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Chaos and reliability in balanced spiking networks with temporal drive
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Biological information processing is often carried out by complex networks of interconnected dynamical
units. A basic question about such networks is that of reliability: If the same signal is presented many times with
the network in different initial states, will the system entrain to the signal in a repeatable way? Reliability is of
particular interest in neuroscience, where large, complex networks of excitatory and inhibitory cells are ubiquitous.
These networks are known to autonomously produce strongly chaotic dynamics—an obvious threat to reliability.
Here, we show that such chaos persists in the presence of weak and strong stimuli, but that even in the presence of
chaos, intermittent periods of highly reliable spiking often coexist with unreliable activity. We elucidate the local
dynamical mechanisms involved in this intermittent reliability, and investigate the relationship between this phe-
nomenon and certain time-dependent attractors arising from the dynamics. A conclusion is that chaotic dynamics
do not have to be an obstacle to precise spike responses, a fact with implications for signal coding in large networks.
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I. INTRODUCTION

Information processing by complex networks of intercon-
nected dynamical units occurs in biological systems on a range
of scales, from intracellular genetic circuits to nervous systems
[1,2]. In any such system, a basic question is the reliability
of the system, i.e., the reproducibility of a system’s output
when presented with the same driving signal but with different
initial system states. This is because the degree to which a
network is reliable constrains how—and possibly how much—
information can be encoded in the network’s dynamics. This
concept is of particular interest in computational neuroscience,
where the degree of a network’s reliability determines the
precision (or lack thereof) with which it maps sensory and
internal stimuli onto temporal spike patterns. Analogous
phenomena arise in a variety of physical and engineered
systems, including coupled lasers [3] (where it is known as
“consistency”) and “generalized synchronization” of coupled
chaotic systems [4].

The phenomenon of reliability is closely related to ques-
tions of dynamical stability, and in general whether a network
is reliable reflects a combination of factors, including the
dynamics of its components, its overall architecture, and the
type of stimulus it receives [5]. Understanding the conditions
and dynamical mechanisms that govern reliability in different
classes of biological network models thus stands as a challenge
in the study of networks of dynamical systems. A ubiquitous
and important class of neural networks are those with a balance
of excitatory and inhibitory connections [6]. Such balanced
networks produce dynamics that matches the irregular firing
observed experimentally on the “microscale” of single cells,
and on the macroscale can exhibit a range of behaviors,
including rapid and linear mean-field dynamics that could
be beneficial for neural computation [7–11]. However, such
balanced networks are known to produce strongly chaotic
activity when they fire autonomously or with constant inputs
[9,11,12]. On the surface, this may appear incompatible with
reliable spiking, as small differences in initial conditions
between trials may lead to very different responses. However,
that the answer might be more subtle is suggested by a variety

of results on the impact of temporally fluctuating inputs on
chaotic dynamics [5,13–18].

At a more technical level, because of the link between
reliability and dynamical stability, many previous theoretical
studies of reliability of single neurons and neuronal networks
have focused on the maximum Lyapunov exponent of the
system as an indicator of reliability. This is convenient
because (i) exponents are easy to estimate numerically and, for
certain special types of models, can be estimated analytically
[5,9,12,19–21]; and (ii) the use of a single summary statistic
permits one to see, at a glance, the reliability properties of
a system across different parameter values. However, being
a single statistic, the maximum Lyapunov exponent cannot
capture all relevant aspects of the dynamics. Indeed, the max-
imum exponent measures the rate of separation of trajectories
in the most unstable phase space direction; other aspects of
the dynamics are missed by this metric. Recently, attention has
turned to the full Lyapunov spectrum. In particular, the authors
of [11] compute this spectrum for balanced autonomously
spiking neural networks and suggest limitations on information
transmission that result.

