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Validating the physical model of a chaotic system by topological analysis
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Topological analysis is employed for the first time to our knowledge as a method of validation for a physical
model describing a chaotic system. Topological analysis theory provides both a way to characterize the topological
structure of chaotic attractors by means of a set of integer numbers and a method to obtain this set departing
from a time series generated by the chaotic system. The validation method proposed here consists of comparing
the topological structure of chaotic attractors obtained from time series generated on the one hand by an
experimental system and on the other hand by the numerical model under test. This procedure has been applied
to an erbium-doped fiber laser subject to pump power sine-wave modulation.
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I. INTRODUCTION

Physics consists of modeling real systems. Reliable models
provide many advantages in subsequent studies, as they
make it possible to design and analyze new systems before
their implementation. Usually, summarizing the properties
of a system in a model is not trivial. This task becomes
especially delicate when dealing with nonlinear systems.
Little differences between two similar models generate very
different responses even when they are working under the same
conditions, and the same model with two similar parameters
sets can give rise to very different responses. For these reasons
model building has been a field of great interest for many years
in the community of nonlinear dynamics [1]. Certainly a model
cannot be accepted until validation, that is to say, after checking
whether the real system and the model yield analog results.
Again, model validation is a very complex task in nonlinear
systems. Clearly there is an irreducible long-term error in the
prediction of a system’s state that is on the order of the chaotic
attractor’s size in phase space. Therefore, aspiring to a model
capable of reproducing exactly the observed chaotic behavior
is nonsense. Questions such as what should be compared and
how the comparison should be carried out have led to the
development of many tools for model validation in the last
decades.

Modeling is a relatively broad concept, so it is important
to state clearly what we mean here by this term. From a
mathematical point of view, a model is a set of equations
capable of reproducing the behavior of a system. Nevertheless,
the terms model and modeling are employed in a physical
context, in which the model is also capable of explaining the
behavior of a system. From a physical point of view, model
building starts from selecting the series of phenomena that
have a non-negligible influence on the system’s performance.
As each phenomenon can be described by one or several
equations, the interrelations between the different phenomena
involved give rise to a set of equations. Obviously these
equations contain parameters. They can present a certain
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experimental incertitude, but they are not free at all. If a
good agreement is found between the results provided by the
model and the experimental results (so that the model can
be considered validated), physicists interpret that the system
behavior has been understood: all the relevant phenomena
have been correctly included in the model’s equations. On the
other hand, if the agreement is not good enough, either some
relevant phenomenon has been ignored, or either the values
of some parameters present in the model’s equations had not
been properly determined in previous measurements.

In order to compare a real chaotic system to its model, a
possibility consists of comparing the statistical properties of
the experimental and numerical attractors obtained. Quantities
such as correlation dimension [2,3] or Lyapunov exponents
[3–5] have been widely used. But it is well known that quite
different attractors may have similar values of their statistical
parameters [6], so obtaining an agreement between model and
experiment for these parameters is only relatively meaningful
[7]. Another procedure to validate a model consists of com-
paring the numerical and experimental bifurcation diagrams.
It is admitted that bifurcation diagrams are a very useful form
for presenting the dynamical evolution of a system [8]. Never-
theless, in many cases it is not viable to obtain such diagram
for the experimental system. On the other hand comparisons
between plots usually involve subjective criteria: certainly it
is difficult to establish a quantitative formula to characterize
how similar two bifurcation diagrams are. And, above all, sim-
ilarity between bifurcation diagrams does not mean similarity
between dynamical behaviors: these diagrams do not provide
information about the attractors’ structure. Other procedures
have been proposed, based on other features of the attractor:
location and stability of fixed points [9], Poincaré sections [10],
geometry of attractors [11], and attractor symmetry [12].

