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Interaction of multiarmed spirals in bistable media
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We study the interaction of both dense and sparse multiarmed spirals in bistable media modeled by equations
of the FitzHugh-Nagumo type. A dense one-armed spiral is characterized by its fixed tip. For dense multiarmed
spirals, when the initial distance between tips is less than a critical value, the arms collide, connect, and disconnect
continuously as the spirals rotate. The continuous reconstruction between the front and the back drives the tips
to corotate along a rough circle and to meander zigzaggedly. The rotation frequency of tip, the frequency of
zigzagged displacement, the frequency of spiral, the oscillation frequency of media, and the number of arms
satisfy certain relations as long as the control parameters of the model are fixed. When the initial distance between
tips is larger than the critical value, the behaviors of individual arms within either dense or sparse multiarmed
spirals are identical to that of corresponding one-armed spirals.
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I. INTRODUCTION

Spiral waves have been observed in a variety of physical,
chemical, and biological systems [1–8]. Although the intrinsi-
cal origins of the spirals in these systems are very different, the
dynamics of the spirals exhibit remarkable similarities, such as
the meandering [9,10]. From the point of view of dynamics, the
spirals can be classified into three types: excitable, oscillatory,
and bistable spirals. The excitable spirals originate from the
excitability of media, which have been studied widely in
the Belousov-Zhabotinsky (BZ) reaction [11], the cardiac
tissue [5], and the catalytic reactions on platinum surface [12].
The oscillatory spirals originate from the Hopf bifurcation and
are formed by the coupling of phase in spatial. They have been
investigated extensively in the BZ reaction [9], the nonlinear
optical system [13], the complex Ginzburg-Landau equation
[13,14], and the FitzHugh-Nagumo model [15]. The bistable
spirals consist of two Bloch fronts. Their dynamics are entirely
determined by the Bloch interfaces [16,17]. The bistable
spirals have been observed in the ferrocyanide-iodate-sulfite
reaction [2,18] and the FitzHugh-Nagumo model [19,20].
From the point of view of profile, the spirals show dense or
sparse configuration [21–23]. In excitable media, dense and
sparse spirals result from different excitabilities of media. In
bistable media, dense and sparse spirals can transit each other
via a subcritical bifurcation. So far, the dynamics of one-armed
spirals have been well understood.

Recently, major progress on the spirals has involved the
interaction of multiarmed spirals [24–29]. This is inspired
especially by the experimental observation of multiarmed
spirals in a two-dimensional cardiac substrate [25]. The
behaviors of persistent multiarmed spirals are different from
that of one-armed spirals. Multiarmed spirals can be formed
due to attraction of several one-armed spirals if their tips are
less than one wavelength apart [26]. In an asymmetric bound
state of spiral pairs, the faster spiral becomes the master one,
and the other (slave spiral) can rotate around it [28]. Although
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the study on the interaction of multiarmed spirals has risen
in recent years, it has mainly focused on the sparse spirals
in excitable media. The interaction of multiarmed spirals in
bistable media, for both dense and sparse configurations, is
still an open question. In this work, we first give the evolution
of both dense and sparse one-armed spirals. Then, we study
the interaction of dense multiarmed spirals in detail, including
the repulsive and attractive interactions, the corotation and
zigzagged meandering of tips, and the relations between
several frequencies. Finally, we discuss the interaction of
sparse multiarmed spirals.

II. BISTABLE MEDIA MODEL

This work is based on the FitzHugh-Nagumo model:

ut = au − u3 − v + ∇2u, (1)

vt = ε(u − v) + δ∇2v. (2)

