudoplastic fluids) is investigated for cases of finite aspect ratios. The study is conducted numerically using the
lattice Boltzmann method (LBM). In many industrial applications, the apparatuses and installations drift away
from the idealized case of an annulus of infinite length, and thus the end caps effect can no longer be ignored. The
inner cylinder is rotating while the outer one and the end walls are maintained at rest. The lattice two-dimensional
nine-velocity (D2Q9) Boltzmann model developed from the Bhatnagar-Gross-Krook approximation is used to
obtain the flow field for fluids obeying the power-law model. The combined effects of the Reynolds number,
the radius ratio, and the power-law index n on the flow characteristics are analyzed for an annular space of
finite aspect ratio. Two flow modes are obtained: a primary Couette flow (CF) mode and a secondary Taylor
vortex flow (TVF) mode. The flow structures so obtained are different from one mode to another. The critical
Reynolds number Rec for the passage from the primary to the secondary mode exhibits the lowest value for
the pseudoplastic fluids and the highest value for the dilatant fluids. The findings are useful for studies of the
swirling flow of non-Newtonians fluids in axisymmetric geometries using LBM. The flow changes from the CF
to TVF and its structure switches from the two-cells to four-cells regime for both Newtonian and dilatant fluids.
Contrariwise for pseudoplastic fluids, the flow exhibits 2-4-2 structure passing from two-cells to four cells and
switches again to the two-cells configuration. Furthermore, the critical Reynolds number presents a monotonic
increase with the power-law index n of the non-Newtonian fluid, and as the radius ratio grows, the transition flow
regimes tend to appear for higher critical Reynolds numbers.
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I. INTRODUCTION

The fluid flowing between two concentric rotating cylinders
of infinite length, known as Taylor-Couette flow, has been
the subject of many experimental, analytical, and numerical
studies. This is due to their industrial applications such as
journal bearings, purification of wastewater, and oil drilling.
It is well known that the stability of this kind of viscous
flow was first considered experimentally and theoretically by
Taylor [1]. Ever since their discovery by Taylor, the involved
instabilities have been of perpetual interest for understanding
the phenomenology associated to flow stability. However, in
practice, the aspect ratio of the annular cavity is not large
enough to apply the Taylor-Couette model. The ends effects
become increasingly important as the aspect ratio is reduced:
The circular Couette flow is not an exact solution for finite
cylinders, and the tangential flow results always in main
flow cellular cross, even for very small Reynolds numbers
(Blennerhasset et al. [2] and Lücke et al. [3]). The solutions
in the annulus of short cylinders may differ significantly from
the ideal Taylor-Couette model, as was clearly demonstrated
by Benjamin [4,5].

Benjamin [4] gave a qualitative description of the phe-
nomenon of bifurcation and morphogenesis of the flow
structure in the annular space with an aspect ratio of about
1. The experimental results were presented for the location of
bifurcation critical points and flow profiles in the (�, η) plane.

Cole [6], using visualization and torque measurement in
cylindrical ducts with free surfaces for an aspect ratio H/d <

107 and a radius ratio 0.894 < η < 0.954, showed that the
value of the first critical Reynolds number changes little if the

aspect ratio is not infinite, while the second critical Reynolds
number is strongly affected when decreasing the aspect ratio.

Blennerhasset and Hall [2] analyzed theoretically the
stability of a flow in a weak annulus gap for finite length
cylinders. They showed that the problem allows multiple
solutions, depending on the initial conditions. Mullin et al. [7]
studied experimentally the transition from four to six cells in a
short duct with a large annulus gap (R = 0.507) and discussed
the hysteresis phenomenon according to the theory developed
by Benjamin [4]. DiPrima and Eagles [8] have clarified the
influence of the radius ratio on the stability of the Taylor flow.
They showed that when � decreases, the number of unstable
normal modes in a Couette system for a fixed Reynolds number
decreases rapidly. They obtained a critical value of the radius
ratio (η = 0.65) below which there is no cell instability.

