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Amplitude death phenomena in delay-coupled Hamiltonian systems
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Hamiltonian systems, when coupled via time-delayed interactions, do not remain conservative. In the uncoupled
system, the motion can typically be periodic, quasiperiodic, or chaotic. This changes drastically when delay
coupling is introduced since now attractors can be created in the phase space. In particular, for sufficiently strong
coupling there can be amplitude death (AD), namely, the stabilization of point attractors and the cessation of
oscillatory motion. The approach to the state of AD or oscillation death is also accompanied by a phase flip in
the transient dynamics. A discussion and analysis of the phenomenology is made through an application to the
specific cases of harmonic as well as anharmonic coupled oscillators, in particular the Hénon-Heiles system.
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I. INTRODUCTION

The coupling between dynamical systems can give rise to
a number of collective phenomena such as synchronization,
phase locking, phase shifting [1], amplitude death [2–6], phase
flip [7–9], hysteresis [10], riddling [11], and so on [12]. Since
communication between the individual systems is mediated
by signals that can have a finite transmission time, many
studies account for this by the introduction of time delay in the
coupling [13–18]. A number of recent studies have examined
the manner in which delay coupling can affect the collective
dynamics, particularly since time delay makes the systems
effectively infinite dimensional [19].

When conservative systems are coupled via time-delayed
interactions, there are additional considerations. To start with,
the system becomes explicitly nonconservative, and thus the
nature of the dynamics changes drastically: in the uncoupled
system, the phase flow preserves volumes [20], but in the
coupled system there can be attractors. This issue is of
added interest when studying Hamiltonian systems where
there can be a hierarchy of conserved quantities [21]. Studies
of coupled Hamiltonian systems have largely examined the
case of instantaneous coupling [22], which does not affect the
Hamiltonian structure.

In the present work we study time-delay-coupled Hamil-
tonian systems and examine the effect of interaction on
the nature of the dynamics. We consider the examples of
diffusively coupled harmonic oscillators that model delay-
coupled pendulums, for instance, and coupled Hénon-Heiles
oscillators. In the absence of coupling, in the former case the
motion is periodic, while in the latter case the dynamics can
be (quasi)periodic or chaotic. In both instances we find that
the effect of introducing dissipation is to cause the oscillatory
dynamics to be damped to a fixed point; namely, we find that
there is the so-called amplitude death (AD) [6], as has been
seen in delay-coupled dissipative dynamical systems [6,15].

Although the major effect of the coupling is to make
the overall system dissipative, there are differences from the
case when non-Hamiltonian systems are coupled. When the
dynamics is decaying to a point attractor, there is an abrupt
transition in the relative phases of the oscillatory transient
motion. This is the phase-flip transition that has been seen in a
number of other systems [9]. Here, however, there are special

values of the time delay when the coupling term effectively
vanishes: the underlying Hamiltonian structure then becomes
apparent.

Our main results are presented in Secs. II and III, where
we consider the cases of coupled harmonic oscillators and
coupled Hénon-Heiles systems, respectively. We show how
AD is reached and the nature of the phase-flip transition in
both cases. Since the uncoupled systems are Hamiltonian, it
is possible to define an energy, and while this quantity has
been studied in coupled feedback oscillators [23] as a tool to
determine onset of AD, its variation in the AD regime itself has
not been examined. In this work we do energy analysis in the
AD region and find that the energy dissipation is nonmonotonic
as a function of the coupling, decaying faster prior to the phase-
flip transition and slower subsequently. The paper concludes
in Sec. IV with a summary and discussion of the results.

II. DELAY-COUPLED HARMONIC OSCILLATORS

The simplest system we consider is that of diffusively
coupled harmonic oscillators. We consider the following
equations of motion:

ẍj + ω2
j xj − ε[ẋk(t − τ ) − ẋj (t)] = 0, (1)

where j,k = 1, 2 and j �= k, xj and ẋj represent the position
and the velocity of the j th oscillator, and ωj is the intrinsic
frequency. We take the oscillators to be identical [24], ω1 =
ω2 = ω = 1. The parameters ε and τ represent coupling
strength and time delay, respectively. In the absence of delay,
ε causes the systems to synchronize completely. Due to the
simple dynamics of the system no other significant behavior
is observed. When delay is finite, the coupling quenches
oscillations, leading to AD.