In this paper, we present a detailed numerical study and
steps toward a qualitative theory of reliability in fluctuation-
driven networks with balanced excitation and inhibition.
One of our main findings is that even in the presence
of strongly chaotic activity—as characterized by positive
Lyapunov exponents—single-cell responses can exhibit in-
termittent periods of sharp temporal precision, punctuated
by periods of more diffuse, unreliable spiking. We elucidate
the local (meaning cell-to-cell) interactions involved in this
intermittent reliability and investigate the relationship between
this phenomenon and certain time-dependent attractors arising
from the dynamics (some geometric properties of which can
be deduced from the Lyapunov spectrum).

II. MODEL DESCRIPTION

We study a temporally driven network of N = 1000 spiking
neurons. Each neuron is described by a phase variable θi ∈

052901-11539-3755/2013/87(5)/052901(13) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.052901


GUILLAUME LAJOIE, KEVIN K. LIN, AND ERIC SHEA-BROWN PHYSICAL REVIEW E 87, 052901 (2013)

S1 = R/Z whose dynamics follows the θ -neuron model [22].
This phase representation mimics nonlinear spiking mecha-
nisms of type-I neurons and is equivalent to the “quadratic
integrate-and-fire” (QIF) model after a change of coordinates
(see [22,23] and the Appendix). These models can also
be formally derived from biophysical neuron models near
“saddle-node-on-invariant-circle” bifurcations; the underlying
“normal-form” dynamics [22,24] is found in many brain areas.
The θ -neuron model is known to produce reliable responses to
stimuli in isolation [5,19]; cf. [25,26]. Thus, any unreliability
or chaos that we find is purely a consequence of network
interactions.

Coupling from neuron j to neuron i is determined by the
weight matrix A = {aij }. A is chosen randomly as follows:
Each cell is either excitatory (i.e., all its outgoing weights are
�0) or inhibitory (all its outgoing weights are �0), with 20% of
the cells j being inhibitory and 80% excitatory; we do not allow
self-connections, so aii = 0. Each neuron has mean in-degree
K = 20 from each population (excitatory and inhibitory) and
the synaptic weights are O(1/

√
K) in accordance with the

classical balanced-state network architecture [9]. We note that
our results appear to be qualitatively robust to changes in N

and K , but a detailed study of scaling limits is beyond the
scope of this paper.

A neuron j is said to fire a spike when θj (t) crosses
θj = 1; when this occurs, θi is impacted via the coupling term
aijg(θj ), where g(θ ) is a smooth “bump” function with small

support ([−1/20,1/20]) around θ = 0 satisfying
∫ 1

0 g(θ )dθ =
1, meant to model the rapid rise and fall of a synaptic
current (see the Appendix for details). In addition to coupling
interactions, each cell receives a stimulus Ii(t) = η + εζi(t),
where η represents a constant current and ζi(t) are aperiodic
signals, modeled here (as in [5,25,26]) by “frozen” realizations
of independent white noise processes, scaled by an amplitude
parameter ε. Note that the terms ζi(t) model external signals,
not “noise” (i.e., driving terms that can vary between trials),
although such terms can be easily added (as in [16]).

The ith neuron in the network is therefore described by the
following stochastic differential equation (SDE):

dθi =
[
F (θi) + Z(θi)

(
η +

∑
j

aij g(θj )

)

+ ε2

2
Z(θi)Z

′(θi)

]
dt + εZ(θi)dWi,t , (1)

where the intrinsic dynamics F (θi) = 1 + cos(2πθi) and the
stimulus response curve Z(θi) = 1 − cos(2πθi) come directly
from coordinate changes based on the original QIF equations
(see the Appendix and [22]). Here, Wi,t is the independent
Wiener process generating ζi(t); the ε2 term is the Itô
correction from the coordinate change [27]. Finally, η sets
the intrinsic excitability of individual cells. For η < 0, there
is a stable and an unstable fixed point, together representing
resting and threshold potentials. Thus (contrasting [11] where
cells are intrinsically oscillatory), neurons are in the “excitable
regime,” displaying fluctuation-driven firing, as for many
cortical neurons [28].
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FIG. 1. (Color online) (a) Typical firing rate distributions for
excitatory and inhibitory populations. (b) Typical interspike-interval
distribution of a single cell. The coefficient of variation (CV) is
close to 1. (c) Invariant measure for an excitable cell (η < 0);
inset: typical trajectory trace of an excitable cell where solid and
dotted lines mark the stable and unstable fixed points. (d) Network
raster plots for 250 randomly chosen cells. For all panels, η = −0.5,
ε = 0.5.