Here, variables u and v represent the concentrations of the
activator and inhibitor, respectively, and δ denotes the ratio of
their diffusion coefficients. The small value ε characterizes the
time scales of the two variables. In this paper, the parameter a

is chosen such that the system is bistable. The two stationary
and uniform stable states are indicated by up state (u+,v+)
and down state (u−,v−), respectively, and they are symmetric,
(u+,v+) = −(u−,v−). An interface connects the two stable
states smoothly. On decreasing ε, the system follows nonequi-
librium Ising-Bloch bifurcation that leads to the formation of a
couple of Bloch interfaces [19,20]. In the following, we define
a front that jumps from down to up state and a back that falls
from up to down state. Here, the front and the back correspond
to the two Bloch interfaces with opposite velocities. So the
image of bistable spiral is clear: a couple of Bloch interfaces
(front and back) propagating with opposite velocities enclose
a spiral arm, and the front meets the back at the spiral tip
[16,17]. In the following, the spiral tip is determined by the
intersection of the single contour of u and v, where u = v = 0.
The bistable system can exhibit dense and sparse spirals. In
order to differentiate them, we define an order parameter
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FIG. 1. (Color online) Single-armed spiral in bistable media.
(a) Dense spiral, ε = 0.2; (b) positive phase sparse spiral (PPSS),
ε = 0.36; (c) negative phase sparse spiral (NPSS), ε = 0.4; (e)–(g)
corresponding tip paths. (d) and (h) indicate the initial conditions for
generating one-armed and two-armed spirals. The thick (thin) lines in
(d) and (h) represent the contour lines u = 0 (v = 0), and the dashed
circle indicates the initial circle on which the initial tips located.
Domain size: 80 × 80 space units.

α = | λ+−λ−
λ++λ−

|; here, λ+ and λ− represent the average widths
of up state and down state, respectively. In dense spiral case,
α = 0, which means that the up and down states have identical
widths [as shown in Fig. 1(a)]. In sparse spiral case, if λ+ <

λ−, we call it positive phase sparse spiral [PPSS; Fig. 1(b)].
Otherwise, if λ+ > λ−, we call it negative phase sparse spiral
[NPSS; Fig. 1(c)].

Spiral waves in bistable media are sensitive to the initial
condition and the boundary condition. Multiarmed spirals can
be generated by using the initial conditions with different
number of triangles as shown in Figs. 1(d) and 1(h). The
vertices of the triangles locate on an initial circle with different
radius r and serve as the initial tips of generated spirals. They
are separated equally by different angles in order to generate
the spirals with different number of arms. For two-armed
spiral, the two vertices are separated by π as shown in Fig. 1(h).
For three-armed spiral, they are separated by 2π /3, and so on.
Figure 1(d) gives the initial condition for one-armed spiral.
It should be mentioned that the numerical results will remain
unchanged for slight deviation of the given initial conditions.
The boundary conditions are taken to be no-flux. A generalized
Peaceman-Rachford ADI scheme is used to integrate the above
model. Unless otherwise noted, our simulations are under the
parameter sets: a = 2.0, δ = 0.05, space step dx = dy = 0.4
space units, time step dt = 0.04 time units and domain size
L × L = 160 × 160 space units.

III. SIMULATION RESULTS AND DISCUSSION

A. One-armed spiral

We first show the evolution of the one-armed spiral with
increasing ε as shown in Figs. 1(a)–1(c). In order to obtain
the one-armed spiral we use the initial condition as indicated
in Fig. 1(d). When ε < 0.33, the observed spiral is dense as
shown in Fig. 1(a), in which the order parameter α = 0 and
does not depend on ε according to its definition. The tip of
the dense spiral keeps a fixed point as shown in Fig. 1(e).
When ε � 0.33, the observed spiral is sparse as shown in
Figs. 1(b) and 1(c). The order parameter 0 < α < 1 and

FIG. 2. (Color online) Multiarmed dense spirals with different
number of arms generated from different initial circles. Dashed line
divides these spirals into two groups.

increases with ε. The tip of the sparse spiral follows a circle.
The radius of this circle increases with ε. The trajectories of the
tips in this case are shown in Figs. 1(f) and 1(g), respectively.
The transition between dense spiral and sparse spiral proves
to be a subcritical bifurcation [23].