In this work we propose topological analysis as a method for
validating a model of a chaotic system. To date, application of
topological analysis is restricted to systems whose phase space
has three dimensions. Topological analysis techniques are
based on the identification of unstable periodic orbits (UPOs)
and on computation of the linking numbers between pairs of
UPOs. The aim of the process is obtaining what is usually
called a template. The template contains all the information
about the attractor topology: the folding processes that cause
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each particular chaotic dynamics (together with stretching and
squeezing) and the way all the UPOs are intertwined within the
attractor. Topological analysis in general and templates in par-
ticular have been proven useful for identifying and describing
different folding processes which generate chaos in numerical
or experimental systems. For instance, topological analysis
techniques together with the concept of a template have made
possible identification of attractors embedded in a genus-1
torus whose mechanisms of generation were not the typical
Smale horseshoe folding but other kinds of folding (reverse
horseshoe [13–15], spiral [14–18], staple [15], or S [15]).

These ideas have been employed to compare if two
attractors are topologically equivalent [19,20]. Due to this pos-
sibility, it has been claimed for many years that an important
point of interest of topological analysis is its usefulness to
test numerical models of experimental systems in a chaotic
regime: a comparison of the templates obtained numerically
and experimentally for different combinations of the control
parameters would show clearly the model capabilities for
prediction of the experimental system dynamics at quite a
detailed level, concerning the very structure (or topology) of
the chaotic attractors. Based on topological analysis, some
mathematical models generated according to Ref. [21] have
been validated [20,22,23]. Nevertheless, to our knowledge
topological analysis has not been employed yet as a tool
for validation of a physical model, that is to say, to compare
data generated by any experimental system with the numerical
solution generated by a physical model of this experimental
system. The main aim of this work is to show how topological
analysis can be useful for tests of this kind.

In addition, this work makes clear that the validity of
an erbium-doped fiber laser (EDFL) model already tested
for stable working conditions can be extended to working
conditions in which the system response is chaotic. Success
of the model relies on a characterization procedure previously
developed by us [24], which leads to determination of the
values to be introduced in the model’s parameters. Therefore,
validity of the model and of the characterization method are
two tightly related questions.

The remainder of the paper is organized as follows. In
Sec. II, an introduction to classical topological analysis is
presented. A brief description of the EDFL model takes place
in Sec. III. In Sec. IV we compare the results obtained applying
the topological analysis to the time series corresponding to the
model with those obtained from the experimental setup in a
previous work. The main conclusions are provided in Sec. V.

II. TOPOLOGICAL ANALYSIS

Applying topological analysis to physical systems was first
proposed by Mindlin et al. [25] as a robust method to classify
chaotic regimes.

A chaotic signal is generated when three mechanisms,
stretching, folding, and squeezing act on flows in phase space
[26]. The way that these mechanisms take place is a fingerprint
of the dynamical system. On the one hand, topological
analysis is a theory that provides the concepts and quantitative
parameters suitable to characterize the attractors. On the other
hand, it also provides a procedure to calculate the values
of the different parameters from the time series generated

FIG. 1. (Color online) Typical scheme of a template.

by each particular dynamical system. These techniques were
originally devised for dissipative systems whose phase space
were three-dimensional, but they are also applicable to systems
for which the flow rapidly relaxes to a three-dimensional
subspace of its phase space. In all these cases, the Birman
and Williams theorem [27,28] guarantees that there exists a
two-dimensional object called a branched manifold (template
and knot holder are also names used to refer to this object)
such that it is possible to project a flow into this object while
keeping their topological invariants unchanged. In particular,
the UPOs present in the original attractor can be projected on
the template in such a way that their linking and self-linking
numbers remain unchanged. This template can be interpreted
as a version of the attractor in the limit of infinite dissipation.

The typical scheme of a template is shown in Fig. 1. It is a
circuit-like strip with a twisted zone and another zone in which
the section of the strip folds, giving rise to several branches.
All the topological features of the attractor are summarized in
the template, which is determined in a unique way by a set
of integer numbers [25]. These integer numbers are related to
the branches’ torsions, the number of rotations of each branch
around the others, and its piling order when the squeezing
mechanism acts and all the branches converge in the original
strip.

The procedure to determine the template ruling a given
chaotic time series makes use of a fundamental property: there
is a one-to-one relation between any orbit (periodic or not)
and the sequence of template branches visited. If each branch
is labeled (ordinarily by means of integers, the first one being
0), each periodic series of labels determines a unique UPO. In
this way, the periodic sequence of labels is taken as the name
of the UPO. A formula exists which allows one to calculate
the linking number between two UPOs, given the sequence of
branches visited by each orbit and the integer numbers that
characterize the template [26,29,30].