In what follows, we focus on networks in this regime
by fixing η = −0.5, where cells spike due to temporal
fluctuations in their inputs (from both external drive and
network interactions) rather than being perturbed and coupled
oscillators. We study the effect of the amplitude ε of the
external drive on the evoked dynamics. Note that in the absence
of such inputs, these networks do not produce sustained
activity.

Figure 1 illustrates that the general properties of the network
dynamics, including a wide distribution of firing rates from
cell to cell and highly irregular firing in individual cells, are
consistent with many models of balanced-state networks in
the literature, as well as general empirical observations from
cortex [7,8]. An additional such property is that our network’s
mean firing rate scales monotonically with η and ε (data not
shown), as in [9,11].

III. MATHEMATICAL BACKGROUND

For reliability questions, we are interested in the response
of a network to a fixed input signal starting from different
initial states. Equivalently, we can imagine an ensemble of
initial conditions (IC) all being driven simultaneously by the
same signal ζ (t). If the system is reliable, then there should
be a distinguished trajectory θ (t) to which the ensemble
converges. In contrast, an unreliable network will lack such
an attracting solution, as dynamical mechanisms conspire to
keep trajectories separated. To put these ideas on a precise
mathematical footing, it is useful to treat our SDE (1) as
a random dynamical system (RDS). That is, we view the
system as a nonautonomous ordinary differential equation
driven by a frozen realization of the Brownian process, and
consider the action of the generated family of flow maps on
phase space. In this section, we present a brief overview of
RDS concepts and their meaning in the context of network
reliability.
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A. Random dynamical systems framework

The model network described by (1) is a SDE of the form

dxt = a(xt )dt +
N∑

i=1

b(xt )dWi
t , (2)

whose domain is the N -dimensional torus TN and where Wi
t

are standard Brownian motions. We assume throughout that
the Fokker-Planck equation associated with (2) has a unique,
smooth steady-state solution μ. Since we are interested in the
time evolution of an ensemble of initial conditions driven by
a single, fixed realization ζ generated by {Wi

t }i , this can be
done by considering the stochastic flow maps defined by the
SDE, i.e., the solution maps of the SDE. More precisely, this
is a family of maps �t1,t2;ζ such that �t1,t2;ζ (xt1 ) = xt2 where
xt is the solution of (2) given ζ . If a(x) and b(x) from (2)
are sufficiently smooth, it has been shown (see, e.g., [29]) that
the maps �t1,t2;ζ are well defined, smooth with smooth inverse
(i.e., are diffeomorphisms), and are independent over disjoint
time intervals [t1,t2].

RDS theory studies the action of these random maps on
the state space. The object from RDS theory most relevant to
questions of reliability is the sample distribution μt

ζ , defined
here as

μt
ζ = lim

s→−∞(�s,t ;ζ )∗μinit, (3)

where (�s,t ;ζ )∗ denotes the propagator associated with the flow
�s,t ;ζ , i.e., it is the linear operator transporting probability
distributions from time s to time t by the flow �s,t ;ζ , and μinit

is the initial probability distribution of the ensemble.
The definition above has the following interpretation:

Suppose the system was prepared in the distant past so that it
has a random initial condition (where “random” means “having
distribution μinit”). Then μt

ζ is precisely the distribution of all
possible states at time t , after the ensemble has been subjected
to a given stimulus ζ (t) for a sufficiently long time (how long
is “sufficient” is system dependent; the limit in the definition
sidesteps that question). So if μt

ζ is localized in phase space
(i.e., if its support has relatively small diameter), then its state
at time t is essentially determined solely by the stimulus up to
that point, i.e., its response at time t is reliable. In contrast, if
μt

ζ is not localized, then the response is unreliable in the sense
that the system’s initial condition has a measurable effect on
its state at time t . Note that μt

ζ depends on both ζ and the time
t : As time goes by, the system receives more inputs, and μt

ζ

continues to evolve; it is easy to see that (�t1,t2;ζ )∗μ
t1
ζ = μ

t2
ζ .

