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Parametrically driven extended systems exhibit dissipative localized states. Analytical solutions of these states
are characterized by a uniform phase and a bell-shaped modulus. Recently, a type of dissipative localized state with
a nonuniform phase structure has been reported: the phase shielding solitons. Using the parametrically driven
and damped nonlinear Schrödinger equation, we investigate the main properties of this kind of solution in
one and two dimensions and develop an analytical description for its structure and dynamics. Numerical
simulations are consistent with our analytical results, showing good agreement. A numerical exploration
conducted in an anisotropic ferromagnetic system in one and two dimensions indicates the presence of phase
shielding solitons. The structure of these dissipative solitons is well described also by our analytical results. The
presence of corrective higher-order terms is relevant in the description of the observed phase dynamical behavior.
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I. INTRODUCTION

Particle-type solutions or macroscopic localized states
arising in systems out of equilibrium have been observed in a
wide range of physical systems. Examples include magnetic
materials, liquid crystals, gas discharge systems, chemical
reactions, fluids, granular media, and nonlinear optics media
(see [1–3] and references therein). The variety of systems
exhibiting these solutions confers them a universal nature.
Given their particlelike properties, one can characterize them
by a family of continuous parameters such as position, ampli-
tude, and size. A prototypical model that exhibits dissipative
localized states or dissipative solitons in the quasireversible
limit—systems under the assumption of small injection and
dissipation of energy [4–8]—is the parametrically driven and
damped nonlinear Schrödinger (PDNLS) equation [9,10]

∂tψ = −iνψ − i|ψ |2ψ − i∂xxψ − μψ + γ ψ̄, (1)

where ψ(x,t) is a complex field that accounts for the envelope
of the oscillation in the system under study. The variable ψ̄

stands for the complex conjugate of ψ ; {x,t} denote the spatial
and temporal coordinates, respectively; ν is the detuning
parameter, which is proportional to the difference between
half the forcing frequency and the natural frequency of the
oscillator field; μ is the damping parameter, which accounts
for the energy dissipation processes; and γ is the amplitude of
the parametric forcing. It is important to note that Eq. (1)
describes an oscillatory focusing medium with dispersive
coupling [11] since the nonlinear and spatial coupling terms
have the same sign. For ν < 0, γ ∼ μ � 1, and μ2 < γ 2 <

ν2 + μ2, the PDNLS model admits analytical localized states
characterized by a uniform phase and a bell-like shape
for the modulus of the amplitude—uniform phase solitons
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(UPSs) [9,10]. Figure1 shows a typical dissipative soliton
in a polar coordinate representation [ψ(x,t) = R(x,t)eiϕ(x,t)]
observed in the parametrically driven and damped nonlinear
Schrödinger equation.

The PDNLS model has been derived in various physical
contexts. Indeed, the PDNLS equation can be deduced from
the amplitude equation approach in the parametrically driven
pendulum chain [12–14]. Using the same approach in the con-
text of magnetic systems for an easy-plane ferromagnetic spin
chain exposed to both a constant and a time-periodic external
magnetic field perpendicular to the hard axis, the PDNLS
equation was obtained by means of the Landau-Lifshitz-
Gilbert equation [15,16]. Additional physical scenarios where
the PDNLS model can be derived include surface waves
in vertically oscillating layers of water [17–19], localized
structures in nonlinear lattices [20], and the Kerr-type optical
parametric oscillator [21].

Recently, we have shown that the phase of dissipative
solitons exhibits an unexpected dynamical behavior in the
PDNLS equation [22]. More precisely, we have found that, for
a large range of parameters, PDNLS soliton solutions show
dynamical phase fronts that, after some transient behavior,
reach a stationary state surrounding the soliton core. Due
to its shieldlike phase structure, this type of dissipative
localized state has been denominated a phase shielding soliton
(PSS). Using the asymptotic expression for the amplitude,
valid far from the core of the soliton, we have determined
analytically the shape of the phase fronts and their dynamics.
The above analysis allows us to characterize the different type
of shieldlike structures of the phase. Performing a numerical
stability analysis and using the size of the system L as a
control parameter, we have proved that UPS solutions lose
their stability through a Andronov-Hopf bifurcation followed
by the appearance of the PSS as the stable solution of the
system.

The emergence of phase fronts on dissipative solitons repre-
sents an alternative perspective in the study of parametrically
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FIG. 1. (Color online) Modulus R(x) (red dashed line) and
phase φ(x) (blue solid line) of a UPS in the parametrically driven
and damped nonlinear Schrödinger equation with μ = 0.1000, ν =
−0.0122, γ = 0.1002, δ = 0.0185, and L = 200. Here x0 stands for
the position of the maximum of the soliton amplitude. The soliton
width and height are indicated.

driven systems. Until now, the phase of single solitons was
considered uniform in most of the aforementioned physical
systems. However, a more complete analysis could demon-
strate the existence of PSS solutions in such physical scenarios.
In the present paper we extend the analytical and numerical
studies of phase shielding solitons in one-dimensional (1D)
and 2D cases. We also analyze the appearance of PSS solutions
in an easy-plane ferromagnetic spin system in both 1D and 2D
configurations. For this purpose, we organize the paper in the
following way. In Sec. II we review the main features of the
PDNLS equation and the analytical solution of the UPS and
its stability. We then introduce the phase shielding soliton
solutions. An analytical description of PSS solutions and their
dynamics is presented. A numerical stability analysis is also
performed to establish the connection between the UPS and
PSS solutions. To show the existence of the PSS in physical
systems, we study in Sec. III an easy-plane ferromagnetic
classical spin chain exposed to an external magnetic field. The
existence, stability properties, and dynamical evolution of the
phase shielding solitons in two-dimensional extended systems
are analyzed in Sec. IV. In Sec. V we consider a physical
example of a parametrically driven system in two dimensions:
a forcing magnetic layer. We conclude with a summary in
Sec. VI.

II. DISSIPATIVE SOLITONS IN THE PDNLS MODEL
IN ONE DIMENSION

For μ = γ = 0, Eq. (1) becomes the well-known nonlinear
Schrödinger equation [23], which describes the envelope
of an oscillatory coupled system. This model is a time-
reversible Hamiltonian system with the reflection symmetry
{t → −t,ψ → ψ̄}. However, the terms proportional to the
energy dissipation μ and the injection γ break this symmetry.
The higher-order terms in Eq. (1) are ruled out by a scaling
analysis where μ � 1, ν ∼ μ ∼ γ , |ψ | ∼ μ1/2, ∂x ∼ μ1/2,
and ∂t ∼ μ1/2.

A trivial solution of Eq. (1) is the homogeneous (quiescent)
state ψ0 = 0. For ν < 0, ψ0 becomes unstable through a
subcritical stationary bifurcation at γ 2 = μ2 + ν2 (the Arnold
tongue) [11]. Inside this region the system has three uni-
form solutions ψ0 = 0, and ψ± = σ ± i

√
(μ − γ )(μ + γ )σ ,

where σ =
√

(γ − μ)(−ν +
√

γ 2 − ν2)/2γ . These three

states merge through a pitchfork bifurcation at γ 2 = μ2 + ν2

when ν > 0. However, for positive detuning, ψ0 is stable only
when γ < μ because this state exhibits a spatial instability at
γ = μ [24], which gives rise to a spatially periodic state with
a wave number kc = √

ν.

A. Solitons with constant phase

For negative detuning, the PDNLS equation exhibits local-
ized states or dissipative solitons supported asymptotically by
the quiescent state. In order to obtain the localized states, we
introduce the Madelung transformation ψ = R(x,t)eiϕ(x,t) in
Eq. (1). Separating the imaginary and real parts, we obtain the
set of equations

∂tR = 2∂xR∂xϕ + R∂xxϕ − μR + γR cos(2ϕ), (2)

∂tϕ = −ν − R2 − ∂xxR

R
+ (∂xϕ)2 − γ sin(2ϕ), (3)

where R and ϕ denote the amplitude and phase of the field
ψ , respectively. In the parameter region γ � μ and −ν ±√

γ 2 − μ2 � 0, we get nontrivial steady homoclinic solutions
of the form [9,10]

Rs(x,x0) =
√

2δ±sech(
√

δ±[x − x0]), (4)

cos(2ϕs) = μ/γ, (5)

where the parameter δ± ≡ −ν ±
√

γ 2 − μ2 and x0 stands for
the position of the maximum of the soliton, which will be
called the core of the soliton in what follows. The modulus
width and height are given by

√
2δ± and 1/

√
δ±, respectively

(see Fig. 1). Hence Eqs. (4) and (5) show that such states have
a bell-shaped modulus and a uniform phase (UPS).