B. Multiarmed dense spirals

Our emphasis is on the interaction between the arms within
a multiarmed dense spiral (ε < 0.33). The tips of multiarmed
dense spirals can corotate along a rough circle or fix at their
individual points, which depends on their initial separations.
Figure 2 shows the multiarmed dense spirals with different
number of arms generated from different initial circles when
ε = 0.2. The horizontal axis represents the radius of the
initial circle as indicated in Fig. 1(h), which shows the initial
separation of the tips. The vertical axis represents the number
of the initial tips spaced equally on the initial circle. It can
be seen that when the distance between initiated tips is large
enough, the arms will rotate independently as shown on the
right of the dashed line in Fig. 2. In this case, the number of
the arms within the final spiral is equal to that of the initial
arms. When the distance between initiated tips is small, the
strong interaction between the arms leads to the instability of
the multiarmed spiral. Some of the arms become unstable and
run outside of the domain in the stationary state. The rest of
the arms then begin to corotate with each other as is indicated
on the left of the dashed line in Fig. 2. The number of the arms
within the final spiral is less than that of the initial arms. So,
the dashed line in Fig. 2 divides these spirals into two groups.
It means that there exists a critical radius of the initial circle,
below which the arms begin to interact strongly with each
other. Figure 3 gives the dependence of this critical radius rc

on the parameter ε. It is clear that the critical radius increases
with ε. Moreover, for the same ε, the greater the number of
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FIG. 3. (Color online) Dependence of the critical radius rc, the
radius R of the stationary circle on the parameter ε. Solid lines (dashed
lines) represent the radius rc (R). Circle dotted line r0 represents
the radius of the tip trajectory of one-armed spiral. The patterned
rectangle region near the bifurcation point ε = 0.33 shows very
complex interaction between the arms. The digits in the figure indicate
the numbers of the arms. When the radius of the initial circle is
less than the critical radius, i.e., r < rc, strong interaction between
arms results in the corotation of tips along one zigzagged circle with
radius R. When r > rc the arms of multiarmed spirals will rotate
independently like one-armed spirals.

initial arms, the larger the critical radius is. This is because for
the spiral with more arms, it becomes easier to interact.

The strong interaction of multiarmed dense spirals can be
studied by following the tip trajectories. Figures 1(a) and 2
show dense one-armed spiral and multiarmed spiral at ε =
0.2, respectively. For one-armed dense spiral [Fig. 1(a)], the
tip is stable as indicated by the fixed point in Fig. 1(e). For
multiarmed dense spirals located on the left of the dashed line
in Fig. 2, the tips follow a rough circle and corotate with each
other due to their interaction. Figure 4 gives two examples that
show the rough profiles of the tip trajectories for two-armed
and three-armed dense spirals, respectively. Figures 4(a) and
4(c) show the space-time plots of the two tips within two-armed
spiral, in which the two tips are initiated on an initial circle
with smaller radius r = 5. It is clear that the two tips repel
each other at first and then corotate with each other along a
circular stationary trajectory with radius R2 = 14. However, if
the tips are initiated on an initial circle with larger radius (r >

R2, but r < rc), they first attract each other and then corotate
along the circular stationary trajectory with the same radius,
R2 = 14. Figures 4(b) and 4(d) show the attractive interaction
for three-armed spiral, in which the three tips are initiated on
an initial circle with larger radius r = 26. The three tips finally
corotate along a circle with radius of R3 = 17.2. Similarly, if
r <R3, the tips exhibit repulsive interaction and also follow the
circular stationary trajectory with radius R3 = 17.2. Here, we
should note that the radius R3 > R2. This is because the core
region of three-armed spiral is larger than that of two-armed
spiral due to their repulsive interaction.

We have conducted more numerical simulations for various
numbers of initial arms and obtained the dependence of the
radius R of the stationary circle on parameter ε as indicated
by the dashed lines in Fig. 3. From Figs. 2 and 3 we can
draw a conclusion that, as long as the radius r of the initial

FIG. 4. (Color online) Rough profiles of the tip trajectories for
two-armed and three-armed dense spirals. (a) and (b) plot the
trajectories in x, y, and t space. (c) and (d) plot them in x and y space.
The initial separation of the tips for two-armed spiral (three-armed
spiral) is r = 5 (r = 26). Smaller (larger) separation between the initial
tips exhibits repulsive (attractive) interaction. Inset in (c) represents
the zigzagged meandering of one tip.

