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Self-organization of ascending-bubble ensembles
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Self-organization of hydrogen bubbles generated by laser-treated areas of an aluminum plate etched in a basic
aqueous solution of ammonia is studied experimentally and theoretically. The dynamics of the establishment of a
stationary pattern of gas bubbles is experimentally is shown. In the theoretical model, the velocity field of liquid
flows around an ensemble of several bubbles is obtained. Modeling of the process of self-organization of gas
bubbles is performed on the basis of a continuum model of a bubble jet. Under certain assumptions, the pressure
of a diluted system of bubbles is described by an equation similar to that for nonideal gas, which follows the van
der Waals equation of state. The model predicts an alignment of gas bubbles along bisectors of the laser-treated
area limited by a square, which is in good agreement with experimental observations. Further development of the
model leads to an equation with a negative diffusion coefficient that may be responsible for symmetry breakdown
and pattern formation.
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I. INTRODUCTION

A formation of dissipative structures is typical for open
nonlinear systems [1]. Liquid flows in the field of gravity
are characterized by a number of instabilities, e.g., Rayleigh–
Bénard or Bénard–Marangoni convection. In some cases, these
instabilities lead to a formation of self-organized structures,
like the well-known Bénard cells that appear due to buoyancy
force. The self-organized structures arise as the result of the
amplification of microscopic fluctuations to the macroscopic
level through bifurcation. The addition of small solid particles
into the liquid is largely used for visualization of hydrody-
namic flows. For example, fine aluminum powder (flakes)
can be used to visualize either Bénard cells or Marangoni
convection flows [2]. Sufficiently small solid particles that
do not interact with one another are believed to be tracers
of liquid flows. However, the suspended particles form their
own trajectories under conditions of the Marangoni convection
[2,3]. The particles are ordered into a symmetric closed
trajectory that rotates with a certain angular velocity. The
explanation for this has been suggested in a recent paper [4].
The deviation of particle trajectories from the hydrodynamic
flow is due to their inertia. The resulting trajectory is the
interplay between viscous drag forces and inertial behavior
of the particle motion.

Another example of a two-phase system is a fluid with
gas bubbles. Flows with a large bubble concentration occur in
many natural and industrial processes, e.g., propeller-induced
cavitation in ship building, cavitation in fluid machinery,
nucleate boiling in reactors and similar devices, and many
processes (centrifuges and mixers) in the chemical process
industry. A priori, gas bubbles can hardly be considered tracers
of hydrodynamic flows. In the gravity field, their motion
is dominated by buoyancy force, which is compensated by
a viscous Stokes force at the bubble–liquid interface. Big
(0.1–0.2 cm in diameter) individual bubbles demonstrate the
instability of their shape upon rising in water. Moreover,
individual small bubbles rise rectilinearly, while larger bubbles
follow a zigzag trajectory [5]. Rising bubbles can interact with
one another. When a pair of bubbles rises in a still liquid

due to buoyancy, the bubbles are attracted toward each other
when the angle between their line of centers and the vertical
direction are in the range [θc, 180 − θc] and repelled from
each other when the angle and the vertical direction are outside
the same range, θc being a critical angle ranging from 35◦
when the two bubbles are in contact to 54◦ when they are
widely separated [6]. The adjacent bubbles interact with each
other through the vorticity fields about them. Switching of
bubble behavior occurs at some critical Reynolds number.
Sufficiently close bubbles form a horizontal cluster that rises
vertically, with their line of centers perpendicular to the rise in
velocity [7]. Large (4–5 mm) bubbles tend to form a vertical
cluster [8]. The type of clustering depends on the deformability
of bubbles. According to the Bernoulli equation, higher fluid
velocity in the wake of a bubble results in lower pressure,
and the second bubble is shifted underneath. Rising of gas
bubbles at a high concentration (20% and more) in the fluid
is a collective effect and may induce the fluid flow due to
viscous interaction. In turn, the liquid flow affects the motion
of bubbles, so there is feedback between the flows of the liquid
and the concentration of gas bubbles. This positive feedback
may lead to the formation of dissipative structures made of gas
bubbles.