In general, we expect μt
ζ to be essentially independent of the

specific choice of μinit, so long as μinit is given by a sufficiently
smooth probability density, e.g., the uniform distribution
on TN .

B. Linear stability implies reliability

Not surprisingly, the reliability of a system is related to
its dynamical stability. This link can be made precise via the
Lyapunov exponents λ1 � λ2 � · · · � λN of the stochastic
flow. As in the deterministic case, these exponents measure
the rate of separation of nearby trajectories; for a “typical”
trajectory, we expect a small perturbation δxt to grow or

contract as |δxt | ∼ eλ1t over sufficiently long time scales.
Note that under very general conditions, the exponents are
deterministic, i.e., they depend only on system parameters but
not on the specific realization of the input ζ [30]. Moreover,
consistent with the findings in [11,16], we have observed
that the exponents for our models are insensitive to specific
realizations of the coupling matrix A (see the Appendix), so
that they are truly functions of the system parameters.

One link between exponents and μt
ζ is the following

theorem:
Theorem 1 (Le Jan [31]; Braxendale [32]). If λ1 < 0 and

a number of nondegeneracy conditions are satisfied [32], then
μt

ζ is a random sink, i.e., μt
ζ (x) = δ(x − xt ) where xt is a

solution of the SDE (2).
Theorem 1 states that under broad conditions, an ensemble

of trajectories described by a smooth initial density will
collapse toward a single, distinguished trajectory. For this
reason, λ1 < 0 is often associated with reliability.

A second, complementary theorem covers the case λ1 > 0.
Theorem 2 Ledrappier and Young [33]). If λ1 > 0, then μt

ζ

is a random Sinai-Ruelle-Bowen (SRB) measure.
SRB measures are concepts that originally arose in the

theory of deterministic, dissipative chaotic systems [34,35].
They are singular invariant probability distributions supported
on a “strange attractor.” Such attractors necessarily have
zero phase volume because of dissipation; nevertheless,
SRB measures capture the statistical properties of a set of
trajectories of positive phase volume (i.e., the strange attractor
has a nontrivial basin of attraction). They are the “smoothest”
invariant probability distributions for such systems in that they
have smooth conditional densities along unstable (expanding)
phase directions. Indeed, locally they typically consist of
the Cartesian products of smooth manifolds with Cantor-like
fractal sets; the tangent spaces Eu,ζ (x) to these smooth “leaves”
are invariant in the sense that D�s,t ;ζ (xs)Eu,ζ (xs) = Eu,ζ (xt ),
where D�s,t ;ζ (x) denotes the Jacobian of the flow map at
x. Moreover, these subspaces are readily computable as a by-
product of estimating Lyapunov exponents (see the Appendix).

Random SRB measures share many of the same properties
as SRB measures in the deterministic setting, but are time
dependent. While in principle they may be confined to small
regions of phase space at all times, this is typically not the
case for the systems we study here. A positive λ1 is thus
often associated with unreliability, and the terms “chaotic” and
“unreliable” are often used interchangeably. (Random SRB
measures have also been used to model the distribution of pond
scum; in that context they are known as “snapshot attractors”
[36]).

Although the SRB measure μt
ζ evolves with time, it pos-

sesses some time-invariant properties because (after transients)
it describes processes that are statistically stationary in time.
Among these is the dimension of the underlying attractor;
another is the number of unstable directions, i.e., the number
of positive Lyapunov exponents, which give the dimension of
the unstable manifolds of the attractor. The latter will be useful
in what follows; we denote it by Mλ.