Stability analysis of Eq. (1) around the fixed point, namely,
the origin, gives the characteristic equations

λ(λ + ε) + ω2 = ±ελ exp (−λτ ). (2)

Taking the roots of the Jacobian to be λ = α + iβ, the
condition for marginal stability is α = 0, and substituting this
condition in Eq. (2), we get

τ = τc = nπ

ω
= nT

2
, β = ±ω,
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FIG. 1. (Color online) (a) Lyapunov exponents of coupled har-
monic oscillators [Eq. (1)] as a function of the time delay τ for fixed
ε = 1; (b) phase difference between the oscillators around point A
indicated in (a). Inset figures show trajectories x1 and x2 as a function
of time for the in-phase and the out-of-phase dynamics at τ = 1 and
2, respectively, namely, on either side of the phase-flip transition.
(c) The frequency of oscillation of the subsystems.

where τc is the critical value at which α = 0 and T is the time
period of the uncoupled oscillators. Shown in Fig. 1(a) are
the first two Lyapunov exponents (LE) [25] of the system as
a function of τ for fixed coupling strength ε = 1. The largest
LE is zero only at τc = nT/2 [marked in Fig. 1(a) as B and
D] and remains negative for all other values of τ , implying
that the system is driven to AD except when the delay is
an integral multiple of half the time period. Further, at these
critical delay values the system oscillates at the frequency of
the uncoupled system, namely, β = ω, and the parameter space
is divided into multiple AD regions by the critical delay values,
which are independent of the coupling strength ε. In contrast,
in non-Hamiltonian systems AD islands are separated by a
finite range of delay values [6,15] where the coupling function
need not vanish. Hence, in those systems the reappearance of
oscillations after AD depends both on the coupling strength
and on the delay, whereas in coupled Hamiltonian systems we
find that this happens only due to delay.

In the AD regime(s) points of discontinuity in the slope of
the largest LE [marked in Fig. 1(a) as A and C] indicate the
change in the relative phases of oscillation. This is the so-called
phase-flip transition [7], and the difference in the phases of
the coupled subsystems changes by π [see Fig. 1(b)]. As in
other cases where this phenomenon has been observed, there
is simultaneously a discontinuous change in the oscillation
frequency [26], as shown in Fig. 1(c).

The uncoupled conservative Hamiltonian systems are made
dissipative through the time-delay coupling, and this is also
reflected in the fact that the sum of all the LEs remains negative
for all τ . Defining the energy of the individual oscillators as

Ej = (
ẋ2

j + 	2
j x

2
j

)/
2, (3)
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FIG. 2. (Color online) (a) Energy of one of the oscillators, Eq.
(3), as a function of time for τ = 1. The marked box is expanded in
the inset. (b) The decay rate ξ1 as a function of τ [see Eq. (4)]. Error
bars (marked in red) are calculated for 100 initial conditions.

where 	j is the instantaneous frequency of oscillation, the
approach to the fixed point can be seen to be at an exponential
rate in the AD regime [27], as can be seen in Fig. 2(a).
The exponential decay is, however, modulated, the oscillatory
behavior being due to coupling [see the inset in Fig. 2(a)]. In
order to capture the dynamics, we define a decay constant as

ej = 〈
ln

∣∣Em+1
j − Em

j

∣∣〉
m
, ξj = 〈ej 〉IC, (4)

where Em
j represents the mth maxima in the energy time series

of the j th oscillator. The averages 〈·〉m and 〈·〉IC are performed
on m and 100 initial conditions, respectively.

Since the oscillatory behavior is modulated by exponential
decay, Em+1

j − Em
j is also an exponentially decaying function

of m, at rate ξj . This rate can be measured experimentally,
and its variation with τ is shown in Fig. 2(b); the variation
mirrors that of the frequency change at phase flip, suggesting
that energy decays more rapidly before the transition than
after it.

At the critical delay values τ = nπ/ω [see points B and D
in Fig. 1(a)] the largest Lyapunov exponent is zero, and thus the
motion is periodic. Figure 3(a) shows orbits for five different
initial conditions at the critical point; these resemble invariant
curves as in conservative systems. However, in the vicinity of
the critical delay values the largest Lyapunov exponent is near
zero, and the motion appears periodic after an initial transient.
The time series of one such periodic orbit is shown in Fig. 3(b).
Also, as can be seen in the inset, there is a very slow decrease
in amplitude. This occurs since delay is not strictly τc.