Recently, we reported the process of self-organization of
gas bubbles rising over a laser-etched surface of an aluminum
target in a weakly basic aqueous solution [9]. Ascending
bubbles formed various stationary structures, whose symmetry
was determined by the symmetry of the etched area. Bubbles
aligned along the bisectors of the contour of the etched
area. For example, in case of a square-shaped laser-processed
area, the bubbles aligned along diagonals of the square. The
dynamics of the establishment of the stationary pattern of gas
bubbles is presented in the sequence of frames in Fig. 1.

Bubbles became visible due to the scattering of light on
them. The stationary distribution of gas bubbles was estab-
lished ∼5 min after dipping the laser-processed aluminum
plate into an aqueous solution of ammonia (10%). The
alignment of hydrogen bubbles along diagonals (attraction to
diagonals) of the square laser-processed area was clearly seen.
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FIG. 1. Establishment of a stationary pattern of gas bubbles over a square laser-processed area of aluminum plate. Each frame shows the
time elapsed from dipping the plate into the ammonia solution. The lateral dimensions of the square are 2 × 2 cm, and the thickness of the
liquid layer is 5 mm.

The pattern remained until the depletion of the solution, which
lasted up to several hours. Similar alignment was observed for
other shapes of the laser-treated areas, e.g., triangles [9]. It
is evident that individual bubbles interacted with one another
through viscous liquid flows. The aim of this paper is to suggest
a theoretical model of the self-organization of rising bubbles
originating from the heaving of bubbles.

II. THEORETICAL MODEL

Let us build a model describing a stationary flow of gas
bubbles ascending in a liquid in the field of gravity. The
following realistic assumptions simplify a consideration but
do not change the results qualitatively:

(1) According to the experimental data, the bubbles remain
spherical upon rising with an almost constant radius R. The
typical radius of bubbles observed in our experiments is R ∼
50 − 100 μm. This radius is established due to the equilibrium
of gas pressure inside the bubble and hydrostatic pressure of
the liquid.

(2) The concentration of bubbles n is small: nR3 � 1.
The typical rising velocity of bubbles in our experiments is

u ∼ 0.5 cm/s. For the kinematic viscosity of water ν = η/ρ ≈
10−2 cm2/s, this corresponds to Reynolds number Re ∼ 0.4.
This means that the friction force of bubbles in the water can
be estimated by the following expression:

F = μRρνu. (1)

This expression is valid for small gas bubbles with radii up to
∼100 μm [10]. The coefficient μ depends on the properties of
the liquid and varies in the region 4π < μ < 6π , depending on
the quantity of a surface-active substance solved in the liquid.
In our experiments surfactants were not used, which allows
one to let μ = 6π , as in the Stokes formula.

An equation of motion of a single gas bubble in a still liquid
has the following form (see, e.g., [Ref. [10]):

V0

(
ρg + 1

2
ρ

)
du
dt

= −V0∇P + V0(ρ − ρg)g − 6πRηu,

(2)

where V0 = 4πR3/3 is the bubble volume, ρ is density of the
liquid, and ρg stands for the gas density inside the bubble.
Here, the symbol P stands for an addition to pressure in
the liquid, which is created by moving bubbles, whereas the
hydrostatic pressure is taken into account by the Archimedes
force V0(ρ − ρg)g, included separately in Eq. (2).

The term (ρ/2) in the brackets on the left-hand side of
Eq. (2) takes added mass into account. Since the gas density
within the bubble is small (ρg � ρ), one can rewrite Eq. (2)
as follows:

du
dt

= − 2

ρ
∇P − 2γ (u − u0). (3)

Here,

u0 = −g/γ, γ = 6πRη/ρV0 = 9ν/2R2. (4)

Vector u0 is antiparallel to the gravity vector g and represents
the stationary velocity of a bubble rising in a still liquid
when the buoyancy force and the Stokes force become equal.
The typical measured value of rising is near u0 ∼ 0.5 cm/s.
According to Eq. (4), this value corresponds to R ≈ 50 μm.

The parameter γ determines the rate of the establishment
of stationary rising and in our conditions is γ ∼ 103 s−1.
A distance traveled by a bubble during the time γ −1 is
l ∼ u0/γ ∼ 10−3 cm, which is small compared with the
characteristic dimensions of a bubble stream in the present
experiments. Therefore, with sufficient accuracy, one may let

u = u0 − 1

γρ
∇P. (5)

This means that the bubble acquires its velocity u just after
detachment from the aluminum plate.