The characteristics of flows in short cylinder cavities and
dependency with respect to initial and boundary conditions
have generated a growing interest. The works of Benjamin
and Mullin [9], Cliffe [10], and Lücke et al. [3] were devoted
to the bifurcation flow in a cylinder with an aspect ratio ranging
between 0.4 and 6. They had two objectives: first, to describe
the bifurcation diagrams and to locate bifurcation critical
points in the (�, η) plane, and then explain how different
modes can appear, either experimentally or numerically. These
studies showed that (1) when the Reynolds number increases
gradually, the cells in short cylinders are not directly due to the
instability of the Couette flow, but to the growth of the cells
generated close to the cavity extremities. (2) The coupling
between the fixed end caps and the rotating inner cylinder has
a strong nonlinear interaction that cannot be treated by the
theory of perturbation.
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The majority of studies on the Taylor-Couette flow focused
on the Newtonian behavior. However, in numerous engineering
applications such as oil well drilling, journal-bearing lubrica-
tion, food, cosmetics, and paints, the fluids often drift away
from the Newtonian behavior. Thus, a growing number of
authors take into account the rheological aspect by considering
non-Newtonian fluids. Sinevic et al. [11] determined the
onset of Taylor vortices by measuring the torque exerted by
the fluid on the rotating inner cylinder for power-law fluids
using carboxymethylcellulose (CMC) solution and Carbopol
solutions. Measurements of the velocity fields for the Taylor-
Couette flow were performed by Wereley and Lueptow [12]
using particle image velocimetry. Lockett et al. [13] simulated
the transition flow using the finite element method; the authors
found that the stabilizing or destabilizing effect induced by the
shear-thinning behavior depends on the radius ratio. Escudier
et al. [14] investigated the flow structure in Taylor-Couette ge-
ometry with a radius ratio of 0.5. Axial and tangential velocity
measurements were made using a laser Doppler anemometer.

During recent years, the lattice Boltzmann method (LBM)
has received considerable attention from fluid dynamic re-
searchers. It has been shown that it is an attractive alternative
to classical numerical schemes due to its inherent advantages
as simple implementation, high parallelizability, and great
convenience of handling complicated geometries. Among
studies concerning non-Newtonian fluids, handled with the
LBM, Yoshino et al. [15] suggested a numerical scheme for
incompressible non-Newtonian fluid flows based on the LBM.
They applied this method to two test problems—the case
of flows in reentrant corner geometry and the case of flows
in a three-dimensional porous structure. Their simulations
indicated that this method can be useful for practical non-
Newtonian fluid flows. Wang and Bernsdorf [16] used the LBM
in the analysis of a blood flow using the Carreau Yasuda model.
A comparison has been made between non-Newtonian and
Newtonian flows in a three-dimensional (3D) generic stenosis.

Studies on the axisymmetric variant of the LBM generally
treat the flows of Newtonian fluids. Due to its capabilities
to handle complex flow, the LBM has a great potential to
simulate non-Newtonian fluid flows which are of high interest
due to their wide applications in different industrial fields.
These fluids exhibit a complex behavior different from that of
Newtonian fluids, which adds to the complexity of the fluid
flow problems. A typical geometry involved in these flows
is the annular duct which is an axisymmetric configuration.
Halliday and Hammond [17] first proposed an axisymmetric
D2Q9 model and it seems very successful for simulating
steady flow in straight tubes. The main idea of the model
is inserting several spatial and velocity-dependent “source”
terms into the two-dimensional (2D) lattice Boltzmann
equation (LBE). However, Lee et al. [18] noticed that some
terms relative to the radial velocity were missing in the
axisymmetric D2Q9 model of [17]. These authors developed
a more accurate axisymmetric LBM scheme.

Later, several authors developed their own scheme to
simulate the axisymmetric flows using the LBM. Niu et al. [19]
presented an extension of the idea of Halliday and Hammond
[17] including the effect of the azimuthal rotation. The terms
related to the rotation are considered as inertia forces. They
used Taylor-series expansion and a least-squares-based lattice

Boltzmann method for the transformed LBE and a second or-
der explicit finite difference method for the azimuthal moment
equation. To show the performance of the model, they also
simulated the same problem by using the (3D) LBM. Peng et al.
[20] extended Halliday’s idea to the axisymmetric thermal
systems. Besides the radial and axial velocity components
solved by the lattice Boltzmann formulation, the azimuthal
velocity component and the temperature are obtained using
a finite differences scheme. Afterwards, Huang et al. [21–25]
proposed a revised version of the D2Q9 model proposed by He
and Luo [26] to improve the numerical stability and to reduce
the compressibility effect. They developed a hybrid lattice
Boltzmann scheme for axisymmetric flows with the rotation
of the inner cylinder. The axial and the radial velocities were
solved through inserting source terms into the two-dimensional
lattice Boltzmann equation, while the azimuthal velocity
and the temperature equations were discretized with a finite
difference scheme. The used scheme was first validated by
simulations of Taylor-Couette flows between two concentric
cylinders; then the benchmark problem of melting flow
in Czochralski crystal growth was simulated and correct
results were obtained. Lee et al. [27] presented an accurate
axisymmetric lattice Boltzmann D2Q9 model to simulate
steady and pulsated flows in circular pipes. They introduced
some improvement on the original model of Halliday and
Hammond [17]. Zhou [28] proposed another axisymmetric
scheme, suitable for general axisymmetric flows, where the
force and source or sink terms were incorporated into the lattice
Boltzmann (LB) equation naturally. In 2011, the same author
presented a revised axisymmetric lattice Boltzmann method
[29]. In 2012, Hongyan et al. [30] obtained an analytical
solution of an axisymmetric lattice Boltzmann model for
cylindrical Couette flows for non-Newtonian fluid.