A detailed revision of the procedure which leads to template
determination can be found in [26]. Here we sum it up briefly.
The first step is identification of some of the UPOs in the time
series of the system. In order to do so, several techniques have
been proposed [31–33]. Next, the linking numbers between
each pair of UPOs are determined, as well as the self-linking
number of each UPO with itself, which involves embedding the
time series into a suitable three-dimensional phase space [26].
The process finishes with the search for a template compatible
with all these linking numbers. When a generating partition
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is previously known, the number of branches and the UPOs
names can also be determined beforehand, which paves the
way to template determination enormously. It suffices with a
few linking numbers to determine the template unambiguously
[30]. In the case that no previous generating partition is
available, the way to proceed consists of starting with the
simplest template, only with two branches, and try with all
combinations of orbit names. If no combinations give rise to
a valid solution, then we allow the template to have one more
branch and the process starts again. The process is iterated until
one or several solutions compatible with a combination of orbit
names are found. In this case, frequently several templates are
found to be compatible with the linking numbers calculated,
and, in addition, the method does not guarantee that the
minimum number of branches to get a compatible solution co-
incides with the authentic number of branches of the attractor.

Some additional ideas to this general treatment can be
applied under certain conditions. If no tearing is observed
in the Poincaré sections (PSs) (as in the case of EDFLs
under study), the attractor can be embedded in a genus-1
torus. In this case, determinism and flow continuity impose
tight relations between topological properties of the branches
of the template (torsion of each branch, rotation around the
other branches, and piling order). Due to this, the number
of integer parameters necessary to characterize the template
diminishes [30]: the torsion of the 0 branch (T00) and the
piling order suffice to characterize the template. Reduction in
the number of characteristic parameters is important because it
implies reduction in the number of linking numbers necessary
to determine the template. This is especially important in
experimental signals, in which often noise makes the counting
of crossings between UPOs very troublesome. Therefore, in
some cases just a few linking numbers can be determined
with total certainty. On the other hand, for highly dissipative
systems it is possible to obtain PSs equivalent to the branch line
of the template. If a continuous PS parametrization is defined,
the first-return map with regard to the parameter chosen is a
thin line (the more dissipative the system, the thinner the line)
with clear maxima and minima separating the different regions
of the generating partition [14]. Application of this technique
allows one to know the template number of branches and
the symbolic name of each UPO before using the procedure
described in the former paragraph. As explained there, it is very
important to know beforehand the number of branches and the
symbolic names in order to obtain a unique, reliable template.

III. THE SYSTEM UNDER STUDY: THE ERBIUM-DOPED
FIBER RING LASER

The scheme of a typical unidirectional EDFRL can be found
in Ref. [34]. The model employed there is the one tested here,
and it consists of the following nonautonomous system of two
ordinary differential equations (so its phase space has three
dimensions and topological analysis can be applied):

dN2r (t)

dt
= S1(t) − S2(t)N2r (t) + S3Pl(t) − S4Pl(t)N2r (t),

(1)

dPl(t)

dt
= Pl(t)[R1 + R2N2r (t)], (2)

where

S1(t) = γa(νp)

hνpNT

Pp(t), (3)

S2(t) = [γa(νp) + γe(νp)]

hνpNT

Pp(t) + 1

τ
, (4)

S3 = γa(νl)

hνlNT

, (5)

S4 = [γa(νl) + γe(νl)]

hνlNT

, (6)

R1 = c[ln(T ) − γa(νl)L]

D
, (7)

R2 = [γa(νl) + γe(νl)L]

D
. (8)

In the preceding coefficients, h is the Planck constant, NT

is the number of Er3+ ions per unit length, τ is the laser
transition lifetime, νp and νl are the pump and laser signal
optical frequencies, γa and γe represent the absortion and
emission coefficients, T is the one trip transmission coefficient
of the resonator ring, L is the active medium length, c is the
speed of light in vacuum, and D is the ring optical path. Pp(t)
is the pump power, in this case with a cosine wave profile:
Pp(t) = Pp0[1 + m cos(ωet)], where Pp0 stands for average
pump power, m is the modulation index, and ωe is the excitation
frequency.