If the liquid moves with an average local velocity v, then
the motion of the bubble should be considered relative to the
liquid, u → u − v, and Eq. (5) takes the form

u = u0 + v − 1

γρ
∇P. (6)

Since distances between bubbles are large, only the liquid flow
caused by the bubble a large distance away is of interest. At
distances l � R, the liquid can be treated as ideal because
the corresponding Reynolds number is large: Re = ul/ν � 1.
Under these conditions, a velocity field of the liquid around the
bubble with the radius R is given by the following expression
[11]:

v = R3

2r3
[3n(un) − u], (7)

where n = r/r is a unit vector along the radius vector starting
from the center of the bubble. This flow has the potential

ϕ = − R3

2r2
un, v = gradϕ. (8)
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Within the accepted assumptions, a distribution of pressures
in a still liquid around the bubble moving with velocity u is
given by the formula [11]

P = ρuv − ρv2/2 (9)

or, according to Eq. (7),

P = −ρ
1

2

(
R

r

)6

[3(un)2 + u2] + ρ
R3

2r3
[3(un)2 − u2].

(10)

The first term in Eq. (10) behaves like (R/r)3, while the second
one decreases with distance like (R/r)6 and is negligible at
distances r � R. This means that the second term is significant
only up to distances r ∼ 2R, and with sufficient accuracy, at
bubble concentration n � R−3, we can set

P = ρuv. (11)

Since the system (gas) of bubbles is diluted, its influence on the
liquid is small. In particular, the motion of the liquid induced
by bubbles remains slow on average: v � u0.

Therefore, the problem is reduced to a determination of the
liquid velocity and pressure fields v and P produced by all
bubbles. A motion of single bubbles can then be calculated
using the equation of motion [Eq. (6)] in the self-consistent
fields v and P :

dr
dt

= u0 + v(r) − 1

γρ
∇P (r). (12)

Consider a diluted gas of rising bubbles with local concen-
tration n(r). The velocity field of the liquid is given by the
following expression:

ϕ(r) =
∑

i

ϕ1(r − ri) = −1

2
R3

∑
i

(r − ri)ui

|r − ri |3 ,

(13)
v = gradϕ,

where ϕ1(r − r1) stands for the velocity potential at the point r
induced by a single bubble located at the point r1 and is given
by Eq. (8).

An additivity of the potential ϕ used in Eq. (13) follows
from a linearity of the Laplace equation 	ϕ = 0, which
describes a laminar motion of an incompressible liquid (divv =
0, v = ∇ϕ).

A real field of velocities of liquid flow is rather complicated.
Locally, it is similar to an electric field produced by a system
of dipoles, as can be seen from Eqs. (7) and (8). However,
an averaged field is much smoother and is mainly determined
by the motion of the liquid at distances much larger than the
diameter of a single bubble.

A transfer to the mean field approximation can be achieved
within the framework of a continuum description. Within this
approach, we let the number of bubbles in the elementary
volume dV be n(r)dV . Then, after replacing the summing by
integration in Eq. (13), we obtain the next expression for the
potential of the mean velocity field:

ϕ = −R3

2

∫
(r − r1)j(r1)

|r − r1|3 dV1, (14)

where the vector j(r1) = n(r1)u(r1) stands for the density
flux of bubbles. The expression in Eq. (14) is similar to the

well-known expression for the potential of an electric field
within a medium with the polarization vector P = −nR3u/2 =
−(R3/2)j. Such an electrodynamic analogy is well known in
hydrodynamics (see, e.g., [Ref. [12]) and allows us to apply the
methods of electrodynamics for solving some hydrodynamics
problems.

For further calculations, we rewrite Eq. (14) as follows:

ϕ = R3

2
div

∫
j(r1)

|r − r1|dV1 = R3

2

∫
div j(r − r1)

|r1| dV1. (15)

With the known potential ϕ(r) and respectively the velocity
of the liquid v = ∇ϕ, the pressure field can be found from
Eq. (11).