The present work investigates the instability of the Taylor-
Couette flow for Newtonian and non-Newtonian fluids, and
the use of LBM in the cases of finite aspect ratios, where in
many industrial applications the apparatuses and installation
have finite dimensions with partly large boundary influence
on fluid flow. The inner cylinder rotates while the outer one
and the end walls are maintained at rest. The model proposed
by Huang et al. [21] is adopted. The study is conducted for
the case of an annular duct having an aspect ratio � = 3.8
which represents the finite column case with different values
of Reynolds number and radius ratio. The velocity and stream
function distribution along the annular duct were compared
with analytical and numerical solutions. The friction factor was
compared with the available experimental data. The combined
effects of the Reynolds number, the radius ratio, and the power-
law index on the flow characteristics were analyzed for an
annular space of the finite column case.

II. LATTICE BOLTZMANN NUMERICAL METHOD

As has been previously mentioned, the standard LBM
was developed for Cartesian coordinates systems. To handle
axisymmetric problems with this method, without using a 3D
lattice system, a source term is introduced in the original LB
equation as was done by [21].

The three-dimensional axisymmetric Navier-Stokes equa-
tions are written in a pseudo-Cartesian form making the
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following replacement:

(r, z) → (x, y) and (ur, uz, uθ ) → (u,v,w),

∂juj = −ur

r
, (1)

ρ[∂tui + ∂j (uiuj )] = −∂iP + μ∂2
j ui + μuiur

r
− μui

r2
δir .

(2)

Bearing in mind that, in the standard LB equation, the
recovered macroscopic momentum equation is written as

ρ[∂tui + ∂j (uiuj )] = −∂iP + ∂j [μ(∂iuj + ∂jui)]. (3)

Therefore we need to rewrite Eq. (2) as

ρ[∂tui + ∂j (uiuj )]

= −∂iP + ∂j [μ(∂iuj + ∂jui)] + μ

r
(∂rui + ∂iur )

− ρuiur

r
− 2

μui

r2
δir . (4)

Compared with the form in the (x, y) plane, the two terms
in right-hand side of the above equation can be considered as
body forces. Now we follow the idea of [17] and derive an LBE
which recovers Eqs. (1) and (2) from an incompressible D2Q9
model. The discrete velocities of this model are as follows:

ei =

⎧⎪⎪⎨
⎪⎪⎩

(0,0) i = 0(
cos

[ (i−1)π
2

]
, sin

[ (i−1)π
2

])
c i = 1,2,3,4

√
2
(
cos

[ (i−5)π
2 + π

4

]
, sin

[ (i−5)π
2 + π

4

])
c i = 5,6,7,8

,

(5)

where c = δx/δt , and in our studies c = 1.
Note that δx and δt are, respectively, the lattice spacing and

time step. They are set to unity. The two-dimensional LBE
describing 2D flow in (x, r) pseudo-Cartesian coordinates is
constructed as follows:

fi(x + ceizδt ,r + ceirδt ,t + δt ) − fi(x,r,t)

= 1

τ

[
f

eq
i (x,r,t) − fi(x,r,t)

] + Si(x,r,t), (6)

where τ is the relaxation time, fi is the density distribution
function along the i direction, ei(eix,eiy) is the particle
velocity in the i direction, and f

eq
i is the correspond-

ing equilibrium state distribution function, which can be
written as

f
eq
i (x,r,t) = ωi

p

c2
s

+ ωiρ

[
eiu

c2
s

+ (eiu)2

2c4
s

− u2

2c2
s

]
(7)

i = 0,1,2, . . . ,8,

where cs = c/
√

3 is the sound speed, p is the pressure and
ρ is the fluid density. The constant factors ωi differ from one
model to another (in the D2Q9 they are given as ω0 = 4/9,
ωi = 1/9 for i = 1, 2, 3, 4) and ωi = 1/36 for i = 5, 6, 7, 8).

