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We study the implications of unitarity for pseudo-orbit expansions of the spectral determinants of quantum
maps and quantum graphs. In particular, we advocate to group pseudo-orbits into subdeterminants. We show
explicitly that the cancellation of long orbits is elegantly described on this level and that unitarity can be
built in using a simple subdeterminant identity which has a nontrivial interpretation in terms of pseudo-orbits.
This identity yields much more detailed relations between pseudo-orbits of different lengths than was known
previously. We reformulate Newton identities and the spectral density in terms of subdeterminant expansions
and point out the implications of the subdeterminant identity for these expressions. We analyze furthermore the
effect of the identity on spectral correlation functions such as the autocorrelation and parametric cross-correlation
functions of the spectral determinant and the spectral form factor.
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I. INTRODUCTION

A. Overview

When calculating quantum spectra with the help of
periodic-orbit sums such as, for example, arising from semi-
classical expressions, one typically encounters problems due to
the divergencies resulting from summing over a large number
of periodic orbits which grows exponentially with length.
This is, in particular, the case for quantum systems whose
underlying classical dynamics is chaotic [1]. To apply these
periodic-orbit expressions for determining quantum spectra,
the number of relevant orbits needs to be reduced. This is
either achieved by reordering the orbit contributions making
use of cancellations such as is done in the cycle expansion [2]
or one can also utilize the unitarity of the quantum dynamics
leading to additional relations between the coefficients of
the characteristic polynomial and thus to finite sums over
pseudo-orbits [3–9].

A related problem is the semiclassical calculation of
spectral correlation functions. They are conjectured to follow
random matrix theory (RMT) for quantum systems with a
chaotic classical limit. Establishing this connection explicitly
using semiclassical periodic-orbit formulas for the spectral
form factor could only be achieved fairly recently following
the work in [10]. This calculation has been extended in [11]
yielding the full spectral form factor as predicted by RMT
for times smaller than the Heisenberg time TH . (This is the
time needed to resolve distances of the order of the mean level
spacing in the Fourier-transformed spectrum.) The spectral
form factor for times larger than TH has been obtained using
semiclassical periodic-orbit expressions in [12]. The calcula-
tion is based on a generating function approach containing two
spectral determinants both in the numerator and denominator

at four different energies. The derivation makes explicit use of
the fact that the spectral determinant is real for real energies.
Although this is obvious from its definition, Eq. (8) below,
it is not clear a priori when considering the representation
of the spectral determinant containing periodic-orbit sums.
A real spectral determinant in terms of periodic orbits can
only be semiclassically obtained by exploiting periodic-orbit
correlations due to unitarity.

The above problem illustrates that we need a better
understanding of the correlations between periodic orbits
and in particular the correlations between long and short
orbits. To analyze these correlations in more detail, we
study here quantum unitary dynamics described in terms
of finite-dimensional unitary matrices, i.e., quantum unitary
maps. In this case, periodic orbits refer to the products of
elements of the describing unitary matrix with their indices
forming a closed cycle. We give later an interpretation in
terms of periodic orbits on quantum graphs [13] where the
exact periodic-orbit expansions for spectral quantities exist.
These expansions are of a similar form as the semiclassical
approximations obtained for more general systems. We will in
particular advocate to consider spectral quantities in terms
of subdeterminant expansions. By this we obtain a much
more detailed relation between the contributions from orbits
of a different length for closed systems. The previously
known relations [6] only connect the overall (summated)
contributions to spectral quantities from long and short orbits.
We, however, derive a relation between the contributions
from short orbits within different parts of the system and its
corresponding complementary orbits. Such an identity is of
particular importance when spatially inhomogeneous effects
such as a magnetic field that affect the contributions from
different orbits of the same length differently are considered.
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We expect it also to lead to simplifications in the diagrammatic
expansions in [9]. We afterwards will derive subdeterminant
expressions for a range of important spectral quantities and
consider these for examples such as quantum graphs.

The paper is structured as follows. We first introduce
the spectral determinant and explain the known implications
of unitarity for this quantity. We analyze in Sec. II further
implications of unitarity on pseudo-orbit expansions. In this
context, we present a subdeterminant identity for unitary
matrices and explain how it yields the considered relation
between the short and long orbit contributions. We discuss
the implications of this identity on Newton identities and a
pseudo-orbit expansion of the spectral density. In Sec. III, we
derive expressions for spectral correlation functions such as the
autocorrelation and the parametric cross-correlation function
of the spectral determinant and the spectral form factor in
terms of subdeterminant expansions. The implications due to
the subdeterminant identity will be discussed.

B. Some basic properties of the characteristic polynomial
of a matrix

Consider a general complex matrix U of dimension N . Its
characteristic polynomial is given by

PU (z) ≡ det(z − U ) =
N∑

n=0

(−1)N−naN−nz
n =

N∏
n=1

(z − zn),

(1)

where the complex numbers zn are the eigenvalues of U .
The complex coefficients an of the polynomial in Eq. (1)
will be at the center of interest in this article. Here, a0 = 1
and the remaining N coefficients an, n = 1, . . . ,N , are N

complex numbers which contain the same information as the
N eigenvalues zn. Note that the characteristic polynomial is
invariant under conjugation U �→ CUC−1 with a nonsingular
matrix C. The coefficients an are thus matrix invariants (as
are the eigenvalues) and can be expressed in terms of other
matrix invariants such as traces of powers of U . Indeed, the
expressions for the coefficients an in Eq. (1) in terms of the
eigenvalues or traces of U can be easily written down, for
instance,

a1 =
N∑

n=1

zn = tr U,

a2 = 1

2

∑
n�=m

znzm = 1

2
(tr2 U − tr U 2).