circle is less than rc (solid lines in Fig. 3), i.e., r < rc, the
arms will interact strongly as shown on the left of the dashed
line in Fig. 2. The tips can corotate with each other along a
circular stationary trajectory with radius of R (dashed lines in
Fig. 3). The average distance d between tips in the final state
equals the wavelength λ of dense spiral as shown in Fig. 5.
Otherwise, when r > rc, the arms will rotate independently
like one-armed dense spiral as shown on the right of the dashed
line in Fig. 2. The tips are fixed and separated well. Therefore,
the multiarmed spirals on the right of the dashed line in Fig. 2

FIG. 5. (Color online) Dependence of d/λ on r in two-armed
spiral. Here, d represents the average distance between the two tips
in final state. λ is the wavelength of dense spiral. rc indicates the
critical radius of initial circle. Straight lines show the linear fitting.
When r < rc, the strong interaction between the arms results in the
tip corotation along a circular stationary trajectory. In this case, d =
λ, which illustrates that the average distance between tips equals the
wavelength of dense spiral.
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FIG. 6. (Color online) Reconstruction of the front (fi) and the
back (bi) in two-armed dense spiral during one cycle. Thick (thin)
lines in (d)–(f), (j)–(l) represent the corresponding contours of u (v).
Points of intersection between the thick and the thin lines indicate
the two tips of two-armed spiral, which is labeled by T1 and T2,
respectively. The two arms (up state) in (d), (e), and (l) are labeled
by A1 and A2, respectively. The two arms (down state) in (f), (j), and
(k) are labeled by A′ and A′′, respectively. Time in (a)–(c), (g)–(i) is
t = 0, 0.24, 0.4, 0.64, 0.88, 1.12, respectively.

can be seen as coexistence of several one-armed dense spirals.
The average distance d between tips in the final state increases
linearly with the radius r of the initial circle as shown in
Fig. 5, which follows approximately

d/λ = 0.535 + 0.052r. (3)

The interaction condition in bistable media is different from
that in excitable media. Vasiev et al. have shown that
multiarmed spirals in excitable media can corotate when their
tips are less than one wavelength apart [26]. However, in our
case, only when r < rc, multiarmed spirals can corotate, and
meanwhile the tips will keep one wavelength apart as they
corotate.

The strong interaction of dense multiarmed spiral results
in arm-switching with tips. Figure 6 shows the evolution of
a corotating two-armed spiral during one cycle. First, we set
the combination of the tips and the arms in Figs. 6(a) and
6(d) to T1 − A1 and T2 − A2. The two tips and the two arms
separate well. During the development, the two arms undergo
collision [Figs. 6(b) and 6(e)], connection [Figs. 6(c), 6(f),

6(g), 6(j)], and disconnection [Figs. 6(h) and 6(k)]. After one
cycle, the combination of the tips and the arms turns into T1 −
A2, T2 − A1, and the arms switch to the other tip as shown in
Figs. 6(i) and 6(l). This arm-switching will happen in the same
way every one cycle.

The interaction of multiarmed spirals and the mechanism
of arm-switching can be studied by analyzing the interaction
between the front and the back, because the arm of bistable
spiral is enclosed by a couple of Bloch interfaces (a front and
a back). In Fig. 6(e), the arm A1 (up state) is enclosed by the
front f1 and the back b1, and so does the other arm A2. We
should notice that when ε = 0.2, for dense one-armed spiral
[Fig. 1(a)], the order parameter α = 0 (λ+ = λ−). For dense
two-armed spiral [as Figs. 6(a) and 6(b)], it can be regarded as
superposition of two sparse one-armed spirals (arms A1 and
A2; PPSS) with individual order parameter α1,2 = 0.5, and the
global order parameter keeps α = 0. Because the parameter
ε = 0.2, the two sparse one-armed spirals (arms A1 and A2,
α1,2 = 0.5) tend to expand, respectively, to dense one-armed
spirals with α1,2 = 0. During their expansion, the cores begin
to collide and connect together [Figs. 6(b), 6(c), and 6(g)],
the front and the back will reconstruct. The back b2 and the
front f1 enclose and form a new arm A′′ (down state), the back
b1 and the front f2 enclose and form the other new arm A′
(down state) as shown in Figs. 6(f) and 6(j). Now, the dense
two-armed spiral can also be regarded as superposition of two
sparse one-armed spirals (arms A′ and A′′; NPSS). Similarly,
the arms A′ and A′′ will expand, respectively, as the rotation
is going on, and the front and the back will reconstruct again.
The front of one arm disconnects with the forward back of
another arm and reconnects with the backward back of itself
[Figs. 6(i) and 6(l)]. Now, the combination of the tips and
the arms in Figs. 6(i) and 6(l) is T1 − A2, T2 − A1, and the
arms exchange their tips. So, the arm-switching observed in
dense multiarms spiral originates from the reconstruction of
the front and the back. It is easy to deduce that undergoing
one cycle, again, the arms will exchange their tips once more.
The combination of the tips and the arms will become T1 −
A1 and T2 − A2 like it was two cycles ago. In a word, the front
and the back reconstruct twice in one cycle, which results in
the arms-switching once. This mechanism of reconstruction
happens also in other multiarmed dense spirals.