The constant relaxation time τ and the fluid viscosity ν are
linked as follows:

ν = (2τ − 1)δx/6. (8)

As the relaxation time approaches 0.5 kinematic viscosity goes
to zero (ν ≈ 0), which makes the LBM instable. Thus, to avoid
having no physical viscosity, τ must be greater than 0.5.

Si (z, r , t) is defined as a function of the space and the
velocity. It can be expressed as

Si = δtS
(1)
i + δ2

t S
(2)
i , (9)

where S
(1)
i and S

(2)
i represent respectively, zero order and

first order gradients of the macroscopic variables ρ, u.

By performing a Chapman-Enskog expansion, the follow-
ing developments are obtained (see, for instance, Huang
et al. [21]):

S
(1)
i = −ωiρur

r
, (10)

S
(2)
i = ωi

2r

[
∂r

(
p

ρ

)
+ ∂zuzur + ∂rurur

]

+ 3ωiυ

r

(
∂ruzeiz + ∂rureir − ureir

r

)

− 3ωi

ur

r
(uzeiz + ureir ) − ωi(1 − τ )

×
(

∂zur

r
eiz − ur

r2
eir + ∂rur

r
eir

)
+ 3ωi

(
u2

θ

r
eir

)
.

(11)

For the velocity derivations in Eq. (11), the terms
∂ruz,∂zur , ∂zuz and ∂rur all can be obtained through Eq. (12)
with replacing α = z, β = r; α = β = z and α = β = r ,
respectively:

(∂βuα + ∂αuβ) = − 1

ρν

(
1 − 1

2τ

) 8∑
i=0

f ne
i eiαeiβ + O(ε2).

(12)

Only ∂zur is obtained by using a second order finite difference
scheme; it is given by

(∂zur )i,j = [(ur )i,j+1 − (ur )i,j−1]/(2δx). (13)

In the streaming step, the new distribution function value
obtained from Eq. (6) would propagate to the adjacent eight
lattices. That procedure can be represented as follows:

fi(z + ceizδt ,r + ceirδt ,t + δt ) = fi new(z,r,t). (14)

The basic hydrodynamic quantities, such as the density ρ

and the velocity components, are obtained through moment
summations in the velocity space:

ρ(x,t) =
∑

i

fi(x,t), ρu(x,t) =
∑

i

eifi(x,t). (15)

III. PHYSICAL PROBLEM

We consider two coaxial cylinders with a finite length H .
The inner cylinder of radius ri rotates at an angular speed �

while the outer cylinder of radius re and the end caps are kept
at rest. The modified Reynolds number for the non-Newtonian
fluids, based on the azimuthal velocity and the gap of the
annulus, is defined as Re = (�ri )d

ν
, where d = (re–ri) is the

gap of the annulus and ν is the kinematic fluid viscosity.
Initially, a constant azimuthal velocity is imposed on the

inner cylinder and the flow field is set to be stationary with a
constant density ρ. η = ri/re is the radius ratio. In the present
study, the aspect ratio � = H/(ri–re) was set to [1, 2, 3.8, 5,
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8, and 10] for the finite case and 14.3 for the infinite column
case, where H is the length of the annulus.

In order to formulate the problem, it is assumed that
the flow in the annular gap is incompressible, laminar, and
axisymmetric. It is known that in the commonly used power-
law model, for non-Newtonian fluids, the viscosity varies with
the local shear rate γ̇ in the form

μ = μa |γ̇ |(n−1) , (16)

where n is the power-law exponent and μa is the apparent
viscosity.

Note the case where n = 1 corresponds to the Newtonian
fluid, in which μa corresponds to the viscosity of the
Newtonian fluid. For a fluid with n > 1, the effective
viscosity increases with shear rate, and the fluid is called
“shear-thickening” or “dilatant fluid.” In the case of a fluid with
0 < n < 1, the effective viscosity decreases with shear rate, and
the fluid is called “shear-thinning” or “pseudoplastic” fluid.