Similar formulas expressing the an’s in terms of traces hold
for all n [14]. Note, however, that aN = ∏N

n=1 zn = det U has
a much simpler expression in terms of the determinant of U .

Alternatively, one may express the coefficients in terms of
sub-determinants of U . Denote the set I = {1,2, . . . ,N} and
let � ⊂ I be some subset of I of cardinality |�|. Note that
there are 2N − 1 nontrival subsets of I that we write in the
form {�}2N−1

j=1 . Then � defines a quadratic |�| × |�| submatrix
U� which is obtained from U by keeping only those rows
and columns with indices belonging to �. We will denote the

determinant of U� as

d� = det U� . (2)

Using the linearity properties of the determinant with respect
to its rows (or columns), it is then straightforward to show that

an =
∑

�⊂I: |�|=n

d� . (3)

The sum extends over the ( N

n ) different choices of n rows
(and the corresponding columns) that build the submatrix U� .
While an is a matrix invariant it is noteworthy that this is in
general not the case for the individual contributions det U� .

II. ON PSEUDO-ORBIT EXPANSIONS IN TERMS
OF DETERMINANTS

A. Basic relations

Let us now consider the characteristic polynomial and
some related spectral functions for the specific case of unitary
matrices U . We will keep the discussion general here and will
only later refer to U as the evolution matrix for a quantum
system.

A unitary matrix U of dimension N has N unimodular
eigenvalues zn = eiθn . This implies the functional equation

PU (z) = (−z)NeiφPU (1/z∗)∗ (4)

for its characteristic polynomial where z∗ denotes the complex
conjugate of z and eiφ = det U = aN . Comparing the coeffi-
cients of zn on both sides of the functional equation (4) results
in the explicit relation

aN−n = eiφa∗
n (5)

between the coefficients of the characteristic polynomial.
In Sec. II B, we will generalise this relation to individual
determinants of submatrices contained in the coefficient an

according to Eq. (3).
For unitary maps it is useful to introduce the following

variant of the characteristic polynomial, the so-called zeta
function

ζU (θ ) = e−iNθPU (eiθ ) = det(I − e−iθU )

=
N∑

n=0

(−1)nane
−iθn . (6)

This is a 2π periodic function in the variable θ which vanishes
exactly at the spectrum of real eigenphases {θn}Nn=1. In terms
of subdeterminants (2) one may also write

ζU (θ ) =
∑

�

d�e−i(θ+π)|�|, (7)

where the sum is over all subsets � ⊂ I including the empty
set � = ∅ with |�| = |∅| = 0 for which we set d∅ = 1.

The functional equation (4) implies that

ZU (θ ) = eiN θ+π
2 −i

φ

2 ζU (θ ), (8)

usually referred to as the spectral determinant, is real for real
θ , i.e., ZU (θ )∗ = ZU (θ ).
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Another spectral function which will be discussed later is
the density of states

ρ(θ ) =
N∑

n=1

δ2π (θ − θn), (9)

where δ2π (x) ≡ ∑∞
n=−∞ δ(x + 2πn) is the 2π periodic δ

comb. The density of states can be expressed as

ρ(θ ) = 1

π

d

dθ
Im log ZU (θ − iε)

= N

2π
+ 1

π

d

dθ
Im log ζU (θ − iε) (10)

in the limit ε → 0. This expression directly leads to the trace
formula which expresses the density of states in terms of
periodic orbits. We will discuss this in Sec. II C together with
a novel expansion in terms of the subdeterminants presented
in the next section.

B. Subdeterminant identity for unitary matrices

We here first recapitulate the Jacobi determinant identity
applied to the subdeterminants d� for unitary matrices [15]
which contains much more detailed information than Eq. (5).
As this identity is of great relevance in the paper we also give
its proof. We will interpret this identity in terms of periodic
orbits and will discuss the implications for spectral measures
in the remainder of the paper.

Theorem. Let U be a unitary matrix of dimension N with
determinant det U = eiφ and � ⊂ I ≡ {1,2, . . . ,N} with n =
|�|. Denote the complement of � in I by �̂ ≡ I \ �. Then the
following identity for the determinants of the n × n submatrix
U� and the (N − n) × (N − n) submatrix U�̂ holds:

det U� = eiφ(det U�̂)∗ . (11)

Proof. Writing U , without loss of generality, in block form

U =
(

U� V

W U�̂

)
, (12)

the identity can be proven by calculating the determinant of
both sides of the matrix identity(

U� V

W U�̂

) (
1 W †

0 U
†
�̂

)
=

(
U� 0

W 1

)
. (13)

In the last equation the determinant of the first matrix equals
eiφ , the second (det U�̂)∗ and the third det U� . �

This identity implies some fundamental connections be-
tween the orbits and pseudo-orbits of dynamical systems,
which, in our view, are worth exploring. We will discuss these
implications in the following sections.

As a straightforward consequence, one obtains for the zeta
function (7) for N odd

ζU (θ ) =
∑

�:|�|�N/2

(d�e−i(θ+π)|�| + d∗
�eiφe−i(θ+π)(N−|�|)) .

(14)

The formula remains true for N even if appropriate care is
taken for contributions with |�| = N/2; only half of these
contributions should be counted and this half needs to be

chosen appropriately. Expression (14) resembles Riemann-
Siegel look-alike formulas, see [3,4].

C. Pseudo-orbit expansions in terms of determinants

In the previous sections, we have expressed the character-
istic polynomial PU (z) and related expressions in terms of the
determinants d� . Before we turn to express the density of states
or spectral correlation functions in a similar fashion, we will
consider how the identity (11) can be interpreted in a periodic
orbit language. To this end, we briefly explain what we mean by
a “periodic orbit” in terms of a finite matrix and introduce some
related notation. Analogous finite pseudo-orbit expansions in
terms of short orbits have recently been discussed considering
relation (5) in the context of quantum graphs [8]. We stress
here expansions in terms of subdeterminants which together
with Eq. (11) give compact expressions for spectral quantities
in terms of short periodic orbits.

