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Generating mechanism for higher-order rogue waves
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We introduce a mechanism for generating higher-order rogue waves (HRWs) of the nonlinear Schrödinger
(NLS) equation: the progressive fusion and fission of n degenerate breathers associated with a critical eigenvalue
λ0 creates an order-n HRW. By adjusting the relative phase of the breathers in the interacting area, it is possible
to obtain different types of HRWs. The value λ0 is a zero point of an eigenfunction of the Lax pair of the NLS
equation and it corresponds to the limit of the period of the breather tending to infinity. By employing this
mechanism we prove two conjectures regarding the total number of peaks, as well as a decomposition rule in the
circular pattern of an order-n HRW.
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I. INTRODUCTION

Rogue waves(RWs) in the ocean are catastrophic natural
phenomena with a long history and fascinating mariner stories
[1]. Detailed studies of RWs have occurred only during the past
five decades [2–5]. A prototype one-dimensional rogue wave
is the so-called Peregrine soliton [6]; this soliton exhibits the
two remarkable characteristics of first-order RWs: (a) localized
behavior in both space and time, and (b) the existence of one
dominant peak. RWs have been observed in several fields,
including optics [7–9], superfluid helium [10], Bose-Einstein
condensates [11], plasmas [12,13], microwaves [14], capillary
phenomena [15], telecommunication data streams [16], and
inhomogeneous media [17].

A typical modeling equation for RWs in fiber optics is the
celebrated nonlinear Schrödinger (NLS) equation [18],

iqt + qxx + 2|q|2q = 0. (1)

Here q = q(x,t) is a complex smooth function of x and t , and
the subscripts denote partial derivatives. The Peregrine soliton
[6], which is the first-order RW [19] of the NLS equation,
has been observed experimentally in fibers [20], in a water
tank [21], and in multicomponent plasmas [22]. Recently, a
super rogue wave [23], i.e., a second-order RW, has also been
observed in a water tank. In addition to the NLS equation,
the Hirota equation [24,25], the first-type derivative NLS
(DNLS) equation [26], the third-type DNLS equation [27],
the NLS-Maxwell-Bloch equations [28], the discrete NLS
equation [29], the two-component NLS equations [30–32],
and the Davey-Stewartson equation [33,34], also admit RWs.
These results show that RWs may be generic phenomena in
nonlinear systems.

The Peregrine soliton [6,19] of the NLS equation is
expressed in terms of a simple rational formula; it corresponds
to a simple profile and can be obtained from a breather solution
via the simple limit of the period of modulation approaching
infinity. However, higher-order rogue waves (HRWs) [35–38]

*hejingsong@nbu.edu.cn; jshe@ustc.edu.cn
†Permanent address: DAMTP, University of Cambridge, Cambridge

CB3 0WA, UK.

are expressed in terms of complicated formulas and their
profiles exhibit several different interesting patterns [39–43].
These patterns include a fundamental pattern consisting of a
simple central highest peak surrounded by several gradually
decreasing peaks [see Figs. 2(a) and 3 in Ref. [43]], an equal-
height triangular pattern [see Fig. 2(b) in Ref. [43] and Fig. 2
in Ref. [40]], and a circular pattern(see Fig. 4 in Ref. [43]).

Taking into consideration the complexity of the relevant
formulas [44,45], as well as the plethora of different possible
patterns, it is a challenging problem to elucidate the mechanism
of HRW generation. There exist two important conjectures
regarding HRWs.

(a) In the case of a single fundamental pattern, an order-n
RW has n(n + 1) − 1 nonuniform peaks [43]; in the case when
there exist several patterns, an order-n RW has n(n + 1)/2
uniform peaks [36,37].

(b) In the case when an order-n RW displays a ring structure,
the outer ring has 2n − 1 uniform peaks, and the inner structure
is an order-(n − 2) RW [43].

In this work, we present a generating mechanism for HRWs
of the NLS equation, and using this mechanism, we prove
the above two conjectures. Furthermore, we discuss several
additional interesting patterns of HRWs.