Regarding the relatively low rotation speed considered in
the present study the constitutive relationship of the shear rate
γ̇ is given by

γ̇ = 2

[(
∂ur

∂r

)2

+
(

ur

r

)2

+
(

∂uz

∂z

)2]
+

[
r

∂

∂r

(
uθ

r

)]2

+
(

∂uθ

∂z

)2

+
(

∂ur

∂z
+ ∂uz

∂r

)2

. (17)

Coupling Eqs. (8) and (16), we obtain a shear-dependent
relaxation time at each node in the lattice Boltzmann evolution.

The azimuthal velocity is obtained through the following
equation by using first-order forward difference scheme in
time and a second-order central difference scheme in space
(Peng et al. [20]):

un+1
θ = un

θ + δt

[
−

(
un

z

∂un
θ

∂z
+ un

r

∂un
θ

∂r

)
+ ν

(
∂2un

θ

∂z2
+ ∂2un

θ

∂r2

)

+ ν

r

(
∂un

θ

∂r
− un

θ

r

)
− un

r u
n
θ

r

]
. (18)
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0.0
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0.6

0.8

1.0

u
r i

(r-ri)/d

 n=0.5 Present Result

 n=0.5 Analytical Solution

 n=1 Present Result

 n=1 Analytical Solution

 n=1.5 Present Result

 n=1.5 Analytical Solution

FIG. 1. Comparison of the azimuthal velocity with analytical
solution for η = 0.5, � = 3.8, and n = 1.

TABLE I. Comparison of Cf versus Re values against results of
Cognet [32].

Cf Cf

Re Present results Cogneta (ε%)max

160.96 3.071 3.015 1.85
175.51 3.254 3.236 0.55
206.18 3.733 3.757 0.63
249.19 4.339 4.504 3.66
294.41 4.860 5.00 2.80

aReference [32].

The local shear stress at the inner and outer wall is defined as

τ = −ρν

[
r

∂

∂r

(
uθ

r

)]
r=ri ,re

. (19)

The averaged shear stress over the annulus height and the
averaged dimensionless friction factor are defined as

τm = 1

H

∫ H

0
τdz, (20)

Cf = 2τm

ρ (�ri)2 . (21)

IV. BOUNDARY CONDITIONS

Modeling of the boundary conditions is very important in
numerical methods because they affect the overall accuracy
and the stability of the numerical scheme. Two kinds of
boundary conditions are used to describe the nonslip condition
in the present work. On the inner cylinder the specular
reflection is adopted while on the outer cylinder and the two
end plates, the bounceback condition is used. These types of
conditions suppose that the postcollision distribution function
at the solid nodes with a velocity −ei is set equal to the
postcollision distribution function at the fluid nodes with a
velocity ei .

0 20 40 60 80 100 120 140 160 180 200
5

6

7

8

9

10

 n=1

C
f

Re

FIG. 2. Evolution of the friction factor against the Reynolds
number for � = 14.3 and η = 0.5.
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    (a) Present work (b) Huang [21]

FIG. 3. Comparison of streamlines (left), pressure (middle), and azimuthal vorticity (right) fields against results of Huang et al. [21] for
n = 1, Re = 150, η = 0.5, � = 3.8.

V. NUMERICAL RESULTS AND DISCUSSION

To verify the accuracy of the developed LBM code
predicting the Taylor-Couette flow of non-Newtonian fluids,
some validation tests were performed. Thus, the Newtonian
cases are considered with two values of the aspect ratio equal
to 3.8 and 14.3 which represent the finite column and the
infinite column cases. For basic Couette flow, the present
axisymmetric LBM code successfully recovers the analytical
profile, given by the relation (22) for the infinite case (see, for
instance, Brahim et al. [31]) of the Newtonian (n = 1), dilatant
(n = 1.5), and pseudoplastic (n = 0.5) azimuthal velocity as
is shown in Fig. 1.

uθ (r) = r

ri

[
1 −

(
1

r
2/n
e

− 1

r
2/n

i

)−1( 1

r2/n
− 1

r
2/n

i

)]
,

(22)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 n=0.5

 n=1

 n=1.5

u
/

r i

(r-ri)/d

FIG. 4. Variations of the azimuthal velocity profiles for different
fluids types for η = 0.5 and � = 3.8.

where ri and re are, respectively, the dimensionless radii of the
inner and the outer cylinder.

The computed values of the friction factor at the inner
cylinder at the midheight of the annulus for a radius ratio
η = 0.909 were compared with the measurements made by
Cognet [32]. The results reported in Table I show that the
maximum error is less than 3.67%.