According to the eikonal equation, cr = c0 − Dκ , the
curvature κ of spiral affects the speed cr of the Bloch front
and back. During the continuous reconstruction of front and
back, the curvature of spiral near the tip changes remarkably,
as shown in Figs. 6(e) and 6(k). The changes in the curvatures
of the front and the back result in the speed difference between
them, which will drive the tip to zigzag along a rough circle
(zigzagged meandering). The rotation direction of the tip is
determined by the chirality of spiral. Figure 7(a) shows the
time sequence of zigzagged displacement x of one tip in x

direction for dense three-armed spiral. It can be seen that the
zigzagged displacement is tiny (about 0.36 space unit), which
is far less than the average diameter of the circular stationary
tip trajectory (about 14.28 space unit). In order to confirm if
there exists petal meandering (like that in excitable media) in
the present case, we use the domain size 28 × 28 space units
and smaller space step h = 0.02 space units. The numerical
simulations with higher spatial resolution show only the
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FIG. 7. Time sequences of three-armed dense spiral.
(a) Zigzagged displacement x of one tip in x direction. (b) Parameter
su. (c) Oscillation intensity of one point far from the spiral center.
(d) Distance d between two neighboring tips. The parameters: ε =
0.25; domain size 32 × 32 space units; space step h = 0.04 space
units; time step dt = 0.008 time units.

zigzagged meandering of spiral. The zigzagged meandering of
dense multiarmed spirals in bistable media is different from the
petal meandering of spirals in excitable media. This is because
the origins of meandering spirals in bistable and excitable
media are different. The zigzagged meandering of multiarmed
dense spiral in bistable media results from the interaction of
the arms, i.e., the continuous reconstruction between the front
and the back. The petal meandering of spiral in excitable media
results from a secondary Hopf bifurcation [10].

In order to illustrate the periodical interaction between the
arms, we define a parameter,

su = 1

L2

L∑
i=1

L∑
j=1

ui,j , (4)

where, ui,j represents the variable u at the (i,j )th grid point
in two-dimensional space. It can represent the frequency of
dense multiarmed spiral. Figure 7(b) shows the periodical
change of this parameter su for three-armed spiral. When su =
0, the up state and the down state are entirely symmetrical. We
also measure the time sequence of one point far from the spiral
center as shown in Fig. 7(c). Its frequency is far more than
the rotation frequency of the tips [Fig. 7(a)]. The distance d

between two neighboring tips changes periodically as shown in
Fig. 7(d). Obviously, there exists certain modulations of these
time sequences in Fig. 7. In order to clarify these modulations,
it is necessary to analyze their corresponding Fourier spectra.

The zigzagged meandering of multiarmed dense spiral is
characterized by several frequencies, the rotation frequency f0

of tip, the frequency f1 of spiral, the oscillation frequency f2

of media, the frequency f4 of zigzagged displacement, and the
number Narms of arms. Because the tips meander clockwise, the
oscillating frequency f2 of one point far from the spiral center
is larger than the frequency f1 of spiral. The frequency f2 is
closely connected with the number Narms of arms. Obviously,
the more arms one spiral has, the larger the frequency f2 is. The
rotation frequency f0 of tips also increases with the number
Narms of arms. These imply that the quantities f0, f1, f2, and

FIG. 8. Fourier spectra of the corresponding time sequences of
three-armed dense spiral in Fig. 7.