II. A DEGENERATE n-FOLD DARBOUX
TRANSFORMATION (DT) AND INVERSE DT

In order to study the breather and the RW solutions of
the NLS, we shall use the determinant representation of the
Darboux transformation (DT) introduced in Refs. [46–48].
Furthermore, we shall use the notations and the main results
of these references regarding the n-fold DT (Theorem 1 in
Ref. [48]) and the related functions (q[n],r [n],φ[n]) generated
by the n-fold DT (Corollary 1 in Ref. [48]). In order to satisfy
the reduction requirement q[n] = −(r [n])∗, we choose f2k =
(−f ∗

2k−1 2,f
∗
2k−1 1)T , k = 1,2, . . . ,n, where T denotes matrix

transposition and the asterisk denotes complex conjugation.
Under this reduction, q[n] is a solution of the NLS equation
generated by an n-fold DT starting with the seed solution q.
In the following we always use this reduction condition.

Theorem 1 and Corollary 1 cited above imply that an
n-fold DT Tn of the NLS equation annihilates its independent
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generating functions, which are the eigenfunctions fi (i =
1,3,5, . . . ,2n − 1) associated with n distinct eigenvalues
λ1,λ3,λ5, . . . ,λ2n−1. This means that if we fix the given set of
eigenvalues, we cannot apply DTs more than once. Recall that
the formulas for the eigenfunctions fi (i = 1,3,5, . . . ,2n − 1)
differ only by the fact that they involve different eigenvalues λi .
However, in order to obtain a HRW for a critical eigenvalue λ0,
we must apply repeated DTs. This difficulty can be overcome
by noting that the annihilated eigenfunctions can be recreated
by taking the limit λi → λ1 of the eigenvalues used in the
DT [40]. We set fi = φ(λi) and f

[n]
i = φ[n]|λ=λi

. We shall use
the determinant representation of the n-fold DT [see Eq. (14)
of Ref. [48]] to illustrate the relevant construction. It is straight-
forward to verify that f

[1]
1 = 0, and hence we cannot apply the

DT again with the eigenvalue λ1. Let λ3 = λ1 + ε; then

f
[1]
3 = f

[1]
3 (λ1 + ε) = f

[1]
1 (λ1 + ε)

= f
[1]
1 (λ1) +

(
∂f

[1]
1 (λ1 + ε)

∂ε

∣∣∣∣
ε=0

)
ε + O(ε).

Hence, the limit

lim
ε→0

1

ε
f

[1]
3 = ∂f

[1]
1 (λ1 + ε)

∂ε

∣∣∣∣
ε=0

� f
[1]
1

yields a transformed eigenfunction associated with λ1, which
can be used to generate a new DT so that we can apply this DT
with the given eigenvalue λ1 for a second time. Similarly, set
the second degenerate eigenvalue λ5 = λ1 + ε in f

[2]
5 ; the limit

lim
ε→0

1

ε2
f

[2]
5 = ∂2f

[2]
1 (λ1 + ε)

∂ε2

∣∣∣∣
ε=0

� f
[2]
1

recreates a transformed eigenfunction associated with λ1 of
the twofold DT. Note that the zero-order and the first-order
terms of ε in f

[2]
5 yield zero contributions. In general, for an

n-fold DT, we can use the following theorem on φ[n](λ) and
q[n] using the degenerate limit λi → λ1, by a similar analysis,
based on the determinant representation given by Theorem
1 and Corollary 1 of Ref. [48]. The following notations,
including matrix elements [(t1)12]ij and (W2n)ij , are given in
Ref. [48].