In this system, the explicit state variables are N2r and Pl ,
which represent, respectively, the population of the upper laser
transition level and the power of the laser signal averaged
over the active medium. In the first equation, the first two
contributions to dN2r (t)/dt account for pump absorption,
pump stimulated emission, and spontaneous emission, while
the last two terms account for laser signal absorption and laser
signal stimulated emission. The second equation accounts for
the phenomena that cause laser signal power variations: the
losses due to the cavity passive elements (contained in R1) and
the amplification provided by the active medium.

Values of the different parameters contained in Si and Ri

have been experimentally determined. All of them are listed in
Tables I and II. The parameters of Table I have been measured
in a straightforward way by well-known methods, and those of
Table II have been obtained from a characterization procedure
detailed in Ref. [24]. In values in Table II, the experimental
uncertainty is given explicitly for reasons that will be clear in
next section.

TABLE I. Values of the model’s parameters determined by means
of straightforward measurements.

Peak pump power wavelength 1470 nm

Emission wavelength 1532 nm
Cavity passive losses (1 − T ) 0.79
Average launched pump power (Pp0) 43 mW
Length of doped fiber (L) 4.8 m
Total length of the ring 37.5 m
Refraction index of the fiber core 1.4674
4I13/2 Er3+ lifetime (τ ) 10.1 ms
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TABLE II. Values of the model’s parameters determined from the
characterization procedure [24] and values employed in the numerical
simulation.

Parameter Characterization Simulation

γa(νp) 0.66 ± 0.07 m−1 0.651 m−1

γa(νl) 2.985 ± 0.15 m−1 2.985 m−1

γa(νp) + γe(νp) 0.80 ± 0.07 m−1 0.825 m−1

γa(νl) + γe(νl) 4.39 ± 0.22 m−1 4.39 m−1

Er3+ lin. conc. (3.64 ± 0.35)×1013 3.64×1013

(NT ) ions/m ions/m

IV. RESULTS

In a previous paper [15], we showed the templates obtained
from the experimental time series emitted by the laser under
study when its pump power is sine-wave modulated. For an
average pump power of 43 mW and three different modulation
depths (m = 0.73, m = 0.78, m = 0.93), we represented the
different ranges of modulation frequencies where chaotic
behavior was observed, and we pointed out the templates
obtained in each range. In this way we obtained what we
can call a template map. In order to analyze the validity
of the model, we want to check whether the template map
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FIG. 2. Experimental bifurcation diagram.

numerically generated for the same working conditions is
similar to the experimental template map or not.

As a first step, before applying the topological analysis
to the different numerical time series it is interesting to
check whether the experimental and numerical distributions
of chaotic regions coincide. In Figs. 2 (experimental results),
3, and 4 (numerical results), each vertical group of points
represents the signal powers emitted at 20 time instants
corresponding to 20 consecutive modulation periods at the
same modulation phase. In some cases, the 20 points overlap,
which shows that the output signal is periodic and the signal
period is the same as the excitation one. In cases in which
there are n groups of overlapping points, there is a periodic
response whose period is n times the modulation one. If the
20 points are scattered, it is very likely that they belong to a
chaotic time series. With these ideas in mind, it is very easy
to appreciate in these figures the frequency ranges of periodic
and (presumably) chaotic regimes.

Compare the numerical Figs. 3 and 4, and observe the
values of the model’s parameters employed to generate each
figure given respectively in the columns “Characterization”
and “Simulation” of Table II. Differences between the figures
are quite significant despite the slight changes in the input
parameters. Certainly, this is not a surprising fact in a
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FIG. 3. Numerical bifurcation diagram calculated with the
parameters of the column “Characterization” in Table II.
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FIG. 4. Numerical bifurcation diagram calculated with the
parameters of the column “Simulation” in Table II.

nonlinear system, but it illustrates the difficulties to find a good
numerical-experimental agreement in nonlinear phenomena.
Figures 3 and 4 are two representative figures out of many
more obtained with different combinations of values in the
model’s parameters (not shown here for the sake of simplicity).
In all cases, the values of the parameters were contained within
its experimental uncertainty range. In particular, attending to
the different frequency ranges of vertically scattered points,
Fig. 4 is the one that shows the greatest similarity with the
experimental Fig. 2, among the different figures calculated.
For this reason, the values of the model’s parameters employed
to generate Fig. 4 are the ones we choose to carry out the
calculations leading to the numerical template map.