To summarize, these two theorems allow us to reach global
conclusions on the structure of random attractors (singular or
extended) using only the maximum Lyapunov exponent λ1, a
measure of linear stability. This has a number of consequences
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in what follows: First, because λ1 is a single summary
statistic determined only by the system parameters (and not
specific input or network realizations), it allows us to see
quickly the reliability properties of a system across different
parameters. Second, unlike other measures of reliability, λ1

can be computed easily in numerical studies by simulating
single trials (as opposed to multiple repeated trials). However,
λ1 can tell us about reliability properties only in an asymptotic
sense (i.e., on sufficiently long time scales), and only about
the dynamics in the fastest expanding directions. As we shall
see later, the reliability properties of our networks reflect the
geometric properties of their SRB measures beyond those
captured by λ1 alone.

IV. MAXIMUM LYAPUNOV EXPONENTS
AND ASYMPTOTIC RELIABILITY

In line with previous studies [5,9,11,12,16,19–21], we
say that a network is asymptotically reliable if λ1 < 0 and
asymptotically unreliable if λ1 > 0. In principle, even when
λ1 < 0, distinct trajectories could take very long times to
converge to the random sink. However, we note that for all
asymptotically reliable networks we considered, convergence
is typically achieved within about 10 time units. For the
remainder of the paper, we will concentrate on “steady-state”
dynamics, and we adopt the point of view that ensembles
of solutions for all systems considered were initiated in
the sufficiently distant past. The question of transient times,
although very interesting, falls outside the scope of this paper.

We begin by studying the dependence of the λi’s on
the input amplitude ε. Even in simple and low-dimensional,
autonomous systems, analytical calculations of the λi’s often
prove to be very difficult, if not impossible. We therefore
numerically compute (see the Appendix for details) the
Lyapunov spectra of our network for various values of input
drive amplitude ε. Figure 2(a) shows the first 100 Lyapunov
exponents of these spectra. This demonstrates that, at interme-
diate values of ε, there are several positive Lyapunov exponents
(Mλ), and that the trend in this number is nonmonotonic in ε.
Fig. 2(b) gives another view of this phenomenon, as well as
the dependence of λ1 on ε. In particular, for sufficiently small
ε, the networks produce a negative λ1.

We note that for very small fluctuations (ε < 0.1), the
network rarely spikes and λ1 is close to the real part of the
largest eigenvalue associated with the stable fixed point of a
single cell’s vector field. As ε increases, there is a small region
(0.1 < ε < 0.2) where sustained network activity coexists
with λ1 < 0. However, as ε increases further, there is a rapid
transition to a positive λ1, indicating chaotic network dynamics
and thus asymptotic unreliability. Consistent with RDS theory,
the transition to λ1 > 0 is accompanied by the emergence of a
random attractor with nontrivial unstable manifolds.

Since the networks we study are randomly connected
and each cell is nearly identical, the underlying dynamics
are fairly stereotypical from cell to cell. This enables us to
focus on a randomly chosen cell for illustrative purposes and
further analysis. Figure 2(c) shows two sample raster plots
where the spike times of a single cell from 30 distinct trials
(initiated at randomly sampled ICs) are plotted. The top plot
is produced from an asymptotically reliable system (λ1 < 0)
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FIG. 2. (Color online) (a) First 100 Lyapunov exponents of a
network with fixed parameters as in Fig. 1, as a function of ε. (b)
Plot of λ1 (right scale), Mλ/N : the fraction of λi > 0 (left scale) vs
ε. (c) Raster plots show example spike times of an arbitrarily chosen
cell in the network on 30 distinct trials, initialized with random ICs.
Circle and star markers indicate ε values of 0.18 and 0.5, respectively,
shown in (b). For all panels, η = −0.5.

and, as expected, every spike is perfectly reproduced in all
trials. In the bottom plot, where λ1 > 0, the spike times
are clearly unreliable across different trials, as RDS theory
predicts. For the remainder of this paper, we routinely refer
to the parameter sets used in Fig. 2(c) as testbeds for stable
and chaotic networks, respectively, and make use of them for
illustrative purposes (see the caption of Fig. 2 for details).

Finally, spike trains from the chaotic network also show
an interesting phenomenon: There are many moments where
spike times align across trials, i.e., the system is (temporarily)
reliable. We now investigate this phenomenon.