1. Periodic orbit representations

In the present setting of a unitary N × N matrix a
periodic orbit p = i1, . . . ,in of (topological) length |p| = n

is a sequence of n integers im ∈ {1,2, . . . ,N} where cyclic
permutations are identified, e.g., 134 = 341. One should think
of a periodic orbit as a set of indices of the matrix U that
are visited in a periodic way. Note that by the term “periodic
orbit,” we do not yet refer to classical orbits in the sense of
a continuous classical dynamics, but to products of elements
of U with the indices forming a cycle. When considering
quantum graphs in Sec. III C these “periodic orbits” can then
indeed be identified with the periodic orbits on the graph. A
primitive periodic orbit is a sequence p = i1, . . . ,in which is
not a repetition of a shorter sequence. If p is not primitive we
denote its repetitions number by rp. An irreducible periodic
orbit never returns to the same index, that is, all im are different;
the length of an irreducible orbit is at most N . We also define
the (quantum) amplitude

tp =
n∏

m=1

Uim+1im (15)

of a periodic orbit. If p is not irreducible one may write its
amplitude as a product of amplitudes of irreducible orbits, for
instance, t1213 = t12t13.

A pseudo-orbit γ = p
m1
1 p

m2
2 , . . . ,pmn

n with nonnegative
integers ml is a formal Abelian product of periodic orbits pl

with length |γ | = ∑
l ml|pl| and amplitude tγ = ∏

l t
ml
pl

. We
will say that a pseudo-orbit is completely reduced if it is a
formal product of irreducible orbits and irreducible if all ml

are either one or zero and if any given index appears at most
in one pl with ml = 1.

These definitions allow us to write the trace tr Un =∑
p:|p|=n

n
rp

tp as a sum over amplitudes of periodic orbits

of length n. Using log det(1 − e−iθU ) = tr log(1 − e−iθU ) in
Eq. (10) and expanding the logarithm one arrives at the trace
formula

ρ(θ ) = N

2π
− 1

π

d

dθ

∑
p∈P

∞∑
r=1

1

r
trpe−ir|p|θ , (16)
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where the sum over p extends over the set of all primitive orbits
denoted by P , and the additional sum is over all repetitions.
Here, like in Eq. (10), it is always understood that θ ≡ θ − iε

and the limit ε → 0 is taken.
Performing the sum over repetitions in the trace formula

shows that it is equivalent to an Euler-product-type expansion

ζU (θ ) =
∏
p∈P

(1 − tpe−i|p|θ ) . (17)

Note that this is an infinite product (which converges for
ε > ln N ) and analytical continuation is necessary to move
back to the axis ε = 0. Such an analytic continuation is, of
course, given by the expression (6), which is by definition a
finite polynomial in z = e−iθ . Strong correlations between the
amplitudes of long and short periodic orbits have to exist to
reconcile both expressions. Indeed, large cancellations can be
shown to exist by expanding the product (17) and ordering
the terms with increasing orbit length such as in the cycle
expansion proposed in [2]. After expressing amplitudes of
reducible (arbitrarily long) orbits as product of amplitudes of
irreducible (and thus short) orbits, the cancellation mechanism
emerges [6,7].

Revisiting Eq. (7) and observing that each determinant d�

can indeed be written as a sum of |�|! irreducible pseudo-orbits
γ of length |γ | = |�|, we obtain

d� =
∑
γ∈P�

(−1)σγ +1tγ . (18)

Here, P� is the set of all irreducible pseudo-orbits which cover
the set � completely, that is, which visit each index in �

exactly once. There is a one-to-one correspondence between
these irreducible pseudo-orbits and permutations. Indeed any
permutation of symbols in � can be written uniquely as
a product of cycles such that each symbol appears exactly
once (up to the ordering of the cycles which is irrelevant as
they commute). Each such product of cycles, that is, each
irreducible pseudo-orbit, defines a unique permutation. We
denote the number of cycles (irreducible orbits) that make up
a given pseudo-orbit γ as σγ such that (−1)σγ +1 gives the
parity of the permutation.

2. Interpretation of the identity (11) in terms of periodic orbits

Everything said in the previous subsection is valid for
general, not necessarily unitary matrices. Unitarity leads to
further nontrivial relations between the amplitudes of short
and long orbits such as the functional equation (4) resulting
in the relation (5) for the coefficients of the characteristic
polynomial which can in turn be written in terms of orbits.

In Sec. II B, we showed that there is a much more detailed
link between subdeterminants and thus between orbits. The
identity (11), d� = eiφd∗

�̂
, also provides a connection between

short and long orbits, but it has in addition an interesting
interpretation in terms of linking irreducible pseudo-orbits in
different parts of “phase space.” � and its complement �̂

are by definition disjoint and its union forms the whole set
I = {1,2, . . . ,N}. As stated in Eq. (18), d�,d∗

�̂
consist of all

irreducible orbits and pseudo-orbits which completely cover
the set �, �̂, respectively (passing through every index in
each of the sets exactly once). The relation (11) thus implies

that the sum over all irreducible pseudo-orbits that cover � is
equivalent in weight to the sum over all irreducible pseudo-
orbits that cover its complement �̂. The two contributions from
the pseudo-orbits in � and the complement �̂ yield together a
real term in the spectral determinant, as the contributions from
� and �̂ are complex conjugated to each other up to a global
phase.