Equation (5) shows that the system can generate dissipative
solitons when the injection of energy exceeds its dissipation.
As a consequence of the spatial translational invariance of
Eq. (1), the dissipative solitons constitute a family of states
parametrized by a continuous parameter x0 corresponding
to their Goldstone mode [25]. This parameter stands for the
position of the core of the localized state (see Fig. 1). In brief,
the above model admits soliton solutions in the {μ,ν,γ } region
bounded by ν < 0, μ � γ , and γ 2 < μ2 + ν2. Under these
conditions, the relation cos(2ϕs) = μ/γ admits four equilibria
in the interval [π,−π ]. As a consequence of the symmetry
ψ → −ψ of Eq. (1), if ϕs is a solution then ϕs ± π is also
a solution. Figure 2 illustrates this relation and the respective
stability regions of the different particle-type solutions. From
this figure one can infer that the localized states appear or
disappear by simultaneous saddle-node bifurcations when
the injection and dissipation of energy are equal (|γ | = μ).
The stable solutions are characterized by Re(ψ)Im(ψ)< 0
[Re(ψ)Im(ψ)> 0] for γ > 0 (γ < 0), thus both fields have
different signs when γ > 0 [15]. In contrast, the solution with
a bell-shaped modulus |ψ | [Eq. (4)] also appears through
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FIG. 2. (Color online) Schematic representation of the different stability regions (colored shadow) of dissipative solitons. The circles
represent the different solutions of cos(2ϕs) = μ/γ : closed (open) circles correspond to stable (unstable) localized states. The insets depict the
different types of dissipative solitons with μ = 0.10, γ = 0.13, ν = −0.12, and L = 200, where δ+ = 0.203 and δ− = 0.037.

a saddle-node bifurcation at γ = μ where δ± = −ν. The
solutions of Eq. (4) with δ− are unstable.

B. Phase shielding soliton

Previous works have reported additional amplitude bifur-
cations when ν is increased far from the tip of the Arnold
tongue where the maximum of |ψ | undergoes period doubling,
quasiperiodicity, and finally chaos [26]. Usually, the phase
field of the dissipative soliton state is considered uniform.
However, further numerical analysis reveals unexpected and
rich phase dynamics of single solitons in parametrically driven
systems [22], which reaches a nonuniform steady phase.

A soliton is created by slightly perturbing an initial
homogenous state. The parameters are chosen to fulfill the
conditions for the appearance of UPS solutions, i.e., ν < 0,
γ 2 < μ2 + ν2, and μ � γ . Initially, the perturbation quickly
evolves to a well-defined bell-shaped amplitude. At the
same time, the phase becomes uniform around the core of
the localized state followed by some intricate transient that
rapidly goes away from the system. The front propagation
is characterized by a rather slow motion (see Fig. 3), which
suddenly reaches a steady state. From this initial behavior a
pair of counterpropagative fronts emerges, which propagates
in a rather slow motion, reaching suddenly a steady state
(see Fig. 3). Near the soliton core, the phase takes the
value corresponding to the stable uniform soliton (UPS),
i.e, the value −ϕs or −ϕs + π . Conversely, far from the
soliton position, the asymptotic values in (−∞,∞) tend to
the unstable UPS phase values either ϕs or ϕs − π . Hence the
number of configurations is given by different combinations
of equilibrium connections (unstable-stable-unstable). There
are eight stationary configurations that connect different phase
equilibria. Figure 4 displays all the different phase shielding
solitons. These steady phase structures depend strongly on
initial conditions and are equally likely to appear in the same
region of parameters.

1. Analytical approach at dominant order

To provide an analytical background to these phase struc-
ture dynamics, we take advantage of the x → −x symmetry
of the PDNLS model [Eq. (1)]. We consider a semi-infinite
domain whose origin corresponds to the core position of the
soliton x0. Numerical results show that the phase presents a
single front that emerges at a position xf � 1/

√
δ+, where

xf represents the point with the highest spatial variation of
the phase. In the region x � 1/

√
δ+, the soliton modulus R

decays exponentially [see Fig. 6(a)].
Defining � ≡ 1/

√
δ+, which accounts for the width of the

soliton bell-shaped amplitude (see Fig. 1), we propose the

FIG. 3. (Color online) Phase propagation of the dissipative
soliton. Spatiotemporal diagram of phase ϕ(x,t) for γ = 0.123,
μ = 0.100, and ν = −0.093.
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FIG. 4. (Color online) Different phase shielding soliton states in the parametrically driven damped nonlinear Schrödinger equation with
μ = 0.10, ν = −0.12, γ = 0.14, and L = 200. The PSS states supported by the inner uniform phases −ϕs and π − ϕs are shown on the right
and left, respectively. Dashed (red) and solid (blue) lines account for the modulus and phase of the complex field ψ , respectively.

following ansatz for the modulus and the phase of the soliton:

R(x � �,x0) = 2
√

2δ+e−f (x,x0) (6)

and

ϕ(x) = ϕF (x − xf ), (7)

respectively. At dominant order, we consider f (x,x0) ≈√
δ+(x − x0). In this approximation, R(x,x0) coincides with

the asymptotic exponential decay of the stable UPS modulus.
Substituting the former ansatz in (2) and (3), we obtain two

different equations. The first one allows us to get analytically
the dominant profile of the phase front. The second one
describes the phase front dynamical behavior. Accordingly,
the phase profile is characterized by

∂xxϕF = 2
√

δ+∂xϕF + μ − γ cos(2ϕF ). (8)

Introducing the effective potential energy U (ϕF ) ≡ −μϕF +
(γ /2) sin(2ϕF ), Eq. (8) can be written as a Newton-type
equation that describes a particle moving in a tilted periodic
potential with an injection of energy proportional to the speed
∂xϕF ,

∂xxϕF = − ∂U

∂ϕF

+ 2
√

δ+∂xϕF . (9)

Hence the solutions of the above equation correspond to
stationary phase fronts. The uniform equilibrium states of
Eq. (8) coincide with the phase equilibria of cos(2ϕs) = μ/γ

in the range from −π to π . Therefore, the phase front solutions
represent heteroclinic orbits in the {ϕ,ϕx} space that interpolate
from one equilibrium to another of the Newton-type equation
(9) (see Fig. 5).

Defining the change of variable x = 2
√

δ+x ′ in Eq. (8),
we can perform an asymptotic series ϕF (x) = ϕ0 + �ϕ1(x) +
�2ϕ2(x) + · · · , with � ≡ 1/4δ � 1, which at first order has
the analytical solution

ϕF (x,xf ) ≈ ϕ0 =
⎧⎨
⎩

fsol − π for [−π,−π/2)
fsol for (−π/2,−π/2)
fsol + π for (π,π/2],

(10)

where

fsol = arctan

[√
γ ± μ

γ ∓ μ
tanh

√
γ 2 − μ2(x − xf )

2
√

δ+

]
. (11)

Note that the phase front solutions are also parametrized by
the continuous parameter xf . Figure 6 shows the numerically
computed phase front profiles, which present a difference
of 1% with respect to expression (10). If one considers
the dominant correction ϕF ≈ ϕ0 + ∂xϕ0/4

√
δ, this difference

decreases to 0.8%.
Considering the complete soliton domain, we obtain the

eighth possible shell-like configuration that we have previously
observed in numerical simulations (see Fig. 4).
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FIG. 5. (Color online) Schematic representation of the stationary
phase front structure that connects different equilibrium solutions
(A–C) of the Newton-type equation (9). The inset is a schematic
representation of the potential U (ϕF ).
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FIG. 6. (Color online) Phase propagation: (a) phase front profile considering half of the dissipative soliton and (b) spatiotemporal diagram
of the phase front obtained from Eq. (1) with γ = 0.083, ν = −0.063, and μ = 0.058. The dashed curve is the numerical solution obtained
using Eq. (17).