V. SINGLE-CELL RELIABILITY

Let us define the ith neural direction as the state space of
the ith cell, which we identify with a circle S1. The degree of
reliability of the ith cell is given by the corresponding marginal
distribution, i.e., we define a projection πi(θ1, . . . ,θN ) = θi ,
and denote the corresponding projected single-cell distribution
by pt

i,ζ (θi) ≡ πiμ
t
ζ (θ ). Note that when λ1 > 0, we expect pt

i,ζ

to be nonsingular, i.e., it corresponds to a smooth probability
density function (though it may be more or less concentrated);
an exception is when the random attractor is aligned in such
a way that it projects to a point on the ith direction. If pt

i,ζ

is singular at time t , then the state of cell i is reproducible
across trials at time t ; geometrically, trajectories from distinct
trials are perfectly aligned along the ith neural direction. On
the other hand, if pt

i,ζ has a broad density on S1, then the state
of cell i at time t can vary greatly across trials, and the ith
components of distinct trajectories are separated.

This is illustrated in Fig. 3(a), where snapshots of 1000
randomly initialized trajectories are projected onto (θ1,θ2)
coordinates at distinct times t1 < t2 < t3. The upper snapshots
are taken from an asymptotically reliable system (λ1 < 0)
where μt

ζ is singular and supported on a single point (random
sink) which evolves on TN according to ζ (t). The bottom
snapshots are taken from the λ1 > 0 regime and clearly show
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FIG. 3. (Color online) (a) Snapshots of 1000 trajectories projected in two randomly chosen neural directions (θ1,θ2) at three distinct times.
The upper and lower rows have the same parameters as in Fig. 2(c) and show a random sink and random strange attractor, respectively.
(b) Projections of the sample measure μt

ζ onto the θ1 neural direction at distinct moments. (c) Scatter plot of average support score 〈si(t)〉 vs the
entropy of the projected measure h(pt

i,ζ ) sampled over 2000 time points and 30 distinct cells. (d) Example histogram of 〈si〉 sampled across all
cells in the network at a randomly chosen moment in time. Inset: Snapshot of 〈si〉 vs cell number i. (e) Example histogram of 〈si(t)〉 sampled
across 2000 time points from a randomly chosen cell. Inset: Sample time trace of 〈si(t)〉 vs time. (f),(g) Time evolution of the distance between
two distinct trajectories θ1(t) and θ2(t). (f) Green dashed line (bottom): ‖θ1

i (t) − θ2
i (t)‖S1 in a randomly chosen θi direction. Black solid line

(top): maxj {‖θ1
j (t) − θ2

j (t)‖S1}. (g) ‖θ1(t) − θ2(t)‖TN . For all panels except (a) (top), the network parameters are η = −0.5 and ε = 0.5 with
λ1 ≈ 2.5.

that distinct trajectories accumulate in “clouds” that change
shape with time. These changes affect the spread of pt

i,ζ .
Our next task is to relate the geometry of the random

attractor to the qualitative properties of the single-cell dis-
tributions pt

i,ζ . A convenient tool for quantifying the latter is
the differential entropy h(pt

i,ζ ) = − ∫
S1 dpt

i,ζ log2 pt
i,ζ . Recall

that the differential entropy of a uniform distribution on S1

is 0, and that the more negative h is, the more singular is the
distribution. In our context, the more orthogonal the attractor
is to the ith direction in TN , the lower is its projection entropy,
as illustrated in Fig. 3(b). We emphasize again that the shape
of pt

i,ζ is time dependent and so is its entropy.

A. Uncertainty in single-cell responses

We would like to predict h(pt
i,ζ ) from properties of

the underlying dynamics. Our first step in doing so is to
validate our intuition about the orientation of μt

ζ . Following
and somewhat generalizing the approach of [11], we use a
quantity which we call the support score si(t) to represent the
contribution of a neural direction to the unstable directions of
the strange attractor at time t .