The statements up to now refer to unitary quantum maps
with the “periodic orbits” obtained from products of elements
of U with indices occurring in a periodic manner. Given the
close relationship between unitary matrices and quantum maps
on the one hand and continuous quantum systems on the other
hand, we think that this finding has far reaching consequences.
For continuous dynamics, expressions for spectral quantities
in terms of classical periodic orbits in phase space exist that
are asymptotically valid in the limit h̄ → 0. The relation
(11) suggests that the semiclassical weights associated with
periodic orbits and pseudo-orbits of classical maps and flows
are spatially correlated at all levels. In particular, summing over
all orbits associated with a given subset of the full phase space
should yield a total amplitude which is equal to the contribution
from the orbits in the complement and both contributions are
phase related. To make this connection more clear we will
consider quantum graphs in Sec. III C where the products of
matrix elements of U yield directly expansions in terms of
periodic orbits on the graph. Here the periodic-orbit expansions
are exact, in contrast to the ones for continuous dynamics.

3. Density of states and Newton identities

We will now consider the density of states and show
that it can be expressed in terms of completely reduced
pseudo-orbits. Equivalently, one can write it as a sum over
products of subdeterminants d� . The latter form has the
advantage that these expressions keep track of the relation (11)
between individual determinants which is lost on the level of
pseudo-orbit sums.

Making use of Eq. (10), we would like to express log ζU in
terms of subdeterminants. We do this by exploiting the identity

− log(1 − x) = 1

2π

∞∑
n=1

(n − 1)!
∫ 2π

0
eiαn+xe−iα

dα , (19)

which formally requires x < 1. Note for the derivation of
Eq. (19) that performing the α integral on the right-hand side
yields the Taylor expansion of the logarithm. Setting 1 − x =∑

� d�e−i(θ+π)|�| and using Eq. (7), we formally obtain log ζU

on the left-hand side of Eq. (19). After expanding out the
exponentials, interchanging the integration and summations,
and carrying out the integration over α, one obtains

log ζU (θ ) = −
∑

m:|m|>0

(|m| − 1)!e−i(θ+π)|m�|−iπ |m| ∏
j

d
mj

�j

mj !
.

(20)

Here m = (m1, . . . ,m2N −1) is a tuple of 2N − 1 nonnega-
tive integers and �1, . . . ,�2N −1 is some enumeration of all
nonempty subsets � ⊂ I. The integer mj is the multiplicity
of that subset �j in one contribution to Eq. (20). We have

also introduced the notations |m| = ∑2N −1
j=1 mj and |m�| =∑2N−1

j=1 mj |�j |. Note that an analogous equation to Eq. (20)
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can be given either in a coarser way in terms of coefficients an

or in a more detailed way in terms of products of irreducible
pseudo-orbits. The expression in terms of the determinants d�

is the most detailed one in which the relation (11) between the
long and short orbits remains explicit.

Before moving on to the density of states let us consider the
well-known expansion − log ζU (θ ) = ∑∞

n=1
1
n
e−iθn tr Un and

compare the coefficients of e−iθn with the corresponding ones
in Eq. (20). This gives us a direct way to express the nth trace
in terms of the subdeterminants d� , that is,

tr Un = n(−1)n
∑

m:|m�|=n

(|m| − 1)!

×
2N −1∏
j=1

( − d�j

)mj

mj !
. (21)

This formula is reminiscent of the well-known Newton
identities that express the traces of powers of a square matrix
in terms of the coefficients of the characteristic polynomial,
see, for example, [16]. Indeed, as mentioned above, there is
an expression of the form (20) in terms of the coefficients an

instead of the d� . The corresponding derivation of the traces
leads to the Newton identities. In Eq. (21), we have in fact
derived a more detailed identity; it allows us to express the
(arbitrarily long) periodic orbits that add up to the traces tr Un

explicitly in terms of pseudo-orbits of length smaller than the
matrix size N . Furthermore, using Eq. (11), one has an explicit
expression of traces of any power in terms of pseudo-orbits of
maximal length N/2. Ordering the sequence (�1, . . . ,�2N −1)
such that it is nondecreasing in length, then

tr Un = n(−1)n
∑

m:|m�|=n

(|m| − 1)!
2N−1−1∏

j=1

( − d�j

)mj

mj !

×
2N −1∏

j=2N−1

( − d∗
�̂j

eiφ
)mj

mj !
(22)

gives the nth trace in terms of the contributions which can be
computed from irreducible orbits of length smaller than N/2.
In the following it will always be understood that products of
the form appearing in Eq. (21) may be expressed analogously
to Eq. (22) in terms of short orbits.

Eventually the density of states follows directly from
Eq. (20):

ρ(θ ) = N

2π
− Im

∑
m:|m|>0

(|m| − 1)!
|m�|

π
e−i(θ+π)|m�|−iπ |m|

×
∏
j

d
mj

�j

mj !
. (23)

III. SPECTRAL FLUCTUATIONS IN TERMS OF
SUBDETERMINANTS AND SHORT ORBITS

There is a wide variety of measures for spectral fluctuations
which have been considered in the past. We will focus here
on expressing spectral measures in terms of subdeterminants
and show how the relation (11) can be used to understand
the contributions of long orbits. We will in particular consider

ensembles of unitary matrices where the ensemble average
corresponds to an average over system parameters or disorder.
In Sec. III C we will also discuss applications which only
involve a spectral average for a fixed physical system.

A. Spectral fluctuations

For a given ensemble of unitary matrices we denote the
ensemble average of some quantity f (U ) by 〈f (U )〉U . In the
following, we will consider cross-correlation or autocorre-
lation functions for the spectral determinant, the density of
states, and other quantities. We start by giving some general
definitions.

