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The effects of time delay and rewiring probability on stochastic resonance and spatiotemporal order in
small-world neuronal networks are studied in this paper. Numerical results show that, irrespective of the pacemaker
introduced to one single neuron or all neurons of the network, the phenomenon of stochastic resonance occurs. The
time delay in the coupling process can either enhance or destroy stochastic resonance on small-world neuronal
networks. In particular, appropriately tuned delays can induce multiple stochastic resonances, which appear
intermittently at integer multiples of the oscillation period of the pacemaker. More importantly, it is found that the
small-world topology can significantly affect the stochastic resonance on excitable neuronal networks. For small
time delays, increasing the rewiring probability can largely enhance the efficiency of pacemaker-driven stochastic
resonance. We argue that the time delay and the rewiring probability both play a key role in determining the
ability of the small-world neuronal network to improve the noise-induced outreach of the localized subthreshold
pacemaker.
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I. INTRODUCTION

Noise can play a surprisingly constructive role in nonlinear
dynamical systems [1]. The most relevant example of this
fact is stochastic resonance (SR), where the response of
a nonlinear system to a weak deterministic signal can be
largely enhanced by a moderate intensity of additive noise [2].
Due to its potential applications in many different fields, the
phenomenon of stochastic resonance has been extensively
investigated in past decades [3]. For a neural system, due to
its intrinsic excitability, random perturbations acting on an
excitable steady state can typically evoke spiking responses
[4]. Noise-induced stochastic resonance in spatially extended
neuronal systems has been widely observed in many biological
experiments and numerical simulations [5]. It has been shown
both experimentally and theoretically that the ability of sensory
neurons to process weak input signals can be significantly
enhanced by adding noise to the system [6]. Furthermore,
as an extension of SR, noise-induced signal propagation in
coupled neuron systems has been thoroughly studied, and it is
found that, with the aid of noise, the signal can be effectively
transmitted between neurons [7]. It is therefore suggested that
stochastic resonance is of great importance for understanding
the weak signal detection and information propagation in
neural networks.

SR in complex neuronal networks has attracted much
attention in recent years [8]. Thereby, small-world network
has been widely used due to its potential in capturing the
characteristics of many real-world complex networks [9].
Indeed, small-world architectures have been found in several
empirical studies of structural and functional brain networks
in humans and other animals [10]. It is shown that, due to
supporting both local and distributed information process-
ing, models of neural systems with small-world topology
display enhanced signal-propagation speed, computational
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power, and synchronizability [11]. In particular, the effect
of stochastic resonance in small-world networks depends
largely on the fraction of rewired (random) links. Cao et al.
numerically studied stochastic resonance in a coupled array
of bistable oscillators with small-world connectivity, and
found that both temporal SR and spatial synchronization of
the oscillators can be considerably improved by increasing
the order of randomness of the network due to long-range
couplings [12].

While in the past the majority of scientific research dealing
with the stochastic resonance on complex neuronal networks
was devoted to the case that all constitutive neurons are
subjected to the weak external signal, recently the focus
has been shifting towards where only one neuron within the
network is exposed to the periodic forcing, i.e., pacemaker-
driven stochastic resonance [13]. Indeed, pacemaker plays
an important role in real-life systems and is vital for many
biological systems [14]. Perc first studies the stochastic
resonance on excitable small-world neuronal networks via
a pacemaker, and finds that only for intermediate coupling
strengths is the small-world topology able to enhance the
stochastic resonance [15]. Moreover, the effect of stochastic
resonance on Newman-Watts networks of Hodgkin-Huxley
neurons can be amplified via fine-tuning of the small-world
network structure, and also depends significantly on the
coupling strength among neurons and the driving frequency
of the pacemaker [16].