For an average pump power of 43 mW and for the three
modulation depth values mentioned before, different time

FIG. 6. (Color online) Summary of the theoretical templates
found as a function of the pump modulation frequency and modulation
index. Theoretical templates have been obtained from time series
generated by the model [Eqs. (1) and (2)], employing the parameters
of Table I and Table II (column “Simulation”). Colors and patterns
show the “species” of template according to Fig. 5. Labels at the top
of each sector show T00, which is the torsion of the corresponding red
branch in Fig. 5, expressed in number of half turns.

series have been calculated by sweeping the modulation
frequency over the 1 kHz–21 kHz band; at 50 Hz steps, 21 kHz
is the natural laser frequency for CW pump power of 43 mW.
Hereafter we will refer to it as fr . Each series contains
around 104 modulation periods, which is sufficient to apply
topological analysis techniques in a reliable way. Results are
summarized in Fig. 6, to be compared to the experimental
template map obtained in Ref. [15] (Fig. 7). The color code
employed in both figures is established in Fig. 5.

In order to value the capabilities of the model employed
here, compare Figs. 6 and 7. Obviously, Fig. 6 is quite far
from fitting to Fig. 7 perfectly, but take several circumstances
into account. First, it deals with the model of a nonlinear
system. It is inherent to the nature of a nonlinear system
to behave in a way strongly dependent on small variations
in the values of the model’s parameters (smaller than the
experimental incertitude, as shown by Figs. 3 and 4). And,
second, consider also that the model does not have any free
fitting parameter. Due to these circumstances, expecting a close
coincidence between experimental and model results would
be unrealistic. In order to compare the experimental response
with the model forecast, we believe that the interesting aspects
concern the global structure of both figures. Comparison of
Figs. 6 and 7 makes clear that the model is capable of predicting
the approximate location of the chaotic regions as well as
the structure of the template map: as it was obtained in the
experiment, the numerical calculations also yield template
regions of global torsion θ (integer part of T00/2) located
approximately around f = fr/θ . It must be recognized that in
Fig. 6 these regions appear shifted towards the left with regard
to Fig. 7, which could be due to the experimental parameters,

FIG. 5. (Color online) Folding processes characteristic of the different species of templates treated in this work.
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FIG. 7. (Color online) Summary of the experimental templates
found as a function of the pump modulation frequency and modulation
index. Colors and patterns show the species of template according to
Fig. 5. Labels at the top of each sector show T00, which is the torsion
of the corresponding red branch in Fig. 5, expressed in number of
half turns.

whose precise determination is a really complex matter. But,
in general, it can be said that the model explains satisfactorily
the system behavior in chaotic regime from a general point of
view. From a more detailed perspective, we find some striking
similarities and also some differences. Figure 8 (top) compares
an experimental PS with a numerical one, both obtained by
stroboscopic sampling and corresponding to the same chaotic
region [m = 0.73, T00 = 4, and I = (0 2 1)]. Coincidence
is very high between the experimental one and the part of
the numerical one enclosed in the square. Although quite
apparent, the region outside the square is not really significant:

it corresponds to small values represented in logarithmic scale,
impossible to obtain in the experimental case due to the
detector noise. In Fig. 8 (bottom), one can note the excellent
coincidence between the experimental and numerical profiles
of the UPOs 1 and 10 extracted from the corresponding time
series.