2. Higher-order corrections

A deeper analysis of numerical simulations reveals that PSS
solutions are composed of two qualitatively different regions:
inner and outer regions. The inner and outer regions stand for
the central and asymptotic parts of the PSS, respectively. Note
that the asymptotic phase of the PSS in the inner and outer
regions coincides with the phase of the stable and unstable
UPSs, respectively (see Fig. 4). Therefore, the PSS can be
understood as a soliton buildup by the stable (inner region)
and unstable (outer region) UPS solutions. To illustrate this
statement, Fig. 7 shows the logarithm of the PSS modulus as
a function of the space. Clearly, there is a crossover region
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FIG. 7. (Color online) Phase ϕ(x) as a function of the space (top)
and logarithm of the PSS modulus R(x) (bottom) with μ = 0.1,
ν = −0.09, γ = 0.12, and L = 400. Inner and outer regions are
defined. The exponential decay value changes from

√
δ+ = 0.3946

(theoretical
√

δ+ = 0.3954) inside the inner region to
√

δ− = 0.1508
(theoretical

√
δ+ = 0.1538) in the outer region. The transition point

between both regions coincides with the phase front position xf .

between both exponential decay rates of the UPS solution that
is characterized by a transition point. Such a point outlines
the border transition between the inner and outer regions and
corresponds to the phase front core position xf . Therefore, the
PSS exponential decay rate f (x,x0) must be amended by

f (x,x0) ≈
√

δ+(x − x0) + B(x,xf ), (12)

with

B(x,xf ) ≡ [
√

δ− −
√

δ+]
(x − xf )(x − xf ), (13)

where 
(x − xf ) denotes the Heaviside function. Note that
the function f (x,x0) is a smooth function. However, its
approximation (12) is continuous but not differentiable at
x = xf .

Using the amended ansatz (12), Eqs. (8) and (9) can be
reobtained in the inner and outer regions. In the inner region,
Eqs. (8) and (9) remain the same. In contrast, these equations
are modified by substituting the value δ+ for δ− in the outer
region. Following the same procedure showed in Sec. II B1,
the amended front phase is obtained

ϕ0(x) = arctan

[√
γ ± μ

γ ∓ μ
tanh

√
γ 2 − μ2(x − xf )

2δ(x,xf )

]
, (14)

with

δ(x,xf ) ≡ [
√

δ+ + (
√

δ− −
√

δ+)
(x − xf )]. (15)

In this approximation the phase fronts are continuous but
not differentiable at x = xf , emphasizing that the PSS is
composed of the stable and unstable UPS solutions.

It is important to note that ansatz (6) considers a uniform
exponential decay rate of the modulus. Such an assumption
leads, at dominant order, to the obtention of phase front
solutions [Eq. (10)]. Higher-order corrections allow us to get
an improved description of the phase shield soliton where the
modulus also exhibits an amplitude shielding structure (see
Fig. 7). However, this structure is exponentially suppressed
in comparison to the soliton height

√
2δ+. In contrast, the

phase shielding structure is order one. Therefore, a possible
experimental characterization of the PSS must be achieved by
means of phase measurements.
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C. Phase front dynamics

As discussed in the previous section, the transient preceding
the formation of the phase profile is governed by the fronts
dynamics. Here we propose an analytical study of the dynam-
ical evolution of these fronts. For this purpose let us consider
the typical evolution of a soliton in a semi-infinite system, as
shown in Fig. 6. As can be seen from the figure, the front
displays a dynamical behavior characterized by a nontrivial
motion. For the sake of simplicity, let us consider the ansatz
(6) and (7) at dominant order where f (x,x0) ≈ √

δ(x − x0)
and δ ≡ δ+. Substituting in Eq. (3), we obtain the equation for
position of the core

−ẋf ∂xϕF = −(ν + δ) − 8δe−2
√

δx + (∂xϕF )2 − γ sin(2ϕF ).

(16)

In order to account for the front dynamics xf (t) has been
promoted to a time-dependent function. The time derivative of
xf is given by ẋf .

Multiplying the above equation by ∂zϕF (z) with z ≡ x − xf

and introducing the inner product 〈f |g〉 ≡ ∫
fgdz, we obtain,

after straightforward calculations, an ordinary differential
equation for the core of the phase front

ẋf = A + Be−2
√

δxf , (17)

where

A ≡ 〈[ν + δ + γ sin(2ϕF ) − (∂zϕF )2]|∂zϕF 〉
〈∂zϕF |∂zϕF 〉

and

B ≡ 8δ

〈
e−2

√
δz|∂zϕF

〉
〈∂zϕF |∂zϕF 〉

are real numbers, which can be either positive or negative,
depending on the shape of the phase front. For example, when
one considers a front that increases monotonically with the
spatial coordinate, A (B) is a negative (positive) constant.
The term proportional to A accounts for the constant speed at
which the larger phase value invades the smaller one, giving
rise to a phase front that propagates towards the position of the
soliton x0. This speed can be understood as a consequence of
the effective potential energy U (ϕF ) difference between both
equilibria. In contrast, the term proportional to B accounts

for the effect of spatial variation of the tail of the amplitude
soliton, which induces a force that leads to phase fronts
moving away from the position of the soliton. Consequently,
the superposition of these two antagonistic forces generates a
stable equilibrium for the position of the phase front, which
is consistent with the dynamical behavior illustrated by the
spatiotemporal diagram of Fig. 6(b). Solving Eq. (17), we get
an analytical solution for the typical trajectory

xf (t) = ln
(

B
A

)
2
√

δ
+ ln(e−2

√
δA(t−t0) − 1)

2
√

δ
− A(t − t0). (18)

The dashed curve shown in Fig. 6(b) is obtained using the
above formula wherein A and B are used as fitting parameters.
Note that the constant ln(B/A)/2

√
δ accounts for the steady

equilibrium position of the front, which corresponds to the
characteristic size of the shell structure in the phase. For higher-
order corrections of the phase, we obtain a similar expression
for the dynamics of the front.

D. Stability analysis for the uniform phase soliton

As we have already shown, the uniform phase and phase
shielding solitons are solutions of the PDNLS model (1). Thus
a natural question arises: What are the bifurcation scenarios of
these solutions? Here we examine this question, performing a
numerical linear stability analysis based on Ref. [15]. Given
the complexity of the linear operator, an analytical stability
analysis is not affordable. We consider small perturbations ρ

and � around the solutions Rs(x) and ϕ0, respectively, i.e.

R = Rs(x) + ρ(x,t), ϕ = ϕ0 + �(x,t), (19)

where ρ,� � 1. Substituting in (2) and (3) and linearizing,
we obtain

∂tρ = 2∂xRs∂x� + Rs∂xx� + 2
√

γ 2 − μ2�Rs (20)

and

Rs∂t� = δρ − 3R2
s ρ − ∂xxρ − 2μRs�, (21)

respectively. Equations (20) and (21) represent an eigenvalue
problem that can be written in the matrix representation

˙(
ρ

�

)
= M

(
ρ

�

)
, (22)

where

M ≡
(

0 2∂xRs(x)∂x − Rs(x)∂xx − 2Rs(x)
√

γ 2 − μ2

1
Rs (x) [δ − 3Rs(x)2 − ∂xx] −2μ

)
. (23)

An analytical solution to Eq. (22) is a difficult task [15].
Therefore, to solve it we adopt a numerical strategy. In order
to obtain the spectrum, a set of eigenvalues associated with
the linear stability analysis, we proceed to discretize in space
with grid points x → j�x, F (x,t) → F (j�x,t) ≡ Fj (t) with
j = 1, . . . ,N , where N is the number of points of the system
and L = N�x. In such a case, the differential operatorMwith
spatiotemporal coefficients turns into a matrix of rank 2N . We

also consider μ = μ0 and x0 = L/2 for different values of
{γ,ν} in the region of existence of solitons, i.e., γ 2 � ν2 + μ2

and ν < 0.
The L parameter controls the size effect. Changing N with

�x fixed, we can easily vary it. In previous reports, this param-
eter was not considered as a relevant parameter system, being
usually a small constant. We shall see that the parameter L

plays a main role in the stability properties of dissipative states.
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FIG. 8. (Color online) Real part of the largest eigenvalue
max[Re(λ)] (red circles) and the eigenvalue related to the Goldstone
mode (blue triangles) as a function of system size. The stability of
solitons is shown in the spectra of the soliton with constant phase
(a) before (system size L = 284), (b) during (L = 304), and (c) after
(L = 324) the bifurcation for γ = 0.105, μ = 0.1, and ν = −0.05.