In biological neural systems, information transmission
delays are inevitable in intra- and interneuronal communi-
cations, mainly because of the finite speed of action potential
propagating across neuron axons, and also due to time lapses
occurring by both dendritic and synaptic processes. Delays
arising from the propagation of action potential in neuronal
systems can amount to several tens of milliseconds [17]. Thus
it is important to understand how such temporal delays affect
collective dynamics of coupled neuronal ensembles. Recently,
specific effects of time delay on qualitative and quantitative
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properties of neuronal dynamics have been reported, such as
introducing or destroying stable oscillations [18], enhancing or
suppressing synchronization between neurons [19], generating
spatiotemporal patterns [20], as well as inducing multiple
stochastic resonances [21]. Notably, it has been shown that
appropriately tuned delays can induce multiple stochastic
resonances in scale-free neuronal networks independently
of the placing of the subthreshold periodic pacemaker [21].
Most recently, Gan et al. investigated the stochastic resonance
in paced time-delayed scale-free FitzHugh-Nagumo (FHN)
neuronal networks, and found that delay-induced stochastic
multiresonances appear at every integer multiple of the
pacemaker’s oscillation period [22]. However, the effect of
information transmission delay on the stochastic resonance in
small-world neuronal networks has never been investigated so
far.

In this paper, we extend the subject by studying delay-
induced multiple stochastic resonances on excitable small-
world neuronal networks. The studied network is locally
modeled by Rulkov map-based neurons, and the topological
structure exhibits the small-world property. A subthreshold
periodic signal is introduced to one single neuron of the
network, thus acting as a pacemaker trying to impose its
rhythm on the whole ensemble. Moreover, the information
transmission delay is introduced into the coupling process.
We aim to investigate the dependence of stochastic resonance
and spatiotemporal order in small-world neuronal networks
on the synaptic time delay and the rewiring probability.
Accordingly, the remainder of this paper is organized as
follows. In Sec. II, we introduce the mathematical model

of the time-delayed small-world neuronal network. Main
results are presented in Sec. III, where the effects of time
delay and rewiring probability on the stochastic resonance
in small-world neuronal networks are systematically inves-
tigated. Finally, a brief conclusion of this paper is given
in Sec. IV.

II. MATHEMATICAL MODEL

The map-based neuron model proposed by Rulkov
et al. [23], despite its intrinsic simplicity and low dimen-
sionality, can capture the main dynamical features of more
complex time-continuous neuronal models, but at essentially
lower computational costs, thus allowing detailed analysis of
the dynamics of large ensembles [24]. In the present study,
we use the two-dimensional map to simulate the dynamics
of individual neuron in the small-world network. Then, the
temporal evolution of each unit can be described by the
following set of discrete equations:

xi(n + 1) = α

1 + x2
i (n)

+ yi(n) + σξi(n)

+D

N∑
j=1

εi,j [xj (n − τ ) − xi(n)], (1)

yi(n + 1) = yi(n) − βxi(n) − γ, (2)

where xi(n) is the fast dynamical variable of the map,
representing the membrane potential of the ith neuron, and
yi(n) is the slow dynamical variable of the map, denoting
the slow gating process. n is the discrete time index. The

FIG. 1. Spatiotemporal patterns (left panel) and mean-field activity (right panel) of the small-world neuronal network obtained for different
noise intensity σ . (a) σ = 0.006, (b) σ = 0.01, (c) σ = 0.025, (d) σ = 0.06, and (e) σ = 0.085. The color coding is linear, white depicting 0.1
and black depicting −1.7 values of xi(n).
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slow temporal evolution of yi(n) is due to the small values
of parameters β = γ = 0.001, while α is the main param-
eter determining the dynamics of individual neurons. For
α > 2, the fast variable xi(n) can exhibit spiking-bursting
activity, whereas if α < 2, each unit is governed by a
single excitable steady state (x∗ = −1,y∗ = −1 − α/2) that
can be derived analytically by setting x(n) = x(n + 1) and
y(n) = y(n + 1) in an individual map. Here, we set α =
1.95; each neuron thus occupies the excitable steady state
(x∗,y∗) = (−1,−1.995), which are also the initial conditions
we will use in all subsequent calculations. σ 2 is the variance
of Gaussian noise satisfying 〈ξi(n)〉 = 0 and 〈ξi(n)ξj (m)〉 =
δij δnm. Hence the parameter σ determines the noise intensity.
D is the coupling strength between coupled neurons. The
matrix ε = (εi,j ) is a connectivity matrix for the small-world
network: εi,j = 1 if neuron i is connected to neuron j ,
εi,j = 0 otherwise, and εi,i = 0. τ is the time delay among
neurons, which is one of the main parameters to be varied
below.