Concerning the differences, two are the most remarkable:
on the one hand, in the numerical results, the S structure
[behavior marked in Fig. 7 with a dark (red) rectangle with
a squared pattern] has not been observed; on the other hand,
templates of four branches have been obtained in calcula-
tions but were not identified in the experimental data. The
experimental S structure has been observed for a very specific
range of control parameters, so it could be expected that
maybe it would appear if we introduced other combination of
parameters values. We have tried with different combinations
without success. Therefore, we have not been able to prove that
the model can generate a time series ruled by an S template, but
certainly neither does its absence in our numerical results prove
the opposite. With regard to templates with four branches,
let us analyze the example of Fig. 9 together with Table III.
The first return map, obtained according to the procedure
established in Ref. [14], shows two maxima and a minimum.
In this way we identify four branches, and we can guess
the symbolic name of almost all the UPOs pointed out in
Fig. 9. The exceptions are orbits 5b and 6a, because some
of their points in the first return map are located in some of

FIG. 8. Top: Comparison of a numerical (left) and an experimental (right) Poincaré section. Bottom: Comparison of the UPOs 1 (left) and
10 (right) obtained experimental and numerically. In the horizontal axis, T represents the period of the pump power modulation.
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FIG. 9. (Color online) Top: Poincaré secction corresponding to
the the four branches template obtained by stroboscopic sampling.
The different dots represent intersections of different UPOs with
the Poincaré section. Bottom: First return map as a function of the Z

parameter [14] obtained from the Poincaré section of the upper figure.
(According to Ref. [14], Z is defined as the coordinate along the arrow
appearing in the figure, normalized so that Z = 0 for the arrow tail and
Z = 1 for the arrow head. For any point of the PS, its Z coordinate is
defined as the Z coordinate of its closest point which belongs to the
arrow). The different dots represent the Z parameters corresponding
to UPO intersections. The lines demarcate the approximate borders
between the regions in the generating partition [15]. The UPOs
names appearing in the legend contain a number expressing the
corresponding UPO period.

the incertitude regions between branches. Concretely, orbit 5b
might be 12032 or 12132, while orbit 6a might be 112210
or 112220. The only template with four branches compatible
with all the linking numbers and all the orbit names (Table III)
is an outside-to-inside spiral template with T00 = 6.

Observe that in this case the information provided by the
first return map is key for correct template determination:
without the first return map, we would not know beforehand

TABLE III. Linking numbers between the different UPOs ob-
tained from the temporal signal corresponding to Fig. 9.

1 12 20 112 1032 1202 11122 5b 6a

1 0
12 7 7
20 7 14 7
112 11 22 21 22
1032 15 30 28 45 45
1202 14 29 28 43 58 43
11122 18 37 35 55 75 72 74
5b 18 37 35 55 75 73 93 74
6a 22 44 42 66 88 86 110 110 107

either how many branches we have or the UPOs’ symbolic
names. As explained before, sometimes template determina-
tion is possible even without knowledge of these data, by
means of the topological analysis program systematized in
Ref. [26], but in this case application of this program without
the information of the orbits’ symbolic names yields that a
spiral with three branches and T00 = 6 is compatible with
the linking numbers obtained. Therefore, by means of this
procedure the existence of a fourth branch would not be
revealed. Considering the reasons why a template with four
branches like this has not been experimentally observed, we
find that the fourth branch (labeled “branch 3” in Fig. 9) is
short enough to become masked by noise in an experimental
first return map. For a clear experimental observation of a
template with four branches, it would be necessary that the
fourth branch was longer in order to appreciate it in a first
return map and/or gave rise to UPOs whose linking numbers
were not compatible with any template with three branches.

V. CONCLUSIONS

Topological analysis has been proved useful as a method
for testing the validity of a physical model candidate to
describe the behavior of an experimental chaotic system.
In the case of an EDFL, studied here, topological analysis
shows how the model is not only capable of explaining the
distribution of periodic and chaotic regions in the space of
the control parameters, but also the topological structure of
the chaotic attractors found in each region. This fact proves
that the EDFL model employed accounts for all the relevant
phenomena necessary to explain not only the appearance of
chaotic behavior but also much subtler details concerning the
structure of the attractors found.