Hence let us consider L as a control parameter with the
system parameters {μ,ν,γ } fixed. When L is small enough
the spectrum is characterized by being centered on an axis
parallel to the imaginary one, where every single eigenvalue
has a negative real part. Such behavior of the eigenvalues is
typical of quasireversible systems [5,7]. Increasing L, the set
of eigenvalues begins to collide, creating a continuum set.
Up to a critical value of Lc, where some of them cross the
imaginary axis at a nonzero frequency, the set exhibits an
Andronov-Hopf bifurcation [27,28]. The inset Figs. 8(a)–8(c)
outline the spectrum before, during, and after the bifurcation,
respectively. The main plot of Fig. 8 illustrates the real part
of the largest eigenvalue max[Re(λ)] (red circles) and the
eigenvalue related to the Goldstone mode (blue triangles) as a
function of the system size L. As a result of the translational
invariance, the eigenvalue related to the Goldstone mode is at
the origin of the complex plane [25]. For γ = 0.105, μ = 0.1,
and ν = −0.05, we observe that [see Fig. 8(a), inset] below
the critical value Lc = 304, the largest eigenvalue corresponds
to the Goldstone mode. Close to the bifurcation, the largest
conjugate pair of eigenvalues crosses the real axis destabilizing
the uniform phase solution [see Figs. 8(b) and 8(c), insets].

The numerical stability analysis of UPS solutions reveals
a strong dependence on the system size. Such a result is in
accordance with the inner and outer region crossover. The
inner region has a definite length for a given set of system
parameters {μ,ν,γ }. If the system size is small enough (L is
less than the length of the inner region), the crossover does
not occur. Then the PSS solution cannot appear and the UPS
is a stable solution. For L greater than the length of the inner
region, the UPS destabilizes, generating the PSS solution.

Given that the exponential decay of the stable UPS, and
therefore the length of the inner region, is a function of the
system parameters {μ,ν,γ } it is natural to infer that by varying
such parameters with L fixed, the UPS destabilization will take
place as well. Indeed, following the above strategy, we perform
a numerical stability analysis of the UPS varying γ for L fixed
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FIG. 9. (Color online) Real part of the largest eigenvalue
max[Re(λ)] (red circles) and the eigenvalue related to the Goldstone
mode (blue triangles) as a function of the forcing parameter γ .
The stability of solitons is shown in the spectra of the soliton with
constant phase (a) before (γ = 0.1065), (b) during (γ = 0.1090), and
(c) after (γ = 0.1115) the bifurcation for μ = 0.1 and ν = −0.05
with L = 280 fixed.

with μ = 0.1 and ν = −0.05. We choose the same parameter
region {ν,γ } with L = 280 (before bifurcation; see Fig. 8) to
ensure an initial stable UPS solution. Figure 9 displays the
eigenvalue spectrum evolution as γ varies. As before, up to a
critical γc, the system exhibits an Andronov-Hopf bifurcation,
which leads to the appearance of a PSS solution similar to the
one observed in Figs. 8(a)–8(c).

In brief, the above instability mechanism is a robust
phenomenon. Figure 10 displays the UPS stability over a wide
parameter region {ν,γ } for μ = 0.05 and L = 400 fixed. For a
system size smaller than the critical one, we observe that for the
parameters 0 < γ − μ � 1, the soliton with constant phase is
stable. Notwithstanding, increasing the forcing amplitude γ or
the detuning parameter ν, the soliton becomes unstable again
by an Andronov-Hopf bifurcation.

In the case that the system size is large enough, the UPS
solution exhibits an Andronov-Hopf bifurcation that leads to a
PSS solution. Further increasing the system parameters {ν,γ },
a secondary bifurcation leads to a periodic soliton like those
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FIG. 10. (Color online) The PSS bifurcation diagram in the γ -ν
space obtained by solving (22) numerically for μ = 0.050 and L =
400.
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observed in Ref. [26]. Conversely, for small L the Andronov-
Hopf bifurcation leads directly to localized periodic solitons
without a secondary one.

To verify these results, we have also performed a stability
analysis of solutions in a Cartesian representation of the field
ψ . We introduce the linear transformation ψ = X + iY in
Eq. (1). Separating into real and imaginary parts, we obtain

∂tX = νY + (X 2 + Y2)Y + ∂xxY − μX + γX , (24)

∂tY = −νX − (X 2 + Y2)X − ∂xxX − μY − γY, (25)

respectively. The solution for this set of equations (24) and
(25) is

Xs = Rs cos(ϕ0), (26)

Ys = Rs sin(ϕ0), (27)

where Rs and ϕ0 are given by formulas (4) and (5) with δ+ = δ.
We follow the same procedure shown above and take

into account small perturbations (δX ,δY � 1) around the
solutions (X ,Y). Linearizing and using relations (4) and (5),
we get the dynamical system

˙(
δX
δY

)
=

(−μ + γ − R2
s

√
γ 2 − μ2/γ ν + R2

s (2γ − μ)/γ + ∂xx

−ν − R2
s (2γ + μ)/γ − ∂xx −μ − γ + R2

s

√
γ 2 − μ2/γ

) (
δX
δY

)
. (28)

This system (28) yields results similar to those already
observed using the polar representation.

III. PHASE SHIELDING SOLITON IN PHYSICAL
SYSTEMS

In Sec. I we emphasized the universality of the PDNLS
equation. Through an amplitude equation approach it can be
shown that the equation is present in different physical systems.
Based of this statement, one expects that results obtained in
this context can be transposed to the original systems. In the
following section we conduct numerical studies in an easy-
plane ferromagnetic system in order to explore the observation
of PSS solutions in such a system.

A. Forced magnetic wire

Solitons in magnetism have been intensively studied in
past decades due to their possible technological applications.
It is known that an easy-plane ferromagnetic spin chain in
the presence of both a constant and a time-periodic external
magnetic field perpendicular to the hard axis exhibits localized
structures. Such structures are commonly refer to as localized
precession states in a forced magnetic wire. Furthermore,
experimental realizations of the model have been already
achieved [29,30].

The forced magnetic wire is described phenomenologically
by the Landau-Lifshitz-Gilbert (LLG) equation. Following
an amplitude equation approach, it can be proved that, in
the quasireversible limit, the system can be described by
the parametrically driven and damped nonlinear Schrödinger
equation [16].

Let us consider a one-dimensional anisotropic Heisenberg
ferromagnetic chain formed by N classical spins or a magnetic
moment subject to an external magnetic field. The direction of
the chain is described by the z coordinate ẑ = (0,0,1) and the
external magnetic field is orthogonal to this direction, denoted
by x̂ = (1,0,0).

When the quantum effects are small enough, the vector
Si can be treated as a classical spin or a magnetic moment

[16]. According to this latter assumption, the dynamics of the
magnetic moment Si is governed by Ṡi = −γ Si × (∂H/∂Si),
where γ is the gyromagnetic constant and the Hamiltonian H
has the form

H = −J

N∑
i=1

SiSi+1 + 2D

N∑
i=1

(
Sz

i

)2 − gμHx

N∑
i=1

Sx
i . (29)

Here J is the exchange coupling constant and Hx and D

stand for the external magnetic field and the anisotropy energy,
respectively.

To study the continuum limit of this set of ordinary
differential equations, which accounts for a magnetic wire,
we can assume that

Si(t) → S(z,t) (30)

and

Jdz2

γ −1

(
Si+1 − 2Si + Si−1

dz2

)
→ lex∂

2
z S(z,t), (31)

where lex denotes the characteristic interaction length. More-
over, introducing a phenomenologically dissipative source,
the Gilbert damping, the motion of the magnetization field is
governed by the well-known Landau-Lifshitz-Gilbert equation
[31]

∂τ M = M × [Mzz − β(M · ẑ) + He − α∂τ M], (32)

where M ≡ S/Ms stands for the unit vector of the magneti-
zation and Ms is the saturation magnetization. We have also
introduce the normalization {τ → γMst,β → 4D/γ,He →
gμM/γMs}. Here β > 0 accounts for the anisotropy constant
(easy-plane magnetization) and α the damping parameter. For
several types of magnetic materials, this parameter is small
[31]. When the magnetic field is time dependent, the above
model (32) is a time-reversible system perturbed with injection
and dissipation of energy, i.e., a quasireversible system, as long
as this perturbation remains small.