As mentioned in the Introduction, we will study delay-
induced multiple stochastic resonances in small-world neu-
ronal networks. To obtain a small-world network, we follow
the random rewiring procedure proposed by Watts and Strogatz
[9]. Starting from a ringlike network with regular connectivity
comprising N = 200 neurons, where each unit is connected
to its k = 6 nearest neighbors, we rewire each edge at random
with probability p. By increasing the probability p, the
architecture of the network is tuned between two extremes:
regular (p = 0) and random (p = 1) networks. For 0 < p < 1,
the resulting networks show small-world property. The small-
world network has a small value of characteristic path length
L, comparable with that of a random network, while gets
a large value of clustering coefficient C, comparable with
that of a regular network. According to [9], the characteristic
path length is defined as the average number of edges in the
shortest path between any two nodes, while the clustering
coefficient is the average fraction of all ki(ki − 1)/2 allowable
edges that actually exist among node i and all its ki neighbors.
The rewiring probability p is another main parameter to be
investigated in this paper.

Finally, we introduce the subthreshold periodic driving
I ext(n), which takes the form of a pulse train defined
as

I ext(n) =
{

h if (n mod t) � (t − w),

0 otherwise,
(3)

where the parameter t is the oscillation period of the pulse
train, w is the width of each pulse, and h is the amplitude of the
pulses. Here, I ext(n) acts as a pacemaker, which is added addi-
tively to the fast variable of a single neuron within the small-
world network. In fact, this kind of driving signal has been
widely used to study pacemaker-driven stochastic resonance
in scale-free and small-world neuronal networks [15,21]. In
our numerical simulations we choose the parameter values
to be h = 0.0015, w = 50, and t = 700, which guarantee that
without the introduction of noise (σ= 0) the pacemaker I ext(n)
is subthreshold, meaning that it cannot by itself induce large-
amplitude spikes from any of the excitable neurons. It’s worth
noting that the frequency of the subthreshold periodic signal
used here is identical to the global-resonance frequency [25]

of individual map-based neurons constituting the small-world
network.

In order to quantitatively characterize the correlation of
temporal output of the small-world neuronal network with the
driving frequency of the pacemaker ω, we calculate the Fourier
coefficient Q, which is defined as

Qsin = 1

T t

T t∑
n=1

2X(n) sin(ωn), (4)

Qcos = 1

T t

T t∑
n=1

2X(n) cos(ωn), (5)

Q =
√

Q2
sin + Q2

cos, (6)

where T t is the operation period of the pacemaker, ω = 2π/t is
the frequency of the pulse train, and X(n) = (1/N)

∑N
i=1 xi(n)

is mean-field activity of the network. In the following,
for each set of parameter values, the variable xi(n) is
recorded for T = 300 periods of the pacemaker, and the
final results are obtained by averaging over 20 indepen-
dent runs to warrant appropriate statistical accuracy with

FIG. 2. (a) Dependence of Q on the noisy intensity σ for different
placing of the pacemaker, which is respectively introduced to one
randomly selected neuron within the network (circles), all neurons of
the network (squares), and an individual neuron (diamonds), τ = 0,
and D = 0.005. (b) Dependence of Q on the noise intensity σ and the
coupling strength D when the pacemaker is introduced to one single
neuron within the small-world network, τ = 0.

052917-3



YU, WANG, DU, DENG, WEI, AND LIU PHYSICAL REVIEW E 87, 052917 (2013)

respect to the small-world network generation and numerical
stimulation.