1. Autocorrelation function of the spectral determinant

This autocorrelation function has previously been consid-
ered from an RMT perspective in [17,18] and semiclassically
in diagonal approximation [18–20] and beyond [21]. It is
defined in terms of Z(θ ) given in Eq. (8) as

A =
〈

1

2π

∫
dθ ZU

(
θ + sπ

N

)
ZU

(
θ − sπ

N

)〉
U

= eisπ

N∑
n=0

〈|an|2〉Ue−i 2πsn
N . (24)

In particular, A(s) is the generating function for the variance
〈|an|2〉 of the coefficients of the characteristic polynomial.
Note that |an|2 = |aN−n|2 ensures that A(s) is a real function.
In terms of the subdeterminants we find

〈|an|2〉 =
∑

�,�′:|�|=|�′ |=n

〈d�d∗
�′ 〉U . (25)

We will show below that this reduces to the diagonal sum
� = �′ for some specific ensembles.

2. Parametric cross correlation for the spectral determinant

Here we use explicitly the more detailed character of
the identity (11) compared to the one given in Eq. (5) by
considering a spatially inhomogeneous perturbation acting on
different contributions to the spectral determinant of the same
length in a different manner. Let U be a fixed unitary matrix and
define Uτ := eiτPvU where τ is a real parameter and Pv is the
projector onto the vth basis state; the corresponding matrix is
zero everywhere apart from one unit entry at the vth diagonal
position. Physically one may think of the parameter τ as a
variation of a local magnetic field. Denoting the corresponding
coefficients of the characteristic polynomial as

an(τ ) =
∑

�:|�|=n,

v /∈�

d� + eiτ
∑

�:|�|=n,

v∈�

d� , (26)

we consider the following parametric correlation function for
the spectral determinant:

B(τ ) =
〈

1

2π

∫
dθ ZU (τ ) (θ ) ZU (θ )

〉
U

= e−iτ/2
N∑

n=0

〈an(τ )an(0)∗〉U . (27)
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The above expression reduces the problem to the para-
metric correlations of the coefficients an(τ ) which can be
expressed as

〈an(τ )an(0)∗〉U

=
∑

�′:|�′ |=n

⎛
⎜⎝ ∑

�:|�|=n,

v /∈�

〈d�d∗
�′ 〉 + eiτ

∑
�:|�|=n,

v∈�

〈d�d∗
�′ 〉

⎞
⎟⎠ . (28)

The two inner sums are here restricted to sets � of size |�| = n

such that the marked vth basis state is not in � for the first
inner sum and the marked basis state is an element of � for
the second inner sum. The outer sum over �′ is only restricted
by |�′| = n.

For the quantity B(τ ) we can now reduce the number of
terms to n � N/2 by using the relation d�(τ ) = ei(φ+τ )d∗

�̂
(τ ),

Eq. (11). Note that the relation for the an in Eq. (5) would not
be sufficient here, as the different components contributing to
an are exposed to different magnetic fields.

3. Spectral two-point correlation function and the form factor

The spectral two-point correlation function is defined as

R2(s) := �
2
〈

1

2π

∫ 2π

0
dθρ(θ + �s/2)ρ(θ − �s/2)

〉
U

− 1,

(29)

where � = ( 1
2π

∫ 2π

0 ρ(θ ))−1 = 2π/N is the mean spacing
between eigenphases. Expanding the density of states in terms
of traces and performing the integral over θ , one obtains the
standard expression

R2(s) = 2

N

∞∑
n=1

cos

(
s

2πn

N

)
Kn , (30)

where

Kn = 1

N
〈| tr Un|2〉U (31)

is known as the form factor. The form factor played an
important role in understanding the universal and nonuniversal
aspects of spectral statistics; here we give a new representation
in terms of the subdeterminants, that is,

Kn = n2

N

∑
m,m′:|m�|=|m′�|=n

×
〈
(|m| − 1)!(|m′|−1)!

2N −1∏
j=1

( − d�j

)mj
( − d∗

�′
j

)m′
j

mj !m′
j !

〉
U

.

(32)

This is an exact expression for the form factor for any ensemble
of unitary matrices. We will show below that for some standard
models, the double sum over multiplicities m and m′ can be
restricted further.

B. Random-matrix theory

Let us now consider unitary N × N matrices U which
are distributed according to the circular unitary ensemble
(CUE); in other words U has a uniform distribution with

respect to the Haar measure on the unitary group U (N ). The
spectral fluctuations of this ensemble are very well understood
with explicit results for a large number of relevant measures.
These known results have many implications for the statistical
properties of the subdeterminants.

One obtains, for instance, for the correlations of the
coefficients an of the characteristic polynomial [17]

〈ana
∗
n′ 〉CUE = δnn′ , 〈anan′ 〉CUE = 0 ; (33)

it is straightforward to extend this result to the correlations
between subdeterminants. Indeed, any average over CUE is
necessarily invariant with respect to conjugation, left multipli-
cation, and right multiplication, that is, U �→ V UV †,V U,UV

with a unitary matrix V . As relation (33) has to hold also for
every transformed U , we can choose V diagonal and get

〈d�d�′ 〉CUE = 0 (34)

and

〈d�d∗
�′ 〉CUE = δ��′c� . (35)

Note that ∑
�:|�|=n

c� = 〈|an|2〉CUE = 1, (36)

where the sum extends over ( N
n ) contributions. Moreover, if �

and �′ have the same size, that is, |�| = |�′| = n, invariance
of the ensemble average under conjugation with a permutation
matrix implies

c� = c�′ ≡ cn, cn =
(

N

n

)−1

. (37)

Let us now consider the parametric correlation B(τ ) defined
in Eq. (27). Note that it will not depend on the marked basis
state, as the double sum over � and �′ in Eq. (28) only contains
diagonal expressions after the CUE average. Moreover among
the ( N

n ) subsets � of a given size |�| = n > 0 there are ( N − 1
n − 1 )

subsets which contain the marked basis state and all give the
same contribution such that