Moreover, for the infinite Taylor column with an aspect ratio
of � = 14.3 of a large radius aspect ratio (η = 0.5) filled with a
Newtonian fluid, Fig. 2 shows the variation of Cf as a function
of Reynolds number for the infinite annulus. The results show
that the critical Reynolds number induced by the rotation of
the inner cylinder is in good agreement with the critical value
predicted theoretically (Re = 68.2; see for instance, Peng et al.
[33]); the critical values were numerically determined through
gradual increase in Re. One can note for Re approximately
less than 68 the constancy of the friction factor indicating that
the flow is in a stable regime, but for Re values above 68 the

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

10

15
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35
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45

50
 n=0.5

 n=1

 n=1.5

C
f

FIG. 5. Evolution of the friction factor versus the radius ratio η

for different n, Re = 100, η = 0.5, and � = 3.8).
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TABLE II. Comparison of �max for different Re values against literature results.

Re Present work Huang et al.a Niu et al.b Liuc εmax

85 4.903 × 10−2 4.810 × 10−2 4.859 × 10−2 4.854 × 10−2 1.82%
100 5.553 × 10−2 5.501 × 10−2 5.580 × 10−2 5.542 × 10−2 0.93%
150 6.361 × 10−2 6.427 × 10−2 6.387 × 10−2 6.442 × 10−2 1.25%

aReference [21].
bReference [19].
cReference [34].

coefficient of friction increases significantly which indicates
an unstable regime.

Finally, for an aspect ratio of 3.8 and the Newtonian
fluid (n = 1), the efficiency of the developed LBM code
was checked against results of Huang et al. [21], Niu
et al. [19], and Liu [34]. The case of Taylor-Couette flow

for Re = 85, 100, and 150 using mesh grids 20 × 76
was successfully simulated. Indeed, Fig. 3 shows that the
isocontours of streamlines, pressure, and vortices present a
good agreement with Huang et al. [21] results while Table II
shows that the maximum deviation of �max does not exceed
1.82%.
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FIG. 6. Contours of streamlines (left) and vorticity (right) fields for n = 1, � = 3.8, and η = 0.5. (a) Re = 40, (b) Re = 60, (c) Re = 65,
(d) Re = 68.4, (e) Re = 85, and (f) Re = 100.
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FIG. 7. Velocity profiles variations for n = 1 and different Re. (a) The modulus velocity along the vertical direction at r = d/2, (b) radial
velocity along the radial direction at z/d = 1.9, (c) axial velocity along the radial direction at r = d/2, and (d) radial velocity along the axial
direction at r = d/2.

Due to the numerous parameters controlling the flow
configuration, all calculations are performed by setting the
aspect ratio value of 3.8. The initial azimuthal velocity of the
inner cylinder is set to 0.15, the mesh size to 20 × 76, and

the radius ratio to 0.5. For the non-Newtonian fluid flows
the exponent n was chosen in the range between 0.5 and
1.5 while the Reynolds number was varied from 20 to 150
[35–48].
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FIG. 8. Velocity profiles for different values of n and Re = 100. (a) Radial velocity along z/d , and (b) axial velocity along z/d .
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FIG. 9. Flow patterns streamlines (left), azimuthal vorticity (middle), and azimuthal velocity (right) for the pseudoplastic fluids (n = 0.5).
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FIG. 10. Flow patterns streamlines (left), azimuthal vorticity (middle), and azimuthal velocity (right) for the dilatant fluids (n = 1.5).
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Figure 4 illustrates the dimensionless azimuthal velocity
along the radial position for different values of the power-law
index n. It is shown that the velocity profile decays gradually
along the radial position for the considered fluids. We note
that the azimuthal velocity exhibits two distinct behaviors as
a function of n in the space annulus. For approximately 0 <

r < 0.7, the augmentation of n increases the velocity modulus.
When r > 0.7, the power-law index no longer has any effect on
the velocity profile. Moreover, the azimuthal velocity gradients
are more important for the pseudoplastic fluids than for the
dilatant fluids.

Figure 5 shows the evolution of the friction factor, Cf ,
versus the radius ratio η for different values of n for Re = 100.
One can note that η influences strongly the friction factor of
dilatant fluids (1 < n < 1.5) particularly for its low values. For
pseudoplastic fluids (0 < n < 1), such impact is low, leading
thus to practically a constant friction factor when η decreases.
As n increases, the friction factor grows especially for small
values of the radius ratio. This behavior can be explained by
the fact that the apparent viscosity increases with n resulting
in the increase of the friction coefficient.