The equation of continuity

∂n

∂t
+ div j = 0 (16)

should be added to the above equations because bubbles
neither generate nor disappear in the bulk of the liquid. We
now consider a stationary flow, which means that ∂n/∂t = 0.
The bubbles are generated on the surface of the laser-treated
aluminum and disappear on the upper surface of the liquid.
The influence of these surfaces can be taken into account as
sources and sinks in Eq. (17). In particular, for a flat layer of
liquid of height h along the axis z, one may write the following:

div j = nuzδ(z) − nuzδ(z − h). (17)

We constructed a closed model, which includes Eqs. (11),
(12), (14), (16), and (17). A solution of this system allows
us to find self-consistent mean fields of liquid velocities and
pressures produced by the whole system of rising bubbles.

Let us consider the bubble jet starting at z = 0 (aluminum
plate) and finishing at z = h (free surface of the liquid). We
restrict ourselves to the lowest order approximation to the
parameter n0R

3 � 1.
Substituting the expression

div j = n(x, y, 0)uz(x, y, 0)δ(z)

− n(x, y, h)uz(x, y, 0)δ(z − h)

into Eq. (15), one obtains

ϕ = 1

2
R3

( ∫
u0n0(x1, y1)√

(x − x1)2 + (y − y1)2 + z2
dx1dy1

−
∫

uz(x1, y1, h)n(x1, y1, h)√
(x − x1)2 + (y − y1)2 + z2

dx1dy1

)
,

where n0(x, y) = n(x, y, 0) is an initial distribution of the
bubble concentration. Using the condition nR3 � 1, we may
let nuz|z=h ≈ n0u0. This assumption is supported by the
bubble flow being nearly symmetric relative to the middle
(z = h/2) of the jet. As a result, we get an explicit expression
for the velocity potential:

ϕ = 1

2
R3u0[ψ(x, y, z) − ψ(x, y, h − z)], v = ∇ϕ,

(18)

ψ(x, y, z) =
∫

n0(x1, y1)dx1dy1√
(x − x1)2 + (y − y1)2 + z2

.

First, we mention a special case in which the plate generating
bubbles is a ring with the radius R0. The liquid layer thickness
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FIG. 2. Field of bubble velocities. (a) Top view. (b) Cross-section of the bubble jet at y = a/2. n0R
3 = 0.2, h = a.

is assumed to be large: h � R. Then, the liquid velocity
field along the axis going through the center of the ring
perpendicular to the plate is given by

v(z) = −πR3n0u0

(
1 − z√

R2
0 + z2

)
.

Its derivative at z = 0 equals

∂v/∂z|z=0 = πR3n0u0/R0, (19)

which gives a maximum value of ∂v/∂z. This estimation gives
typical values of the velocity derivatives for different shapes
of the plate with characteristic sizes of ∼R0.

Note also the next similarity law. Let the plate generating
bubbles be a square. Denote the liquid velocity field for a
square with the size 1 × 1 a.u. as v0(r). Then, the field v(r)
produced by bubbles rising from the square plate with sizes

a × a is given by the formula v(r) = v0(r/a). This result
directly follows from Eq. (18).

We now are able to investigate the motion of individual
bubbles. Their trajectories can be found from Eq. (12). Using
the estimation in Eq. (19), we can evaluate the ratio of the last
term in Eq. (12) to u0:

ε = 1

γρu0
|∇P | = 1

γ u0
|∇(uv)| ≈ 1

γ

∂v

∂z
∼ 1

γR0
πR3n0u0.

For the typical parameters of our experiments γ ∼
103 s−1, R0 ∼ 1 cm, and u0 ∼ 0.5 cm/s, we get ε ∼
10−3n0R

3 � 1. This means that the last term in Eq. (12) is
negligible and the equation of motion of a bubble is simplified
as

dr
dt

= u0 + v, (20)

where the field v(r) should be calculated using Eq. (18).

FIG. 3. (a) Top view of the bubble jet in the region h < 4 < z < 3h < 4. The density of the image is proportional to the optical density of
the liquid layer with bubbles. The boundary square indicates the target, which generates bubbles. (b) The same as in Fig. 3(a) except that the
central part of the target is inactive. The size of the inactive region is 1 < 3 × 1 < 3 a.u..
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III. NUMERICAL RESULTS

The constructed model was numerically investigated. The
coordinate origin is located in the geometric center of the
target, so the target has coordinates

z = 0, − a/2 � x � a/2, − a/2 � y � a/2.