〈an(τ )a∗
n〉CUE = neiτ + N − n

N
(38)

and

B(τ )CUE = (N + 1) cos(τ/2) . (39)

Let us finally look at the form factor; the CUE result is

Kn,CUE =
{

n/N if n � N,

1 if n > N.
(40)

We may compare this to the CUE average of the form factor
expressed in terms of subdeterminants (32). The invariance
of the CUE ensemble with respect to group multiplication and
unitary conjugation restricts the double sum over multiplicities
m and m′ in Eq. (32). For example, invariance with respect to
multiplication with diagonal unitary matrices implies that only
those pairs can survive, for which the corresponding product

of subdeterminants
∏2N −1

j=1 d
mj

�j
and

∏2N −1
j=1 d

m′
j

�j
visit each basis

state with the same multiplicity; here, the multiplicity of a
basis state is the number of times a given index appears
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in any pseudo-orbit of the product
∏

j d
mj

�j
. Note that this

does not imply mj = m′
j as there may be many choices

for the multiplicities mj of the subsets �j that result in the
same multiplicities of a basis state. Comparing the resulting
expression with the exact CUE result (40) one may obtain a
large set of identities that have to be obeyed by the correlations
among the subdeterminants.

C. Quantum graphs

1. Star graphs: An introduction

A quantum graph is a model for a quantum particle that is
confined to a metric graph. To keep the discussion simple we
will only discuss star graphs which consist of one central vertex
and N peripheral vertices. Each peripheral vertex is connected
to the center by a bond (or edge) of finite length 0 < Lb < ∞.
By L = diag(L1, . . . ,LN ) we denote the diagonal matrix that
contains the lengths on its diagonal. On a given bond b we
denote by xb ∈ (0,Lb) the distance from the central vertex. A
scalar wave function on the graph is a collection of N complex
(square-integrable) functions �(x) = [ψ1(x1), . . . ,ψN (xN )].
The wave function is required to solve the free stationary
Schrödinger equation on each bond, at given energy E = k2.
This implies ψb(xb) = ab(eikxb + e−ikxb+2ikLb ), where ab is
the amplitude of the outgoing wave from the central vertex
and we have imposed Neumann boundary conditions at the
peripheral vertices (at xb = Lb). The matching conditions at
the central vertex are given in terms of a unitary N × N

scattering matrix S which relates the amplitudes ab of outgoing
waves to the amplitudes abe

2ikLb of incoming waves by
ab = ∑

b′ Sbb′e2ikLb′ ab′ . Equivalently

a = U (k)a (41)

for the quantum map

U (k) = T (k)S, where T (k) = e2ikL . (42)

This implies that the evolution resulting from U (k) consists
of scattering events at the vertices and free evolution on the
connecting bonds. This propagation can thus be described
by the paths on the graph and the spectral quantities can be
expressed in terms of sums over pseudo-orbits. In contrast
to systems with continuous dynamics, the spectral quantities
describing graphs possess exact expressions in terms of
periodic orbits. This can be understood by following our
derivation of expressions for spectral quantities in terms of
U (k). The condition (41) is only satisfied at discrete values of
the wave number which form the (wave number) spectrum
of the graph. As a side remark, let us also note that the
above-defined quantum map for a star graph also describes
the quantum evolution on directed graphs with first-order
(Dirac-type) wave operators and bond lengths 2Lb [19]. A
more general quantum graph requires a description in terms of
a 2N × 2N matrix [13].

The spectra of quantum graphs and the spectra of the asso-
ciated unitary quantum maps U (k) have formed a paradigm
of quantum chaos due to the conceptual simplicity of the
models. In fact, both types of spectra are to a large extent
equivalent [22], and we will focus the present discussion on
the spectrum of the quantum map U (k). It can be considered

as an ensemble of unitary matrices parametrized by k. The
corresponding average will be denoted by

〈F [U (k)]〉k = lim
K→∞

1

K

∫ K

0
dkF [U (k)] . (43)

Note that the wave number k enters the quantum map U (k) =
T (k)S only through the diagonal factor T (k) = e2iLk .

The sets � ⊂ I in this model are one-to-one related to
the subgraphs spanned by the corresponding bonds. The
subdeterminants d� of U (k) can thus be written as

d� = eikL� d̃�, (44)

where L� = 2
∑

b∈� Lb is twice the metric length of the
subgraph connected to � and d̃� = det S� is the corresponding
subdeterminant of the scattering matrix S. A generic choice of
lengths Lb implies that the lengths are rationally independent
(incommensurate), which will be assumed in the following.
Incommensurability implies that 〈eik

∑N
b=1 mbLb〉k does vanish

except for mb = 0 for all b = 1, . . . ,N .

2. Results for general star graphs

It is straightforward to implement the averages for the
spectral fluctuation measures introduced in Sec. III A. Let us
start with the variance of the coefficients of the characteristic
polynomial, Eq. (25), which build up the autocorrelation
function A(s). Due to the difference in the metric lengths of the
corresponding subgraphs only diagonal entries in the double
sum of Eq. (25) survive the average, that is,

〈|an|2〉k =
∑

�:|�|=n

|d̃�|2 . (45)

Note that the expression cannot reduce further due to av-
eraging. Contributions from different sets � contain orbits
of different length, so nondiagonal contributions made up of
products of orbits from different subgraphs � do not survive
the average; the orbits and pseudo-orbits contained in d̃� cover
the same subgraph �, and thus have all the same lengths [23].
In full analogy, we find

〈an(τ )an(0)∗〉k =
∑

�:|�|=n,

v /∈�

|d̃�|2 + eiτ
∑

�:|�|=n,

v∈�

|d̃�|2 (46)

for the parametric correlations (28). In contrast to the CUE
result this will generally depend on the marked vth basis state.