The flow pattern is illustrated as contours of streamlines and
vortices for the Newtonian fluid (n = 1) in Fig. 6 highlighting

the effect of the Reynolds number. For Re = 40, the flow
structure is characterized by the so-called Ekman vortices on
the end walls due to the nonslip condition. As Re increases, a
second pair of cells begins to form in the central region of the
annuli [Fig. 6(c)]. For further increase in Reynolds number, we
note the onset of a weak pair of cells in the center of the annuli.
The topological structure of the flow switches completely
to the four-cell regime for a critical Reynolds number
Rec = 68.4. Note that for Re>Rec, the centrifugal force effect
in the annulus prevails on the viscous forces and the flow is
dominated by the laminar unstable regime [Taylor vortex flo
(TVF)].

The velocity variations are portrayed in Fig. 7 as functions
of the spatial positions (i.e., z/d and r/re) for different
Reynolds numbers and for the Newtonian fluid case (n= 1).
The velocity modulus [Fig. 7(a)] shows that the flow goes
inward and it develops mainly in the gap 0 � z/d � 0.8
(and, symmetrically in the gap 3 � z � 3.8). Although this
flow develops rapidly when Re increases from 0 to 60, it
seems to display an asymptotic value for a higher Re. In
the central region of the annulus the flow is insignificant at
low Reynolds numbers, and continues to increase for higher
Reynolds numbers.
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FIG. 11. Evolution of the friction factor versus Re for η = 0.5 and � = 3.8. (a) n = 0.5, (b) n = 1, and (c) n = 1.5.
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Along the radial direction, the velocity [Fig. 7(b)] exhibits
an extremum close to the midpoint of the gap. For Re = 40, this
velocity component is almost zero. This suggests that, away
from the end caps, the flow is of a type of Couette. For Re =
60, the radial velocity is negative in almost all the annular gap,
but nevertheless remains low which coincides with the onset of
the central cells. For the highest Reynolds numbers an inward
flow is obtained in the cavity center according to the results of
the streamlines.

The distribution of the axial velocity uz and the radial
velocity ur in the median plan, portrayed in Figs. 7(c) and 7(d),
confirms that the Ekman vortices are present at small rotation
rates. At higher rotation rates, which, however, are still smaller
than that corresponding to the critical Reynolds number, little
cells appear between the Ekman cells. At supercritical rotation
rate, these cells grow but remain, however, less intense than
those of the extremities.

Figure 8 shows the evolution of the radial and axial
velocities function of z/d for a Reynolds number of Re =
100. We notice that these velocity components vanish and
change sign periodically along the channel, which means that
the vortices rotate in opposite directions. In this figure, we
note that the radial and the axial velocities grow when n

decreases. This suggests that the flow intensity decreases with
n according to the rheological behavior of the non-Newtonian
fluids.

Figure 9 illustrates the combined effect of the Reynolds
number and the power-law index on the stream function,
azimuthal vortices contours, and azimuthal velocities. As for
the Newtonian case, the flow chart begins with the formation
of the Ekman cells close to the end walls. For the pseudoplastic
fluid (n = 0.5), this structure is altered for Re = 50 where a
weak cell begins to form in the neighborhood cavity walls.
For dilatant fluids (n = 1.5) in Fig. 10, this transition occurs
for, approximately, Re = 75. For a further increasing of the
rotation rates, the Taylor cells become fully developed for
Re = 65 in the case of the pseudoplastic fluid and for Re =
80 in the case of the dilatant fluid. Continuing to increase the
value of the Reynolds number, we note that the flow structure
changes again, from the four-cells to the two-cells regime at
Re = 111.5 for the pseudoplastic fluid.
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FIG. 12. Critical transition Reynolds number against n for
different η.
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FIG. 13. Map of flow structures for power-law fluids for η = 0.5
and � = 3.8.

Figure 11 illustrates the evolution of the friction factor as
a function of the Reynolds number for the short column (� =
3.8) with a large cross section (η = 0.5). For the Newtonian
fluid [Fig. 11(b)] in the region Re < Rec, we note that Cf

remains virtually constant for low Reynolds number values and
it increases significantly when Re exceeds the value Rec. For
the pseudoplastic and dilatant fluids in Figs. 11(b) and 11(c),
we note that in the TVF regime, the friction factor is more
important. The vertical lines indicate the transition Reynolds
number value from the Couette flow (CF) regime to the TVF
regime. These positions were obtained by the visualization
method, when the Taylor rolls occupy the whole annular space
of the duct by increasing gradually the Reynolds number.