Theorem 1. An n-fold DT with a given eigenvalue λ1 is
realized in the degenerate limit λi → λ1. This degenerate n-
fold DT yields the transformed eigenfunction φ[n] of λ, where

φ[n] = 1

|W ′
2n|

⎛
⎜⎜⎜⎜⎝

∣∣∣∣∣ φ̂(n) λnφ1

W ′
2n ξ̂ ′

2n−1

∣∣∣∣∣∣∣∣∣∣ φ̂(n) λnφ2

W ′
2n ξ̂ ′

2n

∣∣∣∣∣

⎞
⎟⎟⎟⎟⎠ , (2)

as well as the new solution q[n] of the NLS equation starting
with the seed solution q, where

q[n](x,t ; λ1) = q − 2i
|Q′

2n|
|W ′

2n|
, (3)

with

W ′
2n =

(
∂ni−1

∂εni−1

∣∣∣∣
ε=0

(W2n)ij (λ1 + ε)

)
2n×2n

,

ξ̂ ′
2n−1 =

(
∂ni−1

∂εni−1

∣∣∣∣
ε=0

ξ̂2n−1,i(λ1 + ε)

)
2n×1

,

ξ̂ ′
2n =

(
∂ni−1

∂εni−1

∣∣∣∣
ε=0

ξ̂2n,i(λ1 + ε)

)
2n×1

,

Q′
2n =

(
∂ni−1

∂εni−1

∣∣∣∣
ε=0

(Q2n)ij (λ1 + ε)

)
2n×2n

.

ni = [ i+1
2 ], [i] denotes the floor function of i, and Q2n is the

determinant in the numerator of (t1)12 [48].
Starting with different seed solutions q, Eq. (3) yields

different degenerate solitons and breathers. Furthermore, by
choosing a special eigenvalue λ1 = λ0 associated with φ(λ0) =
0, Eq. (3) yields an order-n RW. In the latter case, all orders
of derivatives with respect to ε in φ[n] and q[n](x,t ; λ1) are
increased by 1 because φ(λ0) = 0. The main idea of the
above procedure for constructing rogue wave is the following:
According to the determinant representation in Theorem 1 and
Corollary 1 of Ref. [48], there are two degenerate cases in
T2k , i.e., λi → λ1 and fi = φ(λi) = 0 (i = 1,3, . . . ,2k − 1).
It is easy to recognize that q[2k] generated by T2k is given by
an indeterminate form 0

0 in the above degenerate cases. Thus,
whether λi = λ1 + ε or λi = λ0 + ε, smooth solutions can be
obtained by higher-order Taylor expansion in determinants
with respect to ε as in Theorem 1.

In order to get an order-(n − 2) RW from an order-n RW
by a simple limit, it is necessary to use an inverse DT. For a
general eigenvalue λ, the x part of the Lax pair of the NLS
equation admits the solution φ(λ), as well as the linearly inde-
pendent solution ψ(λ) = (ψ1,ψ2)T . Furthermore ψ [n] = Tnψ

and φ[n] = Tnφ are linearly independent because Tn is a linear
transformation of ψ and φ. Let gk � (gk1,gk2)T = ψ(λk);
then the Wronskian determinant W (fi,gi) = fi1gi2 − fi2gi1

of fi and gi is a nonzero constant. Using the determinant
representation of the onefold DT, T (λ; f1,f2), generated by f1

and f2, we find the transformed functions

g
[1]
1 = (λ1 − λ2)W (f1,g1)

|W2|
(

f21

f22

)
,

g
[1]
2 = (λ1 − λ2)W (f2,g2)

|W2|
(

f11

f12

)
,

which are not zero, in contrast to f
[1]
1 = 0 and f

[2]
2 = 0. Hence,

we can use g
[1]
1 and g

[1]
2 to generate T (λ; g[1]

1 ,g
[2]
2 ). Using

a straightforward calculation with the help of Theorem 1 in
Ref. [48], it can be shown that the twofold DT is given by

T2 = T
(
λ; g[1]

1 ,g
[1]
2

)
T (λ; f1,f2) = (λ − λ1)(λ − λ2)I, (4)

where I is the unit matrix of size 2. Here we present only the
calculation of the element (T2)11. First note that

|W4(g1,g2,f1,f2)| = −(λ2 − λ1)2W (f1,g1)W (f2,g2),

(T̃2)11 = −(λ − λ1)(λ − λ2)(λ2 − λ1)2W (f1,g1)W (f2,g2).
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Hence,

(T2)11= (T̃2)11

|W4(g1,g2,f1,f2)| = (λ − λ1)(λ − λ2).