Figure 2 shows a calculated vector field of bubble velocities
when the etched area of the target has the square shape a ×
a, within which n0(x, y) = const while outside the square
n0(x, y) = 0. The thickness of the liquid layer h was taken as
h = a. Figure 2(a) presents the vector field of bubble velocities
at the section z = 0.1a of the jet. Figure 2(b) illustrates the
trajectories of bubbles in the vertical cross-section of the jet
at y = a/2, a numerical solution of Eq. (20) together with
Eq. (19). Figure 2(a) clearly demonstrates the effect of the
retraction of bubbles into motion along the diagonals of the
square, similar to that observed in the experiment. Moreover,
the jet shrinks with height because of the entrainment effect
[Fig. 2(b)], like that reported in previous experiments [9].

To illustrate observable changes in bubble concentration,
consider the region of the jet around the middle part: h/4 <

z < 3h/4, where the compression of the jet reaches maximum.
The optical thickness of this region

N (x,y) =
∫ 3h/4

h/4
n(x, y, z)dz (21)

is presented in Fig. 3(a). In the calculations, a grid with the
steps 	x = 	y = a/55, 	z = h/10 was used, and a point
plot was built up. The alignment of bubbles along the diagonals
of the square is clearly observed, similar to experimental
observations.

Similarly, we calculated the point plot for different target
plate shapes. As an example, Fig. 3(b) shows the top view when
the central part of the plate is inactive; i.e., it does not generate
bubbles. A similar picture was observed in experiments.

IV. FURTHER DEVELOPMENT OF THE MODEL

In the above consideration, the concentration of bubbles
was assumed to be small so that the term −ρv2/2 in
pressure [see Eq. (9)] could be ignored. However, as has been
demonstrated, the concentration of bubbles increases because
of the entrainment effect and reaches its maximum in the axial
region [Fig. 2(b)]. In addition, in the middle part of the jet,
the role of the boundary surfaces of the liquid decreases but
the flow velocity remains finite. Therefore, the term (−ρv2/2)
may become essential. This term also has a special role because
it depends slightly on the distance from borders of the liquid
and is determined by the local value of bubble velocities, thus
affecting their motion along the whole jet. Let us consider the
influence of this term in more details.

The corresponding contribution to pressure induced by a
single bubble is given according to Eqs. (8) and (9) by the
following expression:

Pb = −ρ
1

2

(
R

r

)6

[3(un)2 + u2] (22)

where the index b indicates the bulk effect. For a noncoherent
system of bubbles, the pressure equals

Pb = −ρ
R6

2

∑
i

3(u(ri)(r − ri))2 + u2(ri)|r − ri |2
|r − ri |8 n(ri).

(23)

A direct transition from summing to integration in this case
is impossible, since the corresponding integral diverges in
the vicinity of the bubble (∼ ∫ ∞

r
r−6 · r2dr ∼ r−3); thus, an

alternative approach should be applied.
Let us again assume that the “bubble gas” is diluted: nR3 �

1. The pressure in Eq. (22) decreases rapidly with distance
from the bubble, so the pressure near a single bubble is induced
only by its nearest neighbors. For example, if bubbles are
arranged into a simple cubic lattice, then there exist only 26
neighbor bubbles, which should be taken into account. This
means that P = CP1, where C ∼ 10 and P1 stands for an
averaged pressure induced by one nearest bubble. According
to Eq. (22), a contribution of all other bubbles is at least 26

times smaller. If a mean distance between the two nearest
bubbles is d, then the concentration of bubbles is n = 1/d3. In
reality, the bubbles are arranged chaotically, so we can write
the dependence of the pressure P on the bubble concentration
n as follows:

Pb = − 1
2CρR6n2[3(un)2 + u2] ≈ −C0ρR6n2u2, (24)

where C0 ∼ C ∼ 10 is a numerical coefficient and averaging
is performed over all directions.

The expression Pb is quite similar to the pressure of
nonideal gas, which follows the van der Waals equation.