III. RESULTS

To investigate the effect of synaptic time delay on
the stochastic resonance in small-world neuronal networks,
we first set the rewiring probability p = 0.1. In this case,
the clustering coefficient of the network is C = 0.48 and the
characteristic path length is L = 4.17. For p = 1, they would
take on the values C = 0.022 and L = 3.75, while for p =
0, they would be C = 0.6 and L = 17.08. Hence we get a
small-world network with p = 0.1.

First, we set τ = 0, i.e., there is no time delay between neu-
rons, and introduce the pacemaker to one randomly selected
neuron within the small-world network. Figure 1 shows the
spatiotemporal patterns observed on the network for different
values of noise intensity σ . It can be seen that the temporal
dynamics of each excitable neuron follows the rhythm of the
subthreshold pacemaker optimally only by an intermediate
noise intensity σ = 0.025 [Fig. 1(c)]. The dependence of Q

on the input noise intensity σ is shown in Fig. 2(a). It can be
observed that the value of Q exhibits a bell-shaped dependence
on σ , indicating that there exists an optimal noise intensity by
which Q is maximal, i.e., the temporal coherence between

FIG. 3. (a) Dependence of Var(X) on the noisy intensity σ ,
X(n) = (1/N )

∑N

i=1 xi(n). (b) Dependence of Q on the noisy
intensity σ , X(n) = (1/N )

∑N

i=1 x2
i (n).

the temporal output series of each excitable neurons and the
driving frequency of the pacemaker ω achieves an optimum.
Thus it confirms the existence of stochastic resonance in the
studied small-world neuronal network without delay, whereby
the pacemaker can successfully impose its rhythm on the whole
ensemble, as demonstrated in Ref. [15].

However, when the pacemaker is imposed on all neurons
of the small-world network, the maximal Q value decreases
[Fig. 2(a)], implying that the phenomenon of stochastic
resonance become less efficient, just like in scale-free neuronal
networks [21]. This mainly results from the competition
between excitations from external forcing and synaptic inputs
between coupled neurons. Moreover, SR can also occur in an
individual neuron with the same external excitation, but for
higher noise level compared with the same neuron coupled to
the network, because of the lack of excitatory synaptic currents
from other neurons.

Figure 2(b) plots the dependence of Q on the noise intensity
σ and the coupling strength D between neurons. It can be seen
that the stochastic resonance phenomenon arises irrespective
of the value of D, but the optimal value of σ shifts towards
higher values with the increase of coupling strength. Similar
results are also obtained when other individual neuron or all
neurons are subject to the weak periodic forcing. Thus we
can conclude that pacemaker-driven stochastic resonance on
the small-world neuronal network occurs independently of the
placing of the pacemaker. Moreover, one single paced neuron

FIG. 4. Spatiotemporal patterns of the small-world neuronal
network obtained for different time delay τ . From top to bottom,
τ is equal to (a) 0, (b) 300, (c) 700, (d) 1000, (e) 1400, and (f) 1800.
The noise intensity is σ = 0.025. The color profile in each plot is the
same as in Fig. 2.
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FIG. 5. Dependence of Q on the delay τ for different noise
intensity σ , D = 0.005.

is actually more effective in generating ordered excitatory
fronts in accordance with the weakly imposed rhythm than the
global forcing of the whole network. Indeed, global input is not
common in real neuronal systems, and local input is far more
likely. In particular, for neural systems with a large amount
of neurons, it is unnecessary and impossible to add external
signals to all the involved individuals. Only weak and local
input is reasonable, guaranteeing low energy consumption and
efficiency in large neuronal networks [21]. Hence, in what
follows, we focus on the case of only one single neuron within
the small-world network chosen as the input for the weak
periodic forcing.