To resume the transition from the laminar stable regime
(CF) to the laminar unstable regime (TVF) for different fluids,
Fig. 12 shows the evolution of Rec versus the power-law index
n for different radius aspect ratios. We can easily observe that
Rec exhibits a monotonic increase with n. As the radius aspect
ratio augments, the transition regime appears for higher critical
Reynolds number.

Figure 13 presents a map of the flow structures for power-
law non-Newtonian fluids for η = 0.5 and � = 3.8. According
to the fact that the Reynolds number is limited in the range
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FIG. 14. Critical steady Reynolds number Rec versus aspect ratio
� for the transition between two- and four-cell flows for η = 0.5.
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20 25 30 35

5

10

15

20

25

30

35

40

20 25 30 35

5

10

15

20

25

30

35

40

20 25 30 35

5

10

15

20

25

30

35

40

20 25 30 35

5

10

15

20

25

30

35

40

Re=40  Re=60  Re=400  Re=450

FIG. 15. (a), (b) Computed contours of the stream function lines of Newtonian fluid for different � at large radius ratio (η = 0.5).

20–150, the flow structure of pseudoplastic fluids exhibits a
2-4-2 cells regime while for the Newtonian and dilatant fluid
the flow shows a 2-4 cells regime.

The influence of the aspect ratio and the radius ratio on
the transition to the unstable laminar regime (TVF) in the
short annular columns is shown in Fig. 14. It is observed
that the critical Reynolds number increases with the increase

of both aspect ratio and radius ratio for a given value of
the shear-thinning index n. For a low radius ratio (η = 0.5)
Rec varies slightly with �, while for higher radius ratio the
variation of Rec is more important. For a reduced aspect ratio
and the radius ratio (� = 3.8 and η = 0.5) the effects of the ends
become gradually important which explains that Rec is more
important.
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FIG. 16. (a)–(c) Computed contours of the stream function lines (left) and the azimuthal velocity (right) of Newtonian fluid for different �

at large radius ratio (η = 0.5).

In Fig. 15(a), we note that for sufficiently small Reynolds
numbers, the basic flow structure for the Newtonian case
exhibits a symmetric two-cells state consisting of Ekman

circulations induced by the end caps. The primary bifurcation
from this two-cells state is to an asymmetric structure with
a large cell and a small one in the corner close to the
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inner cylinder. This choice of parameters leads to a smooth
supercritical bifurcation to the one-cell mode as the Reynolds
number is increased beyond a critical value. A lot of studies
have been done in the very small aspect ratio case and
Benjamin and Mullin [6] were the first to study this regime
experimentally and confirm the existence of the one- and
two-cell states. For an aspect ratio � of 2 in Fig. 15(b), the
primary bifurcation coincides at the transition from the stable
regime two-cell mode to the unstable regime four-cell mode.
For larger aspect ratio, in Figs. 16(a)–16(c), for further increase
in Reynolds number, we note the onset of a weak pair of cells
in the center of the annuli. The centrifugal force effect in
the annulus prevails on the viscous forces and the flow is
dominated by the laminar unstable regime (TVF).

VI. SUMMARY

A numerical investigation is developed for a flow of
non-Newtonian fluids between two concentric cylinders using
the lattice Boltzmann method D2Q9 model. The inner cylinder
rotates with a uniform velocity while the outer cylinder and

end caps are kept at rest. Two kinds of aspect ratio are
considered for the validation purpose, an infinite column
and a finite column. For low Reynolds number, the present
axisymmetric lattice Boltzmann code is validated against an
analytical expression of velocity and available literature results
for the Taylor-Couette flow at nonturbulent values of Re.
The effect on the flow pattern of several parameters such as
the Reynolds number and the power-law index are analyzed.
The results show that when Re � Rec, the flow changes
from the stable laminar regime (CF) to the unstable laminar
regime (TVF) and its structure switches from the two-cells
to four-cells mode for both Newtonian and dilatant fluids.
Contrariwise for pseudoplastic fluids, the flow exhibits 2-4-2
structure passes from two-cells to four-cells and switches
again to the two-cells configuration. Furthermore, the critical
Reynolds number presents a monotonic increase with n, and
as the radius ratio grows, the transition flow regimes tend
to appear for higher critical Reynolds number. In the short
annular conducts, the basic flow is a symmetric two-cell
state composed of an Ekman circulation induced by the
ends.
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