As a result of the anisotropy and constant external field
(He = H0x̂), the natural equilibrium of the previous model
(32) corresponds to the magnetization field lying in the
direction of the external magnetic field M = x̂. When spatial
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FIG. 11. (Color online) (a) Schematic representation of a soliton in a one-dimensional anisotropic ferromagnetic chain (magnetic wire).
(b) Spatiotemporal evolution of a soliton for L = 1024, H0 = 4.800, β = 0.200, h1 = 0.042, α = 0.019, and ν = −0.030.

coupling is ignored, it is easy to show that the dynamics around
this equilibrium is described by a nonlinear oscillator with
natural frequency ω2

0 = H0(β + H0) [16]. It is worth noting
that in Eq. (32) the magnetization components are proportional
to the external magnetic field, which therefore acts as a
parametric forcing. Then if this field combines a constant and
a time-periodic part (He = [H0 + h1]x̂, where h1 = � cos(ωt)
oscillates about twice the natural frequency, ω ≡ 2(ω0 + ν),
and ν is the detuning parameter), the system exhibits a
parametric resonance at �2(β/4ω0)2 = α2(H0 + β/2)2 + ν2

for small parameters {α,ν,H0,�}. In the parameter space
(�,ν), the region above this curve corresponds to the Arnold
tongue. Dynamically speaking, this resonance corresponds
to an undamped precession of the magnetization unit vector
around the direction of the external magnetic field with angular
velocity ω0 [Fig. 11(a)]. Thus, rewriting Eq. (32) for one of
the components, for instance, mz, after some calculations,
considering

m2
x ≈ 1 − m2

y + m2
z

2
(33)

and

my ≈ 1

H0

[
1 + �

H0

]
ṁz, (34)

one can obtain, in the weakly nonlinear regime [16],

m̈z = −ω2
0mz + (β + 2H0)∂2

z mz − μṁz − ḣ1

H0
ṁz

+ (β + 2H0)h1mz + β(H0 + h1)

2

(
m2

y + m2
z

)
mz, (35)

where μ ≡ α(H0β/2) and γ = β�/4ω0 are, respectively, the
effective driving strength and the detuning parameter.

Now, close to the parametric resonance, we can introduce
the following ansatz [14,16] into Eq. (32):

mz = 4

√
ω0H0

β
(
ω2

0 + 3H 2
0

)Re[A(z,t)]ei(ω0+ν)t + W (z,t,A), (36)

where W (z,t,A) stands for a small correction. Linearizing and
imposing the solvability condition for W (z,t,A), one obtains
the amplitude equation of the oscillations at dominant order

(the parametrically driven and damped nonlinear Schrödinger
equation)

∂tA = −iνA − i|A|2A − i∂ZZA − μA + γ Ā, (37)

where Z ≡ √
2ω0/(β + 2H0)z. The terms proportional to

{ν,γ,μ} stand for the detuning, effective driving, and damping
of the magnetic system.

This equation has different homogeneous states, where the
simplest one is A = 0, representing a constant magnetization
along the external field direction (M = x̂). Single solitons are
among the nontrivial steady states of Eq. (37) [15]. Other
stationary state solutions of the PDNLS in the magnetic context
can be found in Refs. [14,16,32,33].

1. The PSS in the magnetic wire

The chain of classical spins or magnetic wire subject to an
external magnetic field represents an adequate physical system
to study the formation of a phase shielding soliton. Different
works have studied these magnetic localized states by means
of the LLG model. Direct numerical simulations of Eq. (32)
close to the Arnold tongue for negative detuning and for small
values of dissipation and damping (μ ∼ γ � 1) reveal the
formation of a localized precession state. Figure 11(b) shows
the spatiotemporal evolution of the mz component for this
soliton.

However, phase shielding solitons are characterized for
their phase structure. Therefore, we must extract information
of the instantaneous phase angle φz from the knowledge of
the oscillatory field mz(z,t). With this aim, we compute the
instantaneous phase using the Hilbert transform technique for
signal processing [34]. Let us recall that the original real field
mz(z,t), can be express as

mz(x,t) = Re[R(x,t)eiφ(x,t)], (38)

where Re(·) represent the real part, R(x,t) the modulus of the
envelope, and φ(x,t) the phase.

The Hilbert transform technique reconstructs a complex
variable θz = θr + iθi from the original real data θr and its
one-sided Fourier transform Sr (ω),

Sr (ω) =
∫ ∞

−∞
θr (x,t)
(ω)e−iωtdt, (39)
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FIG. 12. (Color online) Reconstructed phase angle φz for L =
1024, H0 = 4.800, β = 0.200, h1 = 0.042, α = 0.019, and ν =
−0.030. The appearance of two opposite fronts can be observed.

where 
(ω) is the Heaviside step function. To obtain the one-
sided Fourier transformer of the imaginary part Si(ω), we used
the relation

Si(ω) = H (ω)Sr (ω), (40)

where

H (ω) =
{−i, 0 � ω < π

i, −π � ω < 0 (41)

is a 90◦ phase shifter or Hilbert transformer [35].
Calculating the inverse Fourier transform of Si(ω), we get

the imaginary part θi(x,t) of the complex variable. Hence the
modulus R(x,t) and phase φ(x,t) can be easily rebuilt from the
real data. This method gives a good description of the modulus
and phase for band-limited signals.

Using the above described Hilbert procedure, we analyze
the spatial structure of the phase at different times. Figure 12
displays the phase φz(x) at a given value t for L = 1024. The
presence of two stationary but opposite fronts, quite similar to
those seen in previous numerical analysis of the parametrically
driven and damped nonlinear Schrödinger equation, is clear.

The phase also exhibits a slot or hole at the center of
the spatial phase angle. The appearance of this hole is a
consequence of the nonlinear terms present at the original
model. As we show above, the amplitude equation is an
approximation, at dominant order, of the original system.
Higher-order corrections are not taken into account [36]. Since
the simulations of the magnetic system are directly from
the LLG model, they include all the nonlinear corrections.
Usually such corrections are not discernible in the modulus,
but become relevant in the phase, especially close to the center
of the soliton. Away from the core, the nonlinear corrections
decreases exponentially, hence the formation of the slot close
to the center.

Another important consequence of the nonlinear correc-
tions is related to the phase front dynamics. Numerical
simulations reveal that the phase fronts reach their steady state
closer to the core of the soliton than in the usual parametrically
driven and damped nonlinear Schrödinger equation. Since
the magnetic dissipative soliton is a precession state, the
phase angle φz exhibits a modulo 2π temporal periodicity.
Therefore, there is a continuous change in the phase values
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FIG. 13. (Color online) Stroboscopic spatiotemporal diagrams of
the reconstructed envelope (top) and the phase angle φz (bottom) for
L = 2048, H0 = 4.800, β = 0.200, h1 = 0.042, α = 0.019, and ν =
−0.030. The spatial slot displayed by the phase has been removed.

close to the ends (0,L) that introduces a fictitious periodic
motion of the phase front around the center. To evaluate
the phase dynamical behavior and the front positions, we
take stroboscopic snapshots with the same periodicity as that
of the soliton oscillation. Figure 13 displays the stroboscopic
phase evolution of the phase structure. It is clear that a magnetic
phase shielding soliton is formed. In order to emphasize
the phase fronts, we have removed the slot in the vicinity
of the center. The amplitude of the envelope is shown to
stress the soliton position. Different numerical simulations
with L = 512,1024, and 2048 support this observation. It is
important to note that all the observed phase shielding solitons
are symmetric. Asymmetric solitons have not been observed
so far in the magnetic wire.