Thus T (λ; g[1]
1 ,g

[1]
2 ) is the inverse DT of T (λ; f1,f2).

In general, for an (n − 2)-fold DT Tn−2 generated by
f1,f2, . . . ,f2n−5,f2n−4, we can find a onefold inverse DT as
follows (note that g

[n−2]
2n−3 = Tn−2g2n−3 or g

[n−2]
2n−2 = Tn−2g2n−2

and f
[n−2]
2n−3 or f

[n−2]
2n−2 are linearly independent):

Theorem 2. Let T (λ; f [n−2]
2n−3 ,f

[n−2]
2n−2 ) be an

one-fold DT after an (n − 2)-fold DT Tn−2, and
g

[n−1]
2n−3 = T (λ; f [n−2]

2n−3 , f
[n−2]
2n−2 )g[n−2]

2n−3 , g
[n−1]
2n−2 = T (λ; f [n−2]

2n−3 ,

f
[n−2]
2n−2 )g[n−2]

2n−2 . Then DT T (λ; g[n−1]
2n−3 ,g

[n−1]
2n−2 ) is the inverse of

T (λ; f [n−2]
2n−3 ,f

[n−2]
2n−2 ).

In other words, T (λ; g[n−1]
2n−3 ,g

[n−1]
2n−2 ) maps q[n−1] to q[n−2].

This gives an important connection between RWs of order
(n − 1) and order (n − 2).

III. HIGHER-ORDER BREATHERS AND ROGUE WAVES

The first-order breather of the NLS equation is a periodic
traveling wave. This solution, via the limit of the period
approaching infinity, gives the first-order RW [6,19]. However,
it is still not clear how to generate HRWs from multibreathers,
even for second-order RWs [41]. Moreover, the collision of
three breathers [49] does not provide a satisfactory explanation
for the appearance of different patterns of order-3 RWs.

On the (x,t) plane, because of the conservation of the
number of breathers, there exist n separate peaks in each row
before and after the interaction of n breathers. The interaction
area is localized near the origin of the plane between the
two closest rows (or periods) possessing n separate peaks.
When the breathers are in the interaction area, their peaks get
closer. Based on the detailed investigation of the interaction
of breathers, we claim the following mechanism for the
generation of HRWs: the progressive fusion and fission of
n degenerate breathers associated with a critical eigenvalue λ0

creates an order-n HRW. Furthermore, by adjusting the relative
phase of the breathers in the interacting area, it is possible to
obtain different patterns of HRWs. Here λ0 is a zero point
of the eigenfunction φ(λ), i.e., φ(λ0) = 0, which corresponds
to the limit of the period of the breathers becoming infinitely
large. The relative phase can be adjusted via the tuning of the
parameters si in the eigenfunctions fi .

In this work, we shall take a periodic seed q = ceiρ with ρ =
ax + (2c2 − a2)t . The corresponding eigenfunctions φ(λ) =
(φ1,φ2)T are given by

φ(λ) =
(

cei[ρ/2+d(λ)] + i[a/2 + c1(λ) + λ]e−i[−ρ/2+d(λ)]

ce−i[ρ/2+d(λ)] + i[a/2 + c1(λ) + λ]ei[−ρ/2+d(λ)]

)
.

(5)

Here c1(λ) =
√

c2 + (λ + a/2)2, d(λ) = c1(λ)[x + (2λ −
a)t + s0 + 
], 
 = ∑n−1

k=1 skε
2k [40], n denotes the number

of steps of the multifold DT, λ0 = −a/2 + ic is a zero point of
the eigenfunction φ(λ), ε denotes a small parameter when we
consider the degeneracy of the eigenvalues, i.e., λ = λ0 + ε,
and si are complex constants. The functions fi = φ(λi) have
the same form except for the occurrence of different values of

FIG. 1. (Color online) The fusion and fission of three syn-
chronous breathers on the (x,t) plane. The lower panel is a local
profile in the interaction area of the upper panel.

the eigenvalues, which is necessary to generate HRWs via the
process of eigenvalue degeneration λi �→ λ1 (see Theorem 1).
In the following examples we set a = 0. Also, in order to
adjust the relative phase of the breathers in the interaction
area according to Theorem 1 and Corollary 1 of Ref. [48],
we set si = 0 (i � 1), but s0 has different values in different
fi . There exist three types of relative phases of n breathers
in the interaction area: synchronous, antisynchronous, and
quasisynchronous.