Away from delay τc, the dissipation is more pronounced.
The rate of decrease of the amplitude can be quantified through
the measure

dj = 〈∣∣xm+1
j − xm

j

∣∣〉
m
, δj = 〈dj 〉IC, (5)

052912-2



AMPLITUDE DEATH PHENOMENA IN DELAY-COUPLED . . . PHYSICAL REVIEW E 87, 052912 (2013)

-0.2 0 0.2x1
-0.2

0

0.2

x 2

-0.4 0 0.4
x1

-0.4

0

0.4

x 2

2.8 3 3.2 3.4 3.6
τ

0.0001

0.01

δ 1

0 2000 4000t
-1

0

1

x 1

-2 -1 0 1 2
x1

-2

-1

0

1

2

x 1

(a)

(b)

(c)

(d) (e)

.

FIG. 3. (Color online) (a) Periodic orbits with five different initial
conditions at τ = π/ω; (b) time series of position variable x1 as a
function of time at τ = 3.14. The inset figure shows a decrease in
amplitude of x1. (c) The averaged distance δ1 with error bars as a
function of delay τ near τ = π/ω. The error bars are calculated
for 100 initial conditions. (d) Out-of-phase motion and (e) in-phase
motion in relative phase plane x1 − x2 at τ = π/ω and 2π/ω,
respectively [corresponding to points B and D in Fig. 1(a)].

where xm
j is the mth maxima of xj . This is plotted in Fig. 3(c)

as a function of τ in the vicinity of τ = π/ω, namely, point B
in Fig. 1(a). At τ = nπ/ω the rate of decrease of amplitudes
approaches zero, and hence the orbits are almost periodic.
Similar behavior is observed at point D in Fig. 1(a).

The reason for reappearance of oscillatory motion is
straightforward. When the delay is a multiple of half the
natural period of oscillation, then the coupling term effectively
vanishes since

ẋk(t − τ ) ≈ ẋj (t), (6)

and the system effectively becomes conservative. Clearly,
when this occurs, each initial condition gives rise to an
invariant curve (or, in this case, a nearly invariant curve). The
better the equality above is realized, the more long-lived the
transients are.

The phase-flip transition is at points A and C along with
higher values of τ . At each transition a phase difference of
π is introduced between the oscillators, resulting in antiphase
synchronization at τ = T/2 and in-phase synchrony at τ = T

and so on. Hence, the coupling function becomes zero at these
critical delays. The consecutive oscillatory states alternate
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FIG. 4. (Color online) (a) Poincaré map of two orbits in the
Hénon-Heiles system, Eq. (7), at energy Ej = 0.13. Red (gray;
outer) and black (inner) dots represent regular and chaotic motion,
respectively.

between having the oscillations being in phase and out of
phase, as shown in Fig. 3(d) (out of phase at τ = π/ω, namely,
at point B) and Fig. 3(e) (in phase at τ = 2π/ω, at point D),
respectively. Note that the phase relation between oscillators
is independent of the initial conditions.

III. COUPLED HÉNON-HEILES SYSTEMS

In order to examine the dynamics when the uncoupled
systems are capable of exhibiting chaotic motion, we examine
the behavior of two nonintegrable Hénon-Heiles systems [20],

ẍj + xj + 2xjyj − ε[ẋk(τ − t) − ẋj (t)] = 0,
(7)

ÿj + yj + x2
j − y2

j = 0.

As is well known, in the uncoupled case (ε = 0) the system has
both regular and irregular behavior, largely depending on the
total energy as well as on the initial condition [20]. Shown in
Fig. 4 are the Poincaré maps for two different initial conditions,
one leading to regular motion [red (gray) points] and another
leading to chaotic dynamics (black points), at the same energy
Ej = 0.13 just below the dissociation limit Ej = 1/6.

A. Instantaneous coupling (τ = 0)

In the absence of delay τ = 0, Eq. (7) reduces to the
case of simple diffusive coupling. The effect of increasing
the coupling strength, namely, ε, is to induce simplicity to
the resulting collective dynamics. Shown in Fig. 5 are the
fraction of initial conditions f leading to quasiperiodic motion.
We take 100 pairs of random initial conditions from the
bounded region of phase space (Fig. 4). In one case, when
the initial condition pairs of quasiperiodic motions are taken,
the collective dynamics due to interaction remains quasiperi-
odic (solid line with black circles: QP + QP). However, if the
initial motion is chaotic, then the resulting dynamics becomes
quasiperiodic only after a certain value of coupling strength
(dashed line with red triangles: C + C). Similar behavior is
observed when the initial conditions of mixed chaotic and
quasiperiodic motions are used (dotted line with green stars:
C + QP). These results indicate that for small coupling
strength the Hamiltonian structure still exists, but for larger
values of coupling the collective dynamics becomes quasiperi-
odic; in this sense coupling induces simplicity in such coupled
systems.
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FIG. 5. (Color online) Fraction of initial conditions that lead to
quasiperiodic motion. The solid curve with black circles, dashed
curve with red triangles, and dotted curve with green stars are the
results for the different cases of initial conditions corresponding to
quasiperiodic (QP + QP), chaotic (C + C), and mixed chaotic and
quasiperiodic (C + QP) motions, respectively. Averages have been
taken over a sample of 100 initial conditions.