In brief, the phase fronts in the magnetic wire reach a steady
state, allowing the formation of a phase shielding soliton;
the shielding phase is established closer to the soliton core
position, in comparison with the PSS observed in the PDNLS
equation; and the phase shield structure is always symmetric
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[Fig. 4(a)]. The presence of nonlinear corrections plays an
important role in the structure and dynamical behavior of the
magnetic PSS.

IV. PHASE SHIELDING SOLITON IN TWO DIMENSIONS

Localized structures presented in the previous sections
are considered only in one spatial dimension. In the present
section we will study the existence, stability properties, and
dynamical evolution of the two-dimensional extension of the
phase shielding soliton. Such extensions are not evident.
Conservative solitons observed in the nonlinear Schrödinger
equation in one spatial dimension collapse in two spatial
dimensions [37], i.e., these solutions are unstable in two
spatial dimensions. Most of the experimental observations of
localized structures in parametrically driven systems have been
reported in two spatial dimensions, for instance, in fluid surface
waves [38], oscillons in granular media [39], and isolated states
in thermal convection [40]. Note that all these observations
have been realized in dissipative systems. Furthermore, the
greatest difficulty in characterizing theoretically localized
states in two spatial dimensions is the lack of analytical
expressions of these states.

In the context of conservative systems in two spatial
dimensions perturbed with energy injection through paramet-
rically temporal modulation and dissipation—quasireversible
systems [4–8]—the prototypical model is the parametrically
driven and damped nonlinear Schrödinger equation

∂tψ = −iνψ − i|ψ |2ψ − i∇2
⊥ψ − μψ + γ ψ̄, (42)

where ψ(ρ,θ,t) is a complex field that accounts for the
envelope of the oscillation for the system under study, ∇2

⊥ ≡
(1/ρ)[∂ρ(ρ∂ρ)] + (1/ρ2)∂θθ is the Laplacian operator in polar
coordinates, ρ > 0, and θ ∈ [0,2π ]. Equation (42) has been
derived in two-spatial-dimensional physical systems such as
the parametrically driven magnetic layer [32] and Kerr-type
optical parametric oscillators [21]. In the conservative limit
(μ = γ = 0), the above equation is the nonlinear Schrödinger
equation. This model is widely applied to understand wave
phenomena in hydrodynamics, nonlinear optics, nonlinear
acoustics, quantum condensates, heat pulses in solids, and
various other nonlinear instability phenomena [41]. The non-
linear Schrödinger equation is a universal model for weakly
dispersive and nonlinear media.

It is well known that Eq. (42) exhibits stable nonpropagative
dissipative solitons in two spatial dimensions [42]. In contrast,
in the conservative limit, Eq. (42) has unstable soliton
solutions, which exhibit blowup in finite time [37]. The above
phenomenon disappears in the model (42) as a result of the
balance between injection and energy dissipation. In order to
understand the existence, stability properties, and dynamical
evolution of dissipative solitons shown by Eq. (42), let us to
consider the ansatz

ψ = Rs(ρ,t)eiφ(ρ,t). (43)

Note that the above ansatz presents axial symmetry; that is,
there is not an explicit dependence on the angle θ . This
assumption is based on the numerical simulations, where we

do not observe significant angular dependence. Inserting (43)
in Eq. (42), we obtain

∂tRs = 2∂ρRs∂ρφ + Rs

ρ
∂ρφ + Rs∂ρρφ − μRs

+ γRs cos(2φ), (44)

Rs∂tφ = −νRs − R3
s − ∂ρRs

ρ
− ∂ρρRs + Rs(∂ρφ)2

− γRs sin(2φ). (45)

Analogously to the one-dimensional problem, let us assume
a constant phase φ = φ0; thus

cos(2φ0) = μ

γ
, (46)

∂ρρRs = δRs − R3
s − ∂ρRs

ρ
, (47)

where δ ≡ −ν +
√

γ 2 − μ2. As we have mentioned before,
there is not an analytical solution of the localized state in two
dimensions [42]. However, using the variational method, one
can obtain a good approximation [32,43]

Rs(ρ) ≈ A0

√
δ sech

(
B0

√
δ

2
ρ

)
, (48)

where A0 = 2.166 and B0 = 1.32. However, this approxi-
mation does not describe the asymptotic behavior of the
dissipative soliton. The asymptotic behavior of the dissipative
soliton is of the form

Rs(ρ → ∞) → e−√
δρ

√
ρ

. (49)

The interaction of a pair of dissipative solitons that is of
exponential type as a function of the distance between solitons
has been characterized in Ref. [32]. Numerical simulations
of an easy-plane ferromagnetic layer submitted to a magnetic
field that combines a constant and an oscillating part show
good agreement with this interaction law.

A. Numerical observation of phase shielding solitons
in two dimensions

The existence of 2D solitons described by the PDNLS
(42) raises the question of whether it is possible to observe a
shielding phase in this case. Based on the previous simulations
carried out in one dimension, we explore a similar parameter
region in the 2D case, close to the Arnold tongue, in order to
observe the possible formation of phase shielding solitons.

Indeed, we have characterized two type of phase shielding
configurations. The first type consists of a phase front with
axial symmetry in the range [0,2π ]. The connected uniform
states are, analogously to the 1D case, given by the phase
equilibria determined by relation (46). Figure 14 shows the
typical structure of this symmetrical state around the soliton
position. If we consider a 1D stationary front solution in
a semi-infinite domain (ρ > 0), the 2D symmetric phase
solution corresponds to a 2π rotation around an axis whose
origin is placed at the position of the dissipative soliton. It
is important to note that the process of formation of this
symmetrical state is complex since one needs special initial
conditions close to the equilibrium state.
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FIG. 14. (Color online) Front view of a stationary 2D symmetric
phase shielding soliton observed in two-dimensional numerical
simulations of the parametrically driven and damped nonlinear
Schrödinger equation with γ = 0.560, ν = −0.068, and μ = 0.250.
The phase and amplitude field are represented simultaneously.
Colored shadow renders the phase shell-like structure ϕ(x,y) that
surrounds the amplitude soliton localized at the center R(x,y).

The second type is characterized by a phase front axially
symmetric from [0,π ] and an analogous front with different
asymptotic states from [π,2π ], i.e., each phase front has semi-
axial symmetry. The process of formation of this configuration
starts with a well-formed 2D soliton that is slightly perturbed.
After some complex phase transient state, the system exhibits
the appearance of a circular phase front that spreads rather
slowly. Figure 15(a) displays this primary stage. However,
asymptotically, the circular structure becomes asymmetrical,
giving rise to a new semicircular front that still propagates in
the range [π,2π ] [see Fig. 15(b)]. Finally, the whole structure
becomes stationary, creating a 2D asymmetric phase shielding
soliton. Unlike the symmetric case, the steady phase solutions
coincide only with a π rotation around the soliton position as
the center of rotation [see Fig. 15(c)]. Additionally, numerical
simulations performed in a close region of parameters show
the same dynamical behavior. Figure 16 give us a comparison
between the stationary configuration of this shieldlike phase
and the soliton size for a different set of parameter values
{μ,ν,γ }.

It is noteworthy that this second type of two-dimensional
state is characterized by being composed of all the solutions
found in one dimension. Indeed, if one performs different cuts
containing the center (soliton position), one can recognize
the observed solutions in one dimension (see Fig. 4). Another
interesting property is the following: If one calculates the phase
change on a path that connects two opposite points with respect
to the soliton position (

∫
�

�∇ϕd�s) within the region close to the
position of the soliton one finds that this is zero. Nevertheless,
if one takes this type of path far away from the soliton position,
one finds

∫
�′ �∇ϕd�s = ±π .

As an additional remark we would like to point out the
stability of the 2D phase shielding solitons. Axially symmetric
PSSs are attained only by setting up special initial conditions
close to the steady state. A slight perturbation in its modulus
leads to a symmetry breaking where the axial symmetry is lost
and a semiaxial symmetry appears. Hence, numerically, the
second type of PSS solitons has a large basin of attraction.