We first define this quantity locally for a single trajec-
tory θ (t). For this trajectory, we expect that there exists a
decomposition of the tangent space into stable (contracting)
and unstable (expanding) invariant subspaces: Es,ζ (θ (t)) and
Eu,ζ (θ (t)). Since the dimension of Eu,ζ (θ (t)) must be Mλ,
let {v1,v2, . . . ,vMλ

} be an orthonormal basis for the unstable
subspace at time t (i.e., vi ∈ RN ). We define cell i’s support
score as

si(t) = ‖V ri‖, (4)

where V is the Mλ × N matrix with vi’s as rows and ri is
the (N -dimensional) unit vector in the ith direction. Note
that 0 � si(t) � 1, and that si measures the absolute value
of the cosine of the angle between the neural and unstable
directions. Thus, si represents the extent to which the ith
direction contributes to state space expansion. The vectors
{v1,v2, . . . ,vMλ

} are computed simultaneously with the λi’s
(see the numerical methods in the Appendix).

In order to use the support score to quantify the orientation
of the attractor, we need to extend the definition above, which is
for a single trajectory, to an ensemble of trajectories governed
by μt

ζ . However, si(t) could greatly vary depending on which
trajectory we choose—as we might expect if μt

ζ consisted of
complex folded structures. Our numerical simulations show
that this variation is limited in our networks: The typical
variance of an ensemble of si(t) values across an ensemble of
trajectories with randomly chosen initial conditions is O(10−2)
(for a fixed cell i and a fixed time t). This suggests that
unstable tangent spaces about many trajectories are similarly
aligned. Therefore, we extend the idea of the support score to
pt

i,ζ by taking the average 〈si(t)〉 across μt
ζ . We numerically

approximate this quantity by averaging over 1000 trajectories.
As stated earlier, the behavior of all cells is statistically similar
because the network is randomly coupled. As a consequence,
the quantities 〈si(t)〉 and pt

i,ζ do not depend sensitively on
which i is chosen.

Figure 3(c) shows a scatter plot of 〈si(t)〉 vs h(pt
i,ζ ) for a

representative network that is asymptotically unreliable. This
clearly shows that the contribution of a neural direction i

to state space expansion results in a higher entropy of the
projected measure pt

i,ζ . This phenomenon is robust across all
values of ε tested. Once again, we note that this correspondence
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is not automatic for any dynamical system: There is no
guaranteed relationship between the orientation of the unstable
subspace and the entropy of the projected density. For example,
the restriction of μt

ζ to unstable manifolds could be very
localized, thus having low entropy for even perfectly aligned
subspaces.

B. Temporal statistics

Next, we enquire about the distributions of 〈si(t)〉 across
time and neural directions. That is, again following [11],
we study the number of cells that significantly contribute to
unstable directions at any moment as well as the time evolution
of this participation for a given cell.

Figure 3(d) shows a typical distribution of support scores
across all cells in the network at a fixed moment in time. The
inset shows a trace of 〈si〉 across cells at that moment. The
important fact is that this distribution is very uneven across
neurons, being strongly skewed toward low values of 〈si〉. In
Fig. 3(e), we see a typical distribution of support scores across
time for a fixed cell. The inset shows a sample of the 〈si(t)〉
time trace for that cell. We emphasize that the uneven shape of
these distributions implies that at any given moment in time,
only a few cells significantly support expanding directions of
the attractor and, moreover, that the identity of these cells
change as time evolves. A similar mechanism was reported
for networks of autonomously oscillating cells [11], although
only the maximally expanding direction was used to compute
si(t). In both cases, neurons in the network essentially take
turns participating in the state space expansion that is present
in the chaotic dynamics.

This leads to trajectories that are unstable on long time
scales (λ1 > 0), yet alternate between periods of stability and
instability in single neural directions on short time scales.
To directly verify this, Fig. 3(f) shows a sample time trace
of ‖θ1

i (t) − θ2
i (t)‖S1 : the projection distance between two

randomly initialized trajectories θ1(t) and θ2(t) in a single
neural direction i. Also shown is maxj {‖θ1

j (t) − θ2
j (t)