Furthermore, for the spectral two-point correlations, the
form factor reduces to

Kn = n2

N

∑
L∈Ln

∑
m,m′ :

Lm�=Lm′�=L

(|m| − 1)!(|m′| − 1)!

×
2N −1∏
j=1

( − d̃�j

)mj
( − d̃∗

�j

)m′
j

mj !m′
j !

, (47)

where the Ln is the set of all lengths that are a sum of n

(not necessarily different) bond lengths of the graph. We have
used the short-hand notation Lm� = ∑N

j=1 mjL�j
. Note that

the equality of metric length Lm� = Lm′� implies the equality
of the topological length |m�| = |m′�| while the opposite is
not true. Equation (47) expresses the form factor as a sum over
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FIG. 1. (Color online) The two-star graph consists of one vertex
and two bonds labeled 1 and 2.

all possible metric lengths with a fixed number n of bonds
and a sum over pairs of completely reduced pseudo-orbits of
topological length n of the same metric length.

3. Two-star graph

It is instructive to work out the simplest nontrivial case
N = 2 in more detail. In this case the only choices for � are the
empty set, �1 = {1}, �2 = {2}, and �3 = {1,2} with lengths
L�1 = 2L1, L�2 = 2L2, and L�3 = 2(L1 + L2), see Fig. 1.
The zeta function can be described in terms of the subdeter-
minant d̃�1 = S11 which is just the reflection amplitude from
the first bond and the determinant d̃�3 = det S = eiφ alone;
without loss of generality we set det S = 1. The remaining
relevant subdeterminant is given by d̃�2 = S22 = d̃∗

�1
due to

Eq. (11) and det S = 1.
Let us consider how an expansion of the zeta function in

terms of the periodic orbits and pseudo-orbits as discussed in
Sec. II C would look like. By expanding the product (17) and
reordering the terms according to a cycle expansion [2], one
obtains, for example,

ζU (k)(θ ) = 1 − (t1 + t2)e−iθ − (t12 − t1t2)e−2iθ

− (t112 − t1t12 + t122 − t12t2)e−3iθ − · · · . (48)

Writing this out in terms of determinants yields instead

ζU (k)(θ ) = 1 − ei2L1k−iθ d̃{1} − ei2L2k−iθ d̃∗
{1} + ei2(L1+L2)k−2iθ

= 2ei(L1+L2)k−iθ [cos(2k(L1 + L2) − θ )

− Re(ei(L1−L2)kd̃{1})] . (49)

The cancellation of the contributions from longer pseudo-
orbits |p| > 2 appearing in the expansion, Eq. (48), becomes
obvious when writing periodic orbits as completely reduced
pseudo-orbits. For example, the contribution t122 from the
orbit {122} is exactly canceled by t12t2 from the pseudo-orbit
{12}{2} contributing just with opposite sign. By applying
this cancellation mechanism recursively, i.e., reducing the
orbits step by step, also the cancellation of contributions from
longer pseudo-orbits can be understood. A similar cancellation
argument is also used by the cycle expansion. This is, however,
different for the contributions t12 − t1t2 in Eq. (48). In this case
a reduction of the connected orbit leading to cancellation is not
possible.

The equivalence between pseudo-orbits on a subset � and
its complements can be made more explicit. The first and the
last terms in Eq. (49) resulting from the pseudo-orbits of zero
length and the length of the full graph, respectively, both have
a modulus of order 1 and yield a real contribution to ζU (k)(θ )
when the phase factor ei(L1+L2)k−iθ is taken out. The same
holds for the second and the third contributions to Eq. (49)
from the orbits on the set � = {1} and � = {2}, respectively.

Here, the identity (11) comes in to yield a real contribution (up
to an overall prefactor).

For this simple example, we can calculate the spectral mea-
sures discussed in Sec. III A explicitly. For the autocorrelation
function, Eq. (24), one obtains

A(s) = 2 cos(πs) + 2
∣∣d̃�1

∣∣2
. (50)

For the parametric correlation function, Eq. (27), we consider
U (k; τ ) = diag(eiτ ,1)U (k). One then obtains

B(τ ) = 2
(
1 + ∣∣d̃�1

∣∣2)
cos(τ/2) . (51)

Eventually, let us consider the form factor Kn for a given n as
presented in Eq. (47). It contains a sum over pairs of multiplic-
ities m = (m1,m2,m3) and m′ = (m′

1,m
′
2,m

′
3). Both sums are

restricted to have the same topological length |m�| = |m′�| =
n which implies two restrictions, namely m1 + m2 + 2m3 =
n = m′

1 + m′
2 + 2m′

3. Furthermore only pairs of multiplicities
contribute that have the same metric length Lm� = Lm′�
or L1(m1 − m′

1 + m3 − m′
3) + L2(m2 − m′

2 + m3 − m′
3) = 0.

The second of these implies m1 + m3 = m′
1 + m′

3 and m2 +
m3 = m′

2 + m′
3. Only three of these four restrictions on pairs

of orbits are independent. The form factor can then be written
as

Kn = n2

2

∑
0 � m3 � n/2
0 � m′

3 � n/2

∑
0 � m2 � n − 2m3
0 � m′

2 � n − 2m′
3

× δm2+m3,m
′
2+m′

3
(n − m3 − 1)!(n − m′

3 − 1)!