B. Analytic approach to PSSs in two dimensions

In this section we will discuss an analytical approach for the
shielding phase solitons in two dimensions. From numerical
simulations (see Fig. 16), we can observe that the phase
emerges far from the soliton position. In the same manner
as in Sec. II B1, to obtain the dominant phase correction we
consider the exponential asymptotic decay of the modulus.
Under this consideration (ρ → ∞), we use the ansatz

Rs(ρ → ∞) ∼= e−√
δ(ρ−ρ0)

√
ρ

, (50)

φ(ρ → ∞) = φF (ρ − ρF (t)), (51)

where ρ0 describes the soliton position, i.e., corresponds to the
position of the maximum amplitude of the soliton modulus.
Moreover, we have promoted the position of the phase front
core to a time-dependent function ρF (t). We consider that
the PSSs possess an axial symmetry for the modulus and the
phase. For the sake of simplicity and without loss of generality,
we can choose ρ0 = 0 as the coordinate origin; at dominate
order, we get a similar Newton-type equation as in the 1D case
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FIG. 15. (Color online) Snapshots of the phase evolution of a typical 2D PSS after a perturbation with γ = 0.083, ν = −0.063, and
μ = 0.058. (a) Initially the soliton is slightly disturb. A circular front starts to propagate. (b) An additional propagative semicircular front
appears. (c) The final steady configuration exhibiting a semiaxial symmetry. The dashed curve represents the θ axis.
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FIG. 16. (Color online) Front and back views of a stationary phase shielding soliton observed in two dimensions for the parametrically
driven and damped nonlinear Schrödinger equation with γ = 0.140, ν = −0.068, and μ = 0.125. The phase and amplitude field are represented
simultaneously. Colored shadow renders the phase shell-like structure ϕ(x,y) that surrounds the amplitude soliton localized at the center R(x,y).

(ρ � 1)

∂ρρφF ≈ 2
√

δ∂ρφF + μ − γ cos(2φF ). (52)

Thus 2D phase solutions have a front solution at dominate
order of the form

φ(ρ,θ,ρF ) ≈ arctan

[√
γ ± μ

γ ∓ μ
tanh

√
γ 2 − μ2(ρ − ρF )

2
√

δ

]
.

(53)

This solution agrees with numerical simulations, as we
illustrate in Fig. 17. To account analytically for the axial or
semiaxial symmetry of two-dimensional PSSs, let us introduce
an adequate coordinate system {r,θ}, where r ∈ (−∞,∞),
|r| = ρ, and θ ∈ [0,π ), which is not the usual polar coordinate.
Considering Rs ≡ Rs(r,t) and φ ≡ φ(r,t) for the semiplane
domain consisting of [0,π ) and r = (0,∞), we replace the
ansatz (50) in (47), obtaining again Eq. (52). Therefore,
we have deduced a phase front solution with the required

100

0

100

0

π ϕ(x,y)

x
y

FIG. 17. (Color online) A 2D phase shielding soliton with
semiaxial symmetry given at dominant order by the analytical
function (53) with γ = 0.15, μ = 0.1, and ν = −0.15. The amplitude
R(x,y) is plotted simultaneously to illustrate the soliton position.

semiaxial symmetry. Analogously to the complementary
semiplane domain r ∈ (−∞,0) and θ ∈ [0,π ), we can find the
complementary phase front solution. Taking the whole domain
of r and considering the different stationary front solutions
of (52), we build up at dominant order a phase front with
the asymmetrical shape observed in numerical simulations
(see Fig. 16). Notice that in this approximation for PSSs
with semiaxial symmetry, the interface separating the different
regions is abrupt (see Fig. 17), which is a consequence of the
coordinate system used to describe these solutions. The PSSs
obtained numerically are smooth in this junction region (see
Fig. 16).

C. Front dynamics

The front dynamics of phase fronts at dominant order is
described by the equation obtained by replacing (50) and (51)
in (45),

−ρ̇F (t)∂zφF = −(ν + δ) − e−2
√

δρ

ρ
+ (∂ρφF )2

− γ sin(2φF ), (54)

where we have defined the appropriated comoving coordinate
z ≡ ρ − ρF . Multiplying the above equation by ∂zϕF and
introducing the inner product

〈〈f |g〉〉 ≡
∫ ∞

−∞

∫ π

0
fgρ dθ dz, (55)

we obtain the following equation for the front dynamics:

ρ̇F = Ã + Aρ
F

+ Be−2
√

δρ
F

Cρ
F

, (56)

where

Ã ≡ 〈〈γ sin(2φF )z|∂ρφF 〉〉,
A ≡ 〈〈[−(ν + δ) + (∂ρφF )2]|∂ρφF 〉〉, (57)

B ≡ 〈〈e−2
√

δz|∂ρφF 〉〉, C ≡ 〈〈∂ρφF |∂ρφF 〉〉.
Equation (56) can be interpreted as a Newton-type equation

that describes an overdamping particle in the presence of a
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force composed of three terms: a constant, a term inversely
proportional to the position, and an exponential force. The
constant force is responsible for spreading the phase front to
the outside; in contrast, the exponential force causing the phase
front propagates towards the position of the dissipative soliton
in the center. The balance between these forces generates an
equilibrium position for the phase front, which is consistent
with the observed dynamics. At dominant order the phase
dynamics is affected in two spatial dimensions by an extra
term, which is inversely proportional to the distance. The
exponential term is modified by a logarithmic correction.
Therefore, for large distances the phase shielding soliton
dynamics in two dimensions is similar to that observed in
one dimension.

Similarly to Sec. II B2, we can include higher-order
corrections in the amplitude of the modulus and get more
accurate solutions for the structure and dynamics of phase
fronts in two spatial dimensions. This allows us to understand
that PSSs are composed of dissipative solitons with a different
homogeneous phase (see Sec. II B2).

V. FORCED MAGNETIC LAYER

An easy-plane ferromagnetic layer submitted to an external
parametric forcing has been analyzed within the framework of
the LLG model. Such a system exhibits the formation patterns,
domain walls, and localized states near a parametric resonance.
By means of the amplitude equation, an interaction law of 2D
localized precession states has been derived [32]. However, the
magnetic layer lacks a phase numerical study for its localized
structures.

Let us introduce the main features of the description
of a parametrically forced magnetic layer. Let us consider
an anisotropic Heisenberg ferromagnetic layer formed by
Nx × Ny classical spins or magnetic moments exposed to
an external magnetic field, which is contained in the plane
(x,y) and oriented in the direction x̂ ≡ (1,0,0). Following
the one-dimensional analysis exposed in Sec. III, we can find
that the motion of the magnetization field is governed by the
Landau-Lifshitz-Gilbert equation [31]

∂τ M = M × [∇2
⊥M − β(M · ẑ) + He − α∂τ M], (58)

where ∇2
⊥ ≡ ∂xx + ∂yy is the Laplacian operator and M =

S/Ms stands for the unit vector of the magnetization, with
Ms the saturation magnetization. Again, we have considered
a normalization of scales and parameters {τ → γMst,β →
4D/γMs,He → gμH/γMs}, where β > 0 is the uniaxial
easy-plane anisotropy constant and α is the damping param-
eter. Like the one-dimensional case, the presence of damping
α > 0 and an external and constant field He = H0x̂ leads to
a magnetization in the direction of the external field M = x̂.
When spatial coupling is ignored, it is easy to show that the
dynamics around this equilibrium is described by a nonlinear
oscillator with natural frequency ω0 = √

H0(β + H0).
Given that the magnetization components are proportional

to the external magnetic field, it acts as a parametric forcing.
Applying an external magnetic field with both a constant and
a time periodic part of the form He = [H0 + � cos(ωt)]x̂,
oscillating about twice the natural frequency ω = 2(ω0 + ν),
where ν is the detuning parameter, the system exhibits a

parametric resonance at �2(β/4ω0)2 = α2(β/2 + H0)2 + ν2

for small {ν,H0,α,�}.
The inclusion of spatial coupling yields the formation of a

localized state near the parametric resonance. To understand
the dynamics of such a state, in the quasireversible limit � ∼
ν ∼ α � ω0 and close to the parametric resonance, we can
introduce the following ansatz into (58):

Mx ≈ 1 − M2
y + M2

z

2
, My ≈ 1

H0

[
1 + �

H0

]
Ṁz,

(59)

Mz ≈ 4

√
ω0H0

β
(
ω2

0 + 3H 2
0

)ψ(ρ,t)ei(ω0+ν)t + c.c.