Narms satisfy the following relation of Eq. (5):

f2 − f1 = Narmsf0. (5)

The applicability of Eq. (5) is explored in Fig. 8, which
shows the Fourier spectra of the corresponding time sequences
of three-armed dense spiral in Fig. 7. The rotation frequency
of tip is f0 = 0.046 as indicated in Fig. 8(a). The frequency of
spiral is f1 = 1.602 as indicated in Fig. 8(b), which is far more
than the rotation frequency f0 of tip. The oscillating frequency
f2 of one point far from the spiral center is f2 = 1.741 as shown
in Fig. 8(c). These frequencies satisfy the relations of Eq. (5).

Because the front and the back reconstruct twice during
one cycle as illustrated in Fig. 6, it results in the frequency
doubling 2f1 in the power spectra of distance d between
two neighboring tips [as indicated in Fig. 8(d)]. Meanwhile,
because the tips are meandering clockwise, the frequency f4

of zigzagged displacement of tip is the sum of the frequency
doubling 2f1 and the rotation frequency f0 of tip:

f4 = 2f1 + f0. (6)

In Fig. 8(a), it reads f4 = 3.24. In addition, the lower frequency
f3 = 0.185 in Fig. 8(d) is always four times the rotation
frequency f0 of tip:

f3 = 4f0, (7)

which should result from the boundary constraint of the square
domain to the tips.

These relations also hold for other multiarmed dense spirals
in our extended simulations and are not limited to the case of
three-armed dense spiral as shown in Figs. 7 and 8. Because
the frequency of spiral is determined by the control parameters
of the model, the frequency f1 of spiral is almost invariant for
multiarmed spirals with different numbers of arms as long as
the parameter ε keeps constant. The other frequencies, f0, f2,
f3, and f4, increase with the number Narms of arms.

The parameters ε, a, and δ control the Nonequilibrium
Ising-Bloch bifurcation, which plays an important role on
pattern formation in bistable media [16,17]. In the Bloch
region, the speeds c of the Bloch interfaces (front and back)
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FIG. 9. (Color online) Sparse two-armed spirals and their trajec-
tories of tips. The initial separation of the two tips is 56 space units in
(a) and (c), 80 space units in (b) and (d). The parameter ε = 0.4. (a)
and (c) show the attractive process of the two tips. (b) and (d) show
the independent rotation of each tip.

are determined by the following implicit relation [19,20]:

ε =
[

1 + 2a√
8aq2(c2/4 + q2)1/2

]2/
δ; (8)

here, q2 = 1+ 1
2a

. It shows that decreasing δ or increasing a

is equivalent to increasing ε. In this paper, we use ε as the
main control parameter given that a = 2 and δ = 0.05. In
our extended simulations, similar interactions of multiarmed
spirals have been observed when changing the parameter a and
δ in the parameter ranges: 1.8 < a < 2.5 and 0.01 < δ < 0.1.
However, the parameter a could not be set to a large value in the
numerical simulation because the absolute values (|u±|,|v±|)
of the two stationary and uniform stable states of system
will increase with the parameter a. The greater the absolute
values (|u±|,|v±|), the steeper the interfaces (front and back)
connecting the two stable states become, which will require
numerical simulations of smaller space step and demanding
computational intensity. Extended numerical simulations have
also shown our analyses are applicable for a general interaction
mechanism between multiarmed spirals in bistable media.

C. Multiarmed sparse spirals

Now, we focus on the interaction of multiarmed sparse
spirals [Fig. 9]; i.e., ε � 0.33, which is somewhat different from
the case of multiarmed dense spirals. In Fig. 3, the circle dotted
line r0 represents the radius of the tip trajectory of one-armed
spiral. When ε � 0.4, the dashed lines R coincide with the
circle dotted line r0. This means that the rigid rotation of an
individual arm within multiarmed sparse spiral [Fig. 9] is iden-
tical to that of one-armed sparse spiral [Figs. 1(b), 1(c), 1(f),
and 1(g)]. The tips travel along their individual trajectories,
i.e., not always along a rough circle. This is very different from
the case of multiarmed dense spirals, as illustrated in Fig. 4.