In the interaction area of n synchronous breathers, there
exists progressively increasing fusion via n − 1 steps from
the n lower peaks to the central maximum peak, and then
progressively decreasing fission via n − 1 steps from the
central maximum peak to the n lower peaks. Here, each step
of fusion annihilates one peak and hence the height of the
peaks increases; similarly, each step of fission creates one new
peak and hence the height of the peaks decreases. These peaks
are arranged as two triangles with one joint vertex along their
perpendicular bisector. Thus, the total number of nonuniform
peaks in the interaction area is n(n + 1) − 1. It is interesting to
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FIG. 2. (Color online) The fusion and fission of three antisyn-
chronous breathers on the (x,t) plane. The lower panel is a local
triangle pattern in the interaction area of the upper panel.

note that the outermost row of the interaction area has n lower
peaks, which are close to each other. Hence, the peaks are much
lower than the ones in the nearest row of the noninteraction
area. This phenomenon provides evidence for the strong
interaction of the breathers. When the eigenvalue used in the
breathers approaches the critical value λ0, i.e., λi �→ λ0, the
periods of all breathers go to infinity simultaneously, so that
only one profile in the interaction area survives, and this gives
the fundamental pattern of a HRW. Therefore, this pattern of
an order-n HRW, has n(n + 1) − 1 nonuniform peaks. The
central profile of the three breathers in Fig. 1 is very similar
to the fundamental pattern of an order-3 RW [see Fig. 3(a)
in Ref. [43]] of the NLS equation. The three breathers are
plotted according to Theorem 1 and Corollary 1 of Ref. [48]
with a = 0.01, c = 0.5, s0 = 0, and λ1 = −0.2 + 0.54i in f1,
λ3 = 0.1 + 0.55i in f3, and λ5 = 0.03 + 0.56i in f5.

FIG. 3. (Color online) The fusion and fission of three antisyn-
chronous breathers on the (x,t) plane. The lower panel is a local
circular pattern in the interaction area of the upper panel.

The interaction of n antisynchronous breathers is simpler,
although there also exists the fusion or fission of peaks. In
the interaction area, the peaks are closer to each other. By
suitable adjustment of the relative phases of the breathers, n

synchronous breathers become n antisynchronous breathers,
and the corresponding peaks in the triangle disappear, so that
only peaks in one triangle survive. Specifically, by suitably
changing the relative phase, we observe the disappearance of
the lowest peak in the outermost row of the interaction area,
followed by the disappearance of the two nearest peaks, and
so on. This chain reaction continues until the coalescence of
the two triangles. The collapse of this triangle is stimulated by
the loss of the nearest-neighbor interactions. Thus, there are
n(n + 1)/2 peaks in the interaction area, which are allocated
on the remaining triangle. If we set λi �→ λ0 simultaneously,
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FIG. 4. (Color online) The polygon pattern of an order-5 RW.
The upper pentagon has three concentric circles, and each of them
has five peaks. The lower heptagon has two concentric circles, and
each of them has seven peaks.

then the profile in the interaction area of the order-n breather
yields a triangular pattern of a HRW. Therefore, there are n(n +
1)/2 equal-height peaks in the triangular pattern of an order-
n HRW. A triangular structure of the three antisynchronous
breathers is plotted in Fig. 2 by using Theorem 1 of Ref. [48]
with a = 0.01, c = 0.5, and λ1 = 0.05 + 0.531i and s0 = 16
in f1, λ3 = 0.55i and s0 = −20i in f3, and λ5 = −0.05 +
0.551i and s0 = −16 in f5. By suitably choosing different
values of the parameters in n antisynchronous breathers, so
that the relative positions of the peaks are changed but the
total number of peaks is preserved, we obtain a ring structure