B. Time-delay coupling

When the two systems are coupled in presence of delay τ

(initial conditions taken from either the regular or irregular
motion), the largest Lyapunov exponent quickly becomes
negative. This is shown as a function of the delay in Fig. 6(a):
almost as soon as the delay is switched on, the oscillators
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FIG. 6. (Color online) (a) Largest Lyapunov exponent as a
function of the time delay τ and (b) the oscillation frequency for
coupling strength ε = 1. The inset shows trajectories x1(t) and x2(t)
for τ = 1.4 and 1.8, respectively. (c) The decay constant ξ1 as a
function of the delay τ .

are driven to the AD state. The phenomenology of this
higher-dimensional system is very similar to that of the coupled
harmonic oscillators: the largest LE has the same characteristic
shape: there is a change in the slope at point A, where it is clear
that the phase-flip transition occurs. Shown in Fig. 6(b) is the
common frequency of oscillations as a function of delay, which
changes discontinuously at τ ∼ 1.65. Since the phase of the
oscillators is not clearly defined in such systems, we infer the
phase relation from the time series (inset figures) of the two
systems in the neighborhood of the point of discontinuity. The
phase difference changes from 0 to π along with the frequency
jump as in the simpler one-dimensional harmonic system.

Here also energy decreases exponentially in this AD region.
We define the energy of individual systems in the usual manner
[20],

Ej = ẋ2
j + ẏ2

j

2
+ x2

j + y2
j

2
+ x2

j yj − y3
j

3
, (8)

and quantify the energy dissipation as in Eq. (3) by a quantifier
ξj . The variation of this quantity with τ can be seen in Fig. 6(c).
It confirms that energy dissipation is faster before phase-flip
transition and slower thereafter.

When the largest Lyapunov exponents approach zero [at
points marked B and D in Fig. 6(a)], the motion is oscillatory,
decaying very slowly to the fixed point. Critical delays are at
half the natural time period of oscillation, and since the natural
frequencies of the oscillators are equal to 1, the time period
is 2π . The Poincaré sections of representative trajectories at
τ = 3.14 are shown in Fig. 7(a) and are quasiperiodic (cf.
Sec. II A). In the vicinity of this point, the rate of decay can be
computed numerically, as discussed earlier, and the quantifier
δ [Eq. (5)] defined to locate the oscillatory state also has a
minimum at τ ≈ 3.14. At successive critical points (τ = 3.14
and τ = 6.28) the quasiperiodic motions alternate in the nature
of the phase synchrony; see Figs. 7(d) and 7(e). Unlike the
case of harmonic oscillators, though, the coupling term does
not quite vanish, so the emergence of oscillations is not as
pronounced in this case.
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FIG. 7. (Color online) (a) Poincaré section at τ = 3.14 for three
different initial conditions. (b) Time series of x1. (c) Variation of δ1 as
a function of delay. The error bars are computed from a large number
of initial conditions. The relative phase in the x1 − x2 plane to show
(d) antiphase motion at τ = π and (e) in-phase motion at 2π .
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IV. SUMMARY AND DISCUSSION

In the present paper we have explored the effects of
incorporating time delay in the coupling between Hamiltonian
systems. The coupled system effectively becomes dissipative,
and in the absence of other attractors, the total system displays
amplitude death. However, the coupling can effectively vanish
for specific values of the time delay, at which delay the system
naturally appears to be conservative. We find that this behavior
differs from that of delay-coupled non-Hamiltonian systems,
where AD islands are separated by finite ranges of delay values
where the coupling function need not vanish.

Orbits near these critical delay values reflect both dissipa-
tive and conservative behavior: different initial conditions give
rise to different (seemingly) invariant curves which are very
long-lived transients. Energy dissipation in the AD regime is
found to be associated with the phase-flip transition, and the
damping is faster prior to the transition and slower after it.

The finite velocity with which signals are transmitted
gives rise to intrinsic delays in the coupling, and as such
this is germane in both dissipative and conservative systems.
Nevertheless, the effect of delay has been explored to a limited
extent in conservative systems. The results presented here may
have more general applicability in coupled systems with other
conservation laws, such as in ecological contexts [28].
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