In this paper, the mean field of the network is used to
describe the average activity of all neurons. From Fig. 1, we can
see that the synchronous and regular state of neural networks
is characterized by large-amplitude periodic oscillations of
the mean field, whereas small-amplitude irregular fluctua-
tions mark the absence of spatiotemporal order of neuronal
activity. So the variance of mean-field oscillations Var(X) is a
quantitative measure of collective temporal coherence of the
system. Figure 3(a) shows the dependence of Var(X) on the
noise intensity σ . It can be observed that the largest value
of Var(X), characterizing the most regular and synchronous
activity of the network, is obtained by σ = 0.025, which is
equal to the resonance noise intensity. Moreover, we can also
define the network response as X(n) = (1/N )

∑N
i=1 x2

i (n). It

FIG. 6. Contour plot of Q in dependence on the time delay τ and
the noise intensity σ .

does not change the behavior of the neural system, except the
resonance peak values [Fig. 3(b)]. Besides, the signal-to-noise
ratio is also frequently used as a measure for stochastic
resonance. According to [26], the Fourier coefficients are
exactly proportional to the square of the spectral power
amplification; then the signal-to-noise ratio S can exhibit the
same resonant behavior as Q.

In the following, we examine the effect of time delay
on the stochastic resonance in the small-world neuronal
network. Figure 4 shows the space-time plots of the network
obtained for different values of τ . Here, we fix the coupling
strength as D = 0.005 and the noise intensity σ = 0.025.
Clearly, the information transmission delay can drastically
influence the system’s behavior, and spatiotemporal patterns

FIG. 7. Contour plots of Q in dependence on the noise intensity σ

and the rewiring probability p for different time delay τ , D = 0.005.
(a) τ = 0, (b) τ = 700, and (c) τ = 1400.
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FIG. 8. (Color online) (a) Dependence of Q on the noise intensity
σ for different time delay τ . (b) Dependence of Q on the rewiring
probability p for different time delay τ .

of regularity and disorder appear intermittently as the delay
τ increases. In particular, for τ = 0, τ = 700, and τ = 1400
the excitatory fronts of neuronal dynamics are periodically
ordered and follow the rhythm of the pacemaker, while for
τ = 300, τ = 1000, and τ = 1800, the regularity of excitatory
fronts is completely collapsed, and neuronal firings lose
consistency with the forcing frequency ω. These observations

FIG. 9. Contour plot of Q in dependence on the time delay τ and
the noise intensity σ .

demonstrate that the time delay can either enhance or destroy
the ordered periodic fronts of neuronal excitations on small-
world networks. In particular, the delay-induced transitions to
stochastic resonance of neuronal activity appear intermittently
as the delay time increases.

Figure 5 plots the dependence of Q on τ for different
noise intensity σ . It can be seen that, as the delay increases,
three maxima of Q appear at τ = 0, τ = 700, and τ = 1400
for σ = 0.025, corresponding to the spatiotemporally ordered
patterns shown by Figs. 4(a), 4(c), and 4(e), respectively. For
other σ , we can also observe several maxima of Q within the
considered range of time delay, but with small amplitudes.
The dependence of Q on the time delay τ and the noise
intensity σ is shown in Fig. 6. Evidently, there exists some
narrow-banded regions with high values of Q, indicating
multiple stochastic resonances occurring in the time-delayed

FIG. 10. Contour plots of Q in dependence on the noise intensity
σ and the rewiring probability p for different time delay τ ,
D = 0.015. (a) τ = 0, (b) τ = 700, and (c) τ = 1400.
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small-world neuronal network. Moreover, all these resonance
regions are roughly located at the integer multiples of the
forcing period of the pacemaker. Indeed, the delay-induced
multiple stochastic resonances of neuronal activity are due to
the locking between the delay time and the global-resonant
oscillation period of individual neurons if the latter is close to
the oscillation period of the pacemaker [21].