×
(

n − 2m3

m2

) (
n − 2m′

3
m′

2

)

× (−1)m3+m′
3
∣∣d̃�1

∣∣2(n−m3−m′
3)

m3!m′
3!(n − 2m3)!(n − 2m′

3)!
. (52)

Writing the Kronecker as

δm2+m3,m
′
2+m′

3
= 1

2π

∫ 2π

0
dα eiα(m2−m′

2+m3−m′
3)

makes it possible to sum over m2 and m′
2 independently. With

n−2m3∑
m2=0

eiα(m2+m3)

(
n − 2m3

m2

)
= [2 cos(α/2)]n−2m3eiαn/2

and

n−2m′
3∑

m′
2=0

e−iα(m′
2+m′

3)

(
n − 2m′

3
m′

2

)
= [2 cos(α/2)]n−2m′

3e−iαn/2,

we obtain

Kn = n2

2

∫ 2π

0
dα

∑
0 � m3 � n/2
0 � m′

3 � n/2

(
n − m3

m3

) (
n − m′

3
m′

3

)

× (−1)m3+m′
3
∣∣d̃�1

∣∣2(n−m3−m′
3)

(n − m3)
(
n − m′

3

) (
2 cos

α

2

)2(n−m3−m′
3)

.

(53)
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The sums with respect to m3 and m′
3 can be performed by

using [24]

∑
0�m3�n/2

(−1)m3

(n − m3)

(
n − m3

m3

)
x2m3

= 1

2nn
[(1 +

√
1 − 4x2)n + (1 −

√
1 − 4x2)n]. (54)

This yields for Kn

Kn = 1

4π

∫ 2π

0
dα

[ (
cos

α

2

∣∣d̃�1

∣∣ +
√

cos2
α

2

∣∣d̃�1

∣∣2 − 1

)2n

+
(

cos
α

2

∣∣d̃�1

∣∣ −
√

cos2
α

2

∣∣d̃�1

∣∣2 − 1

)2n

+ 2

]
. (55)

The constant term at the end describes the behavior for n � 1,
the other two contributions describe oscillations around the
asymptotic value Kn = 1. By taking into account that the
arguments of the square roots above are negative, we can
rewrite the expression as

Kn = 1 + 1

2π

∫ 2π

0
dα cos

[
2n arccos

(
|d̃�1 | cos

α

2

)]
. (56)

The expression in Eq. (56), which we obtained from periodic-
orbit expansions, coincides for all d̃�1 with the result obtained
in [25] starting from the eigenvalues of the quantum scattering
map. This is the first derivation of the result (56) from periodic-
orbit expressions for general d̃�1 . In [25], a derivation based on
periodic-orbit expressions was only done for |d̃�1 | = 1/

√
2.

Note that in contrast to [26] we also take into account
contributions beyond the diagonal approximation. Due to the
factor (−1)m3+m′

3 appearing in Eqs. (52) and (53) the ones with
m3 − m′

3 odd contribute with negative signs leading together
with the ones with m3 − m′

3 even to a form factor smaller than
expected in diagonal approximation; as expected it tends to
K = 1 for n → ∞.

IV. CONCLUSION

The goal of this article is two-fold. First of all, we advocate
considering subdeterminant expansions for spectral functions
and statistical measures such the density of states or various
correlation functions. This makes it possible to separate
out contributions which vanish after averaging and those
whose nondiagonal contributions survive averaging. Second,
we considered a subdeterminant identity due to unitarity
which makes it possible to give much more detailed relations
between short and long orbits on a graph than considered
before. In particular, this identity implies that contributions
to the characteristic polynomial originating from irreducible
pseudo-orbits of a certain subgraph have the same weight
as the irreducible pseudo-orbits of the complement of that
subgraph and are additionally linked through a common
phase factor. Previously, only relations between the overall
contributions from pseudo-orbits of a certain length and the
complementary length were studied. The identity leads to

simplified expressions for the characteristic polynomial, the
Newton identities and the spectral density. Furthermore, we
study the effect of this identity on spectral correlation functions
such as the autocorrelation function of the characteristic
polynomial, the parametric cross-correlation function, and the
spectral form factor.

We derive explicit expressions using subdeterminant ex-
pansions for a simple model, star graphs consisting of N

bonds connected by a single vertex. We then work out in
more detail the simplest case N = 2. The identity (11) is
essential to obtaining the behavior of correlation functions for
small energy differences or large times. It captures additional
correlations between orbits of different lengths and needs to be
taken into account when singling out correlated orbits which
survive averaging. This is especially important when spatial
inhomogeneities affect different parts of the phase space in
different ways.

In this context several potentially interesting extensions
arise. Taking the semiclassical limit on both sides of Eq. (22),
the two expressions are semiclassically not obviously identical.
The left-hand side leads to the Gutzwiller trace formula which
contains orbits of arbitrary length while the right-hand side
contains pseudo-orbits of finite length (and their repetitions).
For short orbits n � N , one may argue that the two expressions
have a semiclassically small difference, for longer orbits this
is far less obvious.

A second point concerns the exponential proliferation of the
number of orbits in the standard trace formulas. It is tamed to
a certain degree when using subdeterminants by the fact that
different contributions contribute with different signs. Thus
the subdeterminant expressions contain large fluctuations.
Understanding overall cancellations is an interesting task. For
example, the form factor for the two-star graph for large n

contains positive and negative contributions which on their
own grow as n → ∞ while their difference remains O(1) as
can be checked from the expressions for Kn given above.

The analysis of spectral correlations focused here on
the general unitary case. It would be interesting to include
the effect of self-crossings of orbits that allow for part-
ners traversing parts of the diagram in different directions.
This would capture effects arising due to time reversal
symmetry.

For graphs the supersymmetry technique gives an al-
ternative approach to obtain universal results [27]. With
supersymmetry one may derive universality under sufficiently
nice conditions, however, rigorous proofs are still not available.
The main obstacle for the supersymmetric approach seems to
be repetitions which are difficult to incorporate correctly [28].
The proposed approach may help us understanding the effect
repetitions on spectral correlation functions.
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