After straightforward calculations and imposing a solvability
condition for the corrections of the above ansatz, we find
that the system can be described by the parametrically driven
damped nonlinear Schrödinger equation

∂tψ = −iνψ − i|ψ |2ψ − i∇2
⊥ψ − μψ + γ ψ̄,

with γ = β�/4ω0 and μ = (β/2 + H0)α.
As we have discussed early, there is not an analytical

solution for the two-dimensional PDNLS equation. However,
from the approximated localized state (48), one can infer that
for negative detuning, the localized breather magnetic solution
appears by a saddle-node bifurcation when dissipation and
energy injection are equal (γ ∼ μ and ν < 0). Furthermore,
this solution is unstable when the uniform magnetization
M = x̂ becomes unstable at the Arnold tongue (γ 2 = ν2 + μ2

and ν < 0). The modulus width and height are given by
√

2δ

and 1/
√

δ, respectively.

A. The PSS in the magnetic layer

Numerical simulations in appropriate parameter regions of
the magnetic layer show clearly the formation of localized
precession states. Previous studies have performed a numerical
fit of the magnetic solution with the approximative solution
(48), showing good agreement [43]. According to our analysis
of the 2D PDNLS equation, an easy-plane ferromagnetic layer
submitted to a external magnetic field that combines a constant
and an oscillating part should present a shell-type phase
structure. To capture the dynamical behavior of the phase,
we perform numerical simulations of the Landau-Lifshitz-
Gilbert equation (58) over a square grid L × L for L = 512.
This system size is large enough to exhibit PSS formation
(based on the results that we have obtained in one spatial
dimension). Following the Hilbert transform technique, we
have reconstructed the phase. Figure 18 depicts a snapshot
of a localized magnetic state for H0 = 0.1000, λ = 0.0100,
β = 1.0000, ν = −0.0035, and � = 0.0081. As we expected,
a stable shielding phase is formed surrounding the soliton.
In the same figure, we show the corresponding soliton
solution.

As in the 1D magnetic case, this shell-type structure
is always symmetric having a 2π rotation. A modulo 2π

periodicity is also present. The phase front also reaches its
stationary state closer to the typical slot present in the center.
This produces a bell-like shape as we can observed in Fig. 18.

052915-14



PHASE SHIELDING SOLITON IN PARAMETRICALLY . . . PHYSICAL REVIEW E 87, 052915 (2013)

1

0.9

0.8

200 200

400
400

600

x
y

φ(ρ,ρ )

0

0.05

0.1

0

R(ρ)F

FIG. 18. (Color online) Phase shielding soliton obtained by a
numerical simulation of Eq. (58) in a square magnetic plane L × L

with L = 512, H0 = 0.100 00, β = 1, h1 = 0.008 00, α = 0.019 00,
and ν = −0.003 94. The reconstructed phase in two dimensions
φz(ρ,ρz) and the amplitude field R(ρ) are represented simultaneously.
The bell-like shape reveals the presence of the characteristic slot,
observed also in the 1D case, in the center of the plane.

In this situation, the slot is smaller that in the 1D case and it
can be appreciated at the top of the phase structure.

Despite the numerical simulations revealing a stationary
phase structure around a precession state—a phase shielding
soliton—a deeper study is required to establish qualitatively
and quantitatively the effect of the nonlinear corrections over
the phase dynamics.

VI. CONCLUSION

Parametrically forced systems exhibit oscillatory localized
solutions, which are an extension to dissipative systems of
conservative breathers. We have shown the emergence and
characterization of unexpected phase structures surroundings
the modulus of a localized state: the phase shielding soliton.
Different types of localized states have been observed in
numerical simulations. The appearance of each phase config-
uration strongly depends of initial conditions. A slight change
of these conditions can lead to a different phase shielding
structure using the same system parameters. However, a full
comprehension of their basin of attraction as well as their
stability is an open question.

Because of the universality of this phenomenon, we have
described this type of oscillatory localized state in the
context of the parametrically driven and damped nonlinear
Schrödinger equation. Considering the asymptotic behavior
of the amplitude solution away from the soliton position,
we have derived an analytical expression for the front
phase in a semi-infinite domain. The stationary phase front
represents heteroclinic orbits in the {ϕ,∂ϕ} space. Such
states present different types of configurations. The dynamical
behavior of these fronts exhibits a nonuniform translation
that is ruled by two antagonistic forces generating stable
equilibria.

A deeper analysis of numerical simulations reveals that
PSS solutions are composed of two qualitatively different

regions: inner and outer regions. Both regions are separated by
a crossover point between the exponential decay rates of the
stable and the unstable UPS solution. Therefore, the PSSs are
composed of both UPS solutions.

We investigate the PSS stability by means of numerical
analysis. We find that the phase stability is dependent on
the system size L. Below a critical value of L, the phase
remains uniform, but for large enough values of it, the system
destabilizes through an Andronov-Hopf bifurcation. We also
show that the system also presents an instability for a given L,
but for large values of the amplitude or the frequency of the
forcing {γ,ν}. Hence the shielding phase solutions exist in a
wide parameter region far from the limit μ ∼ γ . Both critical
values are related to the length of the inner region, i.e., to the
exponential decay of the stable solution.

To confirm the presence of the shell-type phase structure in
parametrically driven solitons, we have studied an anisotropic
Heisenberg ferromagnetic chain formed by N classical spins
or magnetic moments subject to an external magnetic field.
As we expected, the phase of the dissipative soliton exhibits
the formation of two counterpropagative fronts, analogously
to those observed for the PDNLS model.

A feature characteristic of this phase structure is the
presence of a pronounced slot close to the position of
dissipative soliton. Such large phase variation is a result of
the nonlinear corrections of the envelope. These corrections
corresponds to higher-order terms that are not taken into
account in the amplitude equation approach at dominant
order. Such corrections are negligible far from the position
of dissipative soliton but become relevant in the phase near the
soliton core.

The presence of corrective terms also affects the phase
dynamics itself, as the phase front dynamics is led by an
exponentially small force. This is notorious in the magnetic
wire where the corrective terms cause the phase front solutions
to reach their equilibrium states closer to the soliton position.

Recent studies have demonstrated that the parametrically
driven and damped nonlinear Schrödinger equation does not
account for all the localized structures observed in magnetic
wire [32,44]. Consequently, the inclusion of higher order terms
in the PDNLS equation is necessary for a complete description
of phase front dynamics.

We have extended the phase analysis to the two-dimensional
case. The parametrically driven and damped nonlinear
Schrödinger equation exhibits two types of configurations: an
axially symmetric state and a semiaxial symmetry composed
of two semicircular fronts. The phase front dynamics is also
well described by a Newtonian-type equation in the asymptotic
limit of large distance (ρ → ∞). We have derived a dynamical
equation that predicts a stable equilibrium position for the
front and accounts for the shell-type phase structure. It is
worth noting that the phase front dynamics is led again by
an exponentially small force. Hence small perturbations can
change radically shell-type phase structures of phase shielding
solitons.

We investigate the phase behavior of oscillatory dissipative
solitons in an anisotropic Heisenberg ferromagnetic layer
formed by Nx × Ny classical spins or magnetic moments ex-
posed to an external magnetic field. The numerical simulations
show the existence of a complicated structure for the phase.
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The characteristic slot, observed in 1D systems, is also present
in the 2D case. As before, the relevance of the corrective terms
is evident.

The presence of corrective terms has another interesting
consequence. Usually the corrective terms are related to the
particular physical problem under study. The particularity of
these additional terms can produce the observation of different
phase phenomena for different physical systems. Therefore,
we expect the observation of a variety of different phenomena
in other physical systems. Still, a broader analysis of different
systems, in order to establish the effect of each corrective term,
is required.

In brief, close to the parametric resonance, one expects
that the dynamics is well described by the parametrically
driven and damped nonlinear Schrödinger equation. Indeed,
this amplitude equation has been derived in several physical
contexts to describe the appearance of patterns and localized
states. Far from the parametric resonance, the PDNLS equation
has been used as prototypical model of the dynamics. We

show that the localized state exhibited by this model has
an unexpected and intriguing shell-type phase structure. We
expect that this type of phase behavior would be observed
on several parametrically driven systems such as mechanical,
optical, granular, fluid, magnetic, and chemical systems.
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