To gain more insight into the dependence of delay-induced
stochastic resonance in small-world neuronal networks on the
rewiring probability, we plot the dependence of Q on both σ

and p for different values of τ . Results presented in Fig. 7 show
several interesting features. First, it is evident that stochastic
resonance occurs for each particular value of p when the time
delay is identical to integer multiples of the oscillation period
of the pacemaker. Moreover, the spans of noise intensities
that warrant relatively high values of Q largely extend as τ

increases [Fig. 8(a)], but change little with the increase of the
rewiring probability p. Finally, the small-world topology has
a significant effect on the stochastic resonance in small-world
neuronal networks. In Fig. 8(b), we plot the variation of Q with
respect to p for different values of τ while keeping the noise
intensity σ = 0.025. Evidently, when τ = 0 the value of Q

increases rapidly with p. It is thus indicated that, for small time
delays, increasing the rewiring probability can largely enhance
the efficiency of the pacemaker-driven stochastic resonance in
small-world neuronal networks. While, for larger time delays,
such as τ = 700 and 1400, Q retains large values, which
change much less profoundly as p is varied, implying no clear
effect of small-world topology on the stochastic resonance in
neuronal networks.

At last, we explore the influence of coupling strength
between neurons on the delay-induced stochastic resonance
transitions in small-world neuronal networks. For D = 0.015,
we conduct the same investigation and find that delay-induced
multiple stochastic resonances are clearly observed at the
integer multiples of the forcing period, as shown in Fig. 9.
The dependence of Q on both σ and p for different values of
τ is presented in Fig. 10. Similarly, the spans of optimal noise
intensities σ largely extend as τ turns larger, and the value of
Q increases with the rewiring probability p more rapidly when

FIG. 11. (Color online) Dependence of Q on the rewiring
probability p for different time delay τ , σ = 0.03.

τ = 0; see Fig. 11. More interestingly, for D = 0.015, larger
σ is required for the maximal Q as p tends to 1 (Fig. 10).
Similar results are also obtained by studying the pacemaker-
driven stochastic resonance in small-world neuronal networks
without time delay [15]. We can thus conclude that both p

and τ have a nontrivial impact on the stochastic resonance in
small-world neuronal networks.

IV. CONCLUSIONS

In this paper, we investigate stochastic resonance in
small-world neuronal networks in dependence on the noise
intensity, the time delay, and the rewiring probability. The
obtained numerical results show that the phenomenon of
stochastic resonance can occur irrespective of the pacemaker
introduced to one single neuron or all neurons of the network,
i.e., an intermediate intensity of additive noise is able to
optimize the temporal response of the neural system to the
subthreshold periodic signal. It is demonstrated that the time
delay between neurons can either promote or destroy stochastic
resonance in small-world neuronal networks. Delay-induced
multiple stochastic resonances appear intermittently at the
integer multiples of the oscillation period of the pacemaker.
Furthermore, a larger time delay can always extend the
span of optimal noise intensity warranting ordered excitatory
fronts of neuronal dynamics in accordance with the rhythm
of the pacemaker. More importantly, it is found that the
small-world topology has a significant impact on the stochastic
resonance in neuronal networks. In case of small time delays,
increasing the rewiring probability can largely enhance the
efficiency of the pacemaker-driven stochastic resonance, while
for larger time delays, the variation of the rewiring probability
has little resonance effect. In sum, both time delay and
rewiring probability play an important role in the stochastic
resonance on small-world neuronal networks, determining the
ability to enhance the noise-induced outreach of the localized
subthreshold pacemaker.

For now, effects of external modulations on the steady
state of neuronal dynamics are focus issues in neuroscience.
Induced spike trains in the presence of external stimuli are
considered to be related with information processing in neural
systems. In real systems, these external modulations could
be caused by various neurotransmitters and/or by synaptic
inputs. In this paper, it has been shown that appropriately
tuned time delay in synaptic process can enhance weak
signal detection by inducing multiple stochastic resonances
on neuronal networks. Moreover, the pacemaker plays an
important role in several different organs, tissue, and certain
types of cells [14]. We thus expect the presented results could
facilitate our understanding of biological processes that rely
on an effective pacemaker for their proper functioning. We
also hope our findings have important implications for the
weak signal detection and information propagation in neural
systems.
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