Far from the borders of the liquid layer, liquid flow is
negligible, which follows directly from Eq. (18), and pressure
is determined only by the term in Eq. (24). Then, according to
Eq. (6), the bubble velocity is described by the expression

u = u0 + C0R
6

γ
∇(n2u2). (25)

The nonstationary equation of continuity

∂n

∂t
+ div(nu) = 0

takes on the form

∂n

∂t
+ u0

∂n

∂z
+ Ddiv(n2∇n) = 0, D = 2

γ
C0R

6u2
0. (26)

This is a diffusion equation with a negative diffusion coeffi-
cient that depends on the concentration (−Dn2). Because of
the properties of such equations, they can describe certain
types of instabilities. In particular, there may arise a self-
compression effect [13].

To outline an appearance of this effect, let us consider a
spatially uniform flow of bubbles with n(r) = n0 = const, u =
u0 = const. If a perturbation of homogeneity arises, it should
evolve according to Eq. (26). Consider the time-independent
one-dimensional case. Let

n(x, y, z) = n0 + n1(x, z), |n1| � n0.
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To simplify, we confine ourselves to perturbations evolving in
two dimensions: x and z. Linearization of Eq. (26) gives

∂n1

∂z
+ μ

(
∂2n1

∂x2
+ ∂2n1

∂z2

)
= 0, μ = Dn2

0

u0
. (27)

Let us look for a solution of the Cauchy problem for this
equation in the form

n1(x, z) = n10 exp(iqxx + iqzz). (28)

Substituting this expression into Eq. (27) gives the dispersion
equation

μ
(
q2

x + q2
z

) − iqz = 0,

which defines the two branches of spectrum:

q(1)
z = i

2μ
(1 + p), q(2)

z = i

2μ
(1 − p),

(29)
p =

√
1 + 4μ2q2

x > 1.

It is essential that Imq(2)
z < 0, which indicates instability of

the solution of the Cauchy problem. Assuming the parameter
μ to be small enough (μ � δ0), we may use an approximate
expression p ≈ 1 + 2μ2q2

x . Let us take an initial perturbation
of the form

n1(x, 0) = n10 exp
(−x2/δ2

0

)
. (30)

Then, using the spectrum in Eq. (29) and applying standard
techniques, we can obtain

n1(x, z) =
∫ ∞

−∞

dqx

2π

∫ ∞

−∞
n0(x1) exp [iqx(x − x1) + iqzz] dx1

= ∼ n10
δ0

δ(z)
exp

(
− x2

δ2(z)

)
, (31)

where the effective width of the perturbation is δ(z) =√
δ2

0 − 4μz.
We retained in Eq. (31) the main term, which describes an

increasing amplitude of perturbation

n1(0, z) ∼ n10√
1 − 4μz/δ2

0

(32)

with a simultaneous shrinking of the width δ(z)—the so-called
effect of sharpening with localization, which is characteristic
for nonlinear media of different kinds [13]. This mechanism
increases the contrast of the structures discussed above but
may also lead to the creation of other types of structures.

FIG. 4. Stationary pattern of gas bubbles over an X-shaped area
of aluminum plate. The lateral size of the plate is 3 × 3 cm.

An example of such instability is presented in Fig. 4. Here,
the aluminum plate was exposed to laser radiation in such a
way that the etched area was X shaped. Then the plate was
dipped into a basic solution. The stationary distribution of
bubbles is achieved after a certain time of etching. One can
see that bubbles are arranged along the bisectors at the ends of
X-shaped area. In the middle, they are situated in the middle of
the etched area, though as the distance between two adjacent
jets of bubbles reaches some critical value, the jets start an
interaction. Finally, in the middle of the X-shaped area, they
are united. Figure 4 illustrates that individual jets of bubbles
can interact with one another. In some experimental conditions,
this may lead to the symmetry breakdown that is described by
Eq. (26). These studies are ongoing.

V. CONCLUSION

A model of self-organization of gas bubbles over a spatially
confined etched area has been developed. This model shows
good agreement with experimentally observed stationary
patterns of gas bubbles over confined areas of etching. It also
shows that under certain assumptions, the pressure of diluted
gas bubbles is described by an equation similar to that for
nonideal gas, which follows the van der Waals equation of
state. Further development of the model results in an equation
with a negative diffusion coefficient, which depends on the
concentration of bubbles. The derived model predicts the
formation of other types of structures made of ascending gas
bubbles.
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