FIG. 5. (Color online) A triangle pattern in a circle for an order-5
RW. The lower panel is a local central profile of the upper panel.

associated with the n(n + 1)/2 peaks in the interaction area,
which gives rise to a circular pattern of an order-n RW in the
above limit possessing n(n + 1)/2 peaks. Figure 3 confirms
the ring structure of three antisynchronous breathers with a =
0.01, c = 0.5, and λ1 = 0.05 + 0.54i and s0 = 1 + i in f1,
λ3 = 0.55i and s0 = 0 in f3, and λ5 = −0.05 + 0.56i and
s0 = 1 + i in f5. There exist many other patterns appearing
in the interaction area of n antisynchronous breathers, which
give rise to several types of HRWs such as two polygons
(Fig. 4 for an order-5 RW given by Theorem 1 with λ0 =
ic, a = 0, c = 1/

√
2, s0 = 0, s1 = 0, s2 = 106, s3 = 10 for a

pentagon or s3 = (1 + I ) × 5 × 105 for a heptagon, and s4 =
0) and a triangle in a circle (Fig. 5 for an order-5 RW given
by Theorem 1 with λ0 = ic, a = 0, c = 1/

√
2, s0 = 0, s1 =

15, s2 = 0, s3 = 0, and s4 = 107).
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FIG. 6. (Color online) Decomposition of an order-5 RW. The
lower panel is a local central profile of the upper panel.

By suitably choosing the values of the parameters in fi ,
we observe n quasisynchronous breathers from Theorem 1
and Corollary 1 in Ref. [48]. There exist many different
patterns in the interaction area, which implies many interesting
types of HRWs when λi �→ λ0. For example, one can find
the following interesting decomposition of an order-n HRW:
an order-(n − 2) RW surrounded by 2n − 1 peaks [43]. The
first nontrivial example of this decomposition is given by the
interaction of four quasisynchronous breathers. Unfortunately,
we are not able to plot the profile in the interaction area in this
case, due to the complexity of order-4 breathers. However, we
find two complete decompositions of the circular pattern: an

FIG. 7. (Color online) Decomposition of an order-6 RW. The
lower panel is a local central profile of the upper panel.

order-5 RW in Fig. 6 with λ0 = ic, a = 0, c = 1/
√

2, s0 =
s1 = s2 = 0, s3 = 8 × 104, and s4 = 2 × 107, and an order-6
RW in Fig. 7 with λ0 = ic, a = 0, c = 1/

√
2, s0 = s1 = s2 =

0, s3 = 3 × 104, s4 = 0, and s5 = 108.
The inverse DT provides a technique enabling us to prove

the above interesting decomposition rule of an order-n RW.
For simplicity we set a = 0 in the seed solution, and then we
set λ0 = ic. Expanding φ(λ0 + ε) with respect to ε, we find
that the coefficient of the first-order term in ε is given by

f0 =
(

eic2t (2icx − 4c2t + 2ics0 + i)

−e−ic2t (2icx − 4c2t + 2ics0 − i)

)
,
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FIG. 8. (Color online) Decomposition of an order-7 RW. The
lower panel is a local central profile of the upper panel.

which is an eigenfunction associated with q and λ0. There
exists another eigenfunction

g0 =
(

eic2t

−e−ic2t

)

of λ0. Note that f0 and g0 are two linearly independent
eigenfunctions of λ0. According to Theorem 1, an order-n
RW is generated by a degenerate n-fold DT with the critical
eigenvalue λ0 from the periodic seed q = ce2ic2

. Let Tn−1 be an
(n − 1)-fold degenerate DT with λ0, so that g

[n−1]
0 and f

[n−1]
0

FIG. 9. (Color online) Decomposition of an order-7 RW. The
lower panel is a local central profile of the upper panel.

are given by Eq. (2), and are linearly independent. By a tedious
asymptotic analysis we find that f

[n−1]
0 = f̃0 + sn−1g

[n−1]
0 ,

where f̃0 is a smooth bounded function. According to
Theorem 2, T (λ; g[n−1]