In that case, the tips of multiarmed dense spirals corotate and
meander zigzaggedly along a rough circle. It shows that the
interaction between the arms of dense multiarmed spiral is
stronger than that of sparse multiarmed spiral. In addition,
when r < rc, the tips only exhibit attractive interaction
[Figs. 9(a) and 9(c)]. When r > rc, the tips will develop
independently as shown by Figs. 9(b) and 9(d), which is similar
to the case of dense multiarmed spiral.

IV. CONCLUSION AND REMARKS

In this work, we have studied the interaction of multiarmed
spirals in bistable media. In order to illustrate this interaction,
we first give the evolution of one-armed spiral as shown in
Fig. 1. Multiarmed spirals can be obtained by constructing
appropriate initial conditions. For dense multiarmed spirals,
when r < rc, strong interaction between arms results in the
corotation of tips along a zigzagged circle. The tips will keep
one wavelength apart as they corotate, which is very different
from the case of multiarmed spiral in excitable media. During
the spiral rotating, the arms collide, connect, and disconnect
continuously, which drives the tips to meander zigzaggedly.
In one cycle, the front and the back reconstruct twice and the
arms switch with the tips once. For dense multiarmed spirals,
the rotation frequency f0 of tip, the frequency f1 of spiral,
the oscillation frequency f2 of media, the frequency f4 of
zigzagged displacement, and the number Narms of arms satisfy
the general relations of Eqs. (5)–(7). When r > rc, the arms
in multiarmed dense spirals will rotate independently, just like
one-armed dense spiral. For sparse multiarmed spirals, the
rigid rotation of an individual arm within multiarmed sparse
spiral is identical to that of one-armed sparse spiral. When r <

rc, the tips exhibit only attractive interaction and could rotate
along several circles, which is different from the case of dense
multiarmed spirals.

It should be mentioned that our numerical results are robust
against little deviations of the initial conditions used, which
makes it reliable to perform correlative studies experimen-
tally. The presented results reveal the general mechanism of
interaction of multiarmed spirals in bistable media and are
not limited to the specific cases illustrated by Figs. 4–9. Near
the bifurcation point εc = 0.33 (the patterned rectangle region
in Fig. 3), the dynamics of multiarmed spirals will become
very complex. In order to investigate this region, higher
spatial-temporal resolution (i.e., large domain size, small space
and time steps) are fairly necessary. This will need numerical
simulations of demanding computational intensity.

As is well known, pattern formations in bistable media are
related to the initial conditions besides the control parameters.
In our work, we generated the multiarmed spirals by designing
appropriate initial conditions and then studied their interac-
tions. Many real chemical experiments, such as the ferroin-,
Ru(bpy)3-, and cerium-catalyzed Belousov-Zhabotinsky
and/or iodate-sulfite reactions, are sensitive to visible and/or
ultraviolet light [30–34]. Therefore, light illumination has been
widely used to excite desired initial conditions. For example,
a couple of spirals can be generated by shadowing a small
part of the propagating wave front with a mask. Multiarmed
spirals with corotation and independent rotation have been
observed experimentally by Steinbock [35] and Krinsky [36] in
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excitable media. Light-sensitive catalyst even makes it possible
to study the image processing and the effective computational
procedure for finding paths in labyrinth based on reaction-
diffusion mechanisms [37]. At present, bistable patterns, such
as the one-armed spirals, the labyrinthine, and the breathing
spots, have been studied well in iodate-sulfite reactions
experimentally [30,31,38,39] and in FitzHugh-Nagumo model
theoretically [16,20]. We believe this work provides informa-
tion to understand the interaction of multiarmed spiral, and we
hope that our results about the interaction of multiarmed spirals
in bistable media can be verified in one of these light-sensitive
reactions. For example, multiarmed spiral should be ob-
served by illuminating the ferrocyanide-iodate-sulfite medium

with ultraviolet light if employing our suggested initial
conditions.
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