This work shows that, despite some weaknesses of topo-
logical analysis, it is a method that deserves to be considered
for model validation. In our opinion, its main weakness is
its limited domain of application to systems whose phase
space has three dimensions, and that is why currently there
are researchers trying to extend topological analysis to higher
dimensions. On the other hand, it requires working with
relatively large time series, which entails suitable experimental
equipment and a subsequent careful analysis. The bottleneck
is experimental acquisition of a suitable time series, but this
operation is perfectly feasible nowadays, save for phenomena
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with very fast characteristic times or for very unstable systems.
Concerning the amount of work necessary to process all the
time series, it must be recognized that it is considerable, but in
exchange topological analysis offers the advantage of dealing
with concepts such as the structure of attractors and the folding
processes that generate them. These concepts are much more
suitable than any statistical parameter to compare attractors
and, therefore, to validate physical models. We think that the

amount of work required by topological analysis is by far
compensated by the fistrength of the results that it provides.
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359 (2002).

052921-8

http://dx.doi.org/10.1162/089976600300014971
http://dx.doi.org/10.1103/PhysRevE.66.066701
http://dx.doi.org/10.1016/S0167-2789(96)00159-5
http://dx.doi.org/10.1142/S0218127497001758
http://dx.doi.org/10.1142/S0218127497001758
http://dx.doi.org/10.1103/PhysRevE.72.026212
http://dx.doi.org/10.1103/PhysRevE.72.026212
http://dx.doi.org/10.1063/1.2130927
http://dx.doi.org/10.1063/1.2130927
http://dx.doi.org/10.1142/S0218127406014605
http://dx.doi.org/10.1142/S0218127406014605
http://dx.doi.org/10.1142/S0218127498001789
http://dx.doi.org/10.1142/S0218127498001789
http://dx.doi.org/10.1103/PhysRevE.64.056216
http://dx.doi.org/10.1016/S0960-0779(00)00163-6
http://dx.doi.org/10.1016/S0960-0779(00)00163-6
http://dx.doi.org/10.1103/PhysRevE.69.026701
http://dx.doi.org/10.1103/PhysRevE.55.R3801
http://dx.doi.org/10.1103/PhysRevE.55.R3801
http://dx.doi.org/10.1103/PhysRevE.79.046213
http://dx.doi.org/10.1103/PhysRevE.79.046213
http://dx.doi.org/10.1103/PhysRevE.82.016218
http://dx.doi.org/10.1142/S0218127498000772
http://dx.doi.org/10.1142/S0218127498000772
http://dx.doi.org/10.1016/0375-9601(94)90722-6
http://dx.doi.org/10.1016/0375-9601(94)90722-6
http://dx.doi.org/10.1142/S0218127496001624
http://dx.doi.org/10.1142/S0218127496001624
http://dx.doi.org/10.1051/jp2:1996152
http://dx.doi.org/10.1103/PhysRevE.51.164
http://dx.doi.org/10.1103/PhysRevE.49.3784
http://dx.doi.org/10.1103/PhysRevE.49.3784
http://dx.doi.org/10.1103/PhysRevE.51.4262
http://dx.doi.org/10.1103/PhysRevE.51.4262
http://dx.doi.org/10.1155/2009/238960
http://dx.doi.org/10.1155/2009/238960
http://dx.doi.org/10.1016/S0030-4018(02)01188-4
http://dx.doi.org/10.1016/S0030-4018(02)01188-4
http://dx.doi.org/10.1103/PhysRevLett.64.2350
http://dx.doi.org/10.1016/0040-9383(83)90045-9
http://dx.doi.org/10.1090/conm/020/718132
http://dx.doi.org/10.1103/PhysRevE.49.4693
http://dx.doi.org/10.1103/PhysRevE.49.4693
http://dx.doi.org/10.1142/S0218127409025122
http://dx.doi.org/10.1142/S0218127409025122
http://dx.doi.org/10.1103/PhysRevLett.68.1128
http://dx.doi.org/10.1103/PhysRevLett.73.1364
http://dx.doi.org/10.1103/PhysRevE.55.5398
http://dx.doi.org/10.1016/S0030-4018(02)02004-7
http://dx.doi.org/10.1016/S0030-4018(02)02004-7