0 ) is the inverse of the (n − 1)th
DT defined by T (λ; f [n−2]

0 ). Thus, by the limit sn−1 �→ ∞,
T (λ; f [n−1]

0 ) = T (λ; g[n−1]
0 ) gives an inverse transform of

T (λ; f [n−2]
0 ). Therefore, under this limit, an order-n RW q[n]

is reduced to an order-(n − 2) RW, q[n−2]. By taking sn−1 to
be large (but finite), an order-n RW is decomposed into an
order-(n − 2) RW and 2n − 1 peaks located on an outer circle
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FIG. 10. (Color online) Decomposition of an order-8 RW. The
lower panel is a local central profile of the upper panel.

such that the total number n(n + 1)/2 of peaks can be realized
either in a triangular pattern or in a circular pattern. The inner
order-(n − 2) RW can take any of these forms by choosing
si (i = 0,1, . . . ,n − 3). This decomposition rule of HRWs was
conjectured by Akhmediev and co-workers [43]. Figures 5
and 6 show different patterns of the inner lower-order RW
decomposed from an order-5 RW. The fundamental pattern of
the inner order-3 RW reduced from an order-5 RW is shown
in Fig. 4(c) of Ref. [43]. According to this decomposition
rule, Figs. 6 and 7 provide nontrivial examples of a complete
decomposition associated with three levels.

FIG. 11. (Color online) Decomposition of an order-8 RW. The
lower panel is a local central profile of the upper panel.

In order to show the applicability of the generating
mechanism, we present further types of decomposition of
the seventh-order, eighth-order, and ninth-order RWs in
Figs. 8–13. In these figures, λ0 = ic, a = 0, c = 1/

√
2, and

the other nonzero parameters are s6 = 1010c0 in Fig. 8;
s6 = 1010c0, s4 = 105c0, s2 = 10c0 in Fig. 9; s7 = 1010c0 in
Fig. 10; s7 = 1010c0, s5 = 106c0 in Fig. 11; s8 = 1012c0 in
Fig. 12; s8 = 1012c0, s6 = 105c0 in Fig. 13, where c0 = 5 +
5i. In particular, Figs. 9 and 11 provide nontrivial examples of
a complete decomposition associated with four levels.
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FIG. 12. (Color online) Decomposition of an order-9 RW. The
lower panel is a local central profile of the upper panel.

IV. CONCLUSION

The central theme of this paper is an attempt to elucidate
how normal waves can evolve into a rogue wave. It is well
known that when a classical envelope soliton interacts with
a background plane wave, then a breather is formed [4].
Thus, there exist different types of breathers, depending on
the various combinations of envelope solitons and background
plane waves. It has been predicted that the maximum wave field
generated due to the interaction of an envelope soliton with a
background plane wave depends on the linear superposition be-
tween the amplitudes of the soliton and the background plane
wave. The problem of early detection of rogue waves is a chal-
lenging task. Indeed, since the NLS breathers are homoclinic
orbits, even the slightest perturbation resulting from roundoff
errors during numerical simulation can trigger a false rogue
like behavior. Akhmediev et al. [50] have devised a model

FIG. 13. (Color online) Decomposition of an order-9 RW. The
lower panel is a local central profile of the upper panel.

for early detection of rogue waves in a chaotic field, which
would help marine travel in stormy conditions, as it would
provide an early warning system for rogue waves. Just before
the appearance of the high-peak wave in real space, the spectra
of unit patches of the chaotic wave fields show a specific
triangular feature. Thus, the analysis of the formation of such
specific features could help the early detection of rogue waves.

The two conjectures described in this article elucidate the
formation of higher-order rogue waves. By understanding the
generating mechanism for higher-order rogue waves as a result
of the fission and the fusion of n degenerate breathers, the
formation of the desired triangular pattern (and of the class
of circular pattern reported in this paper) is a basic features
of rogue waves, which may have an important impact on
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their early detection. The constructions of specific triangular
and circular patterns provide simple implementations of the
generic results presented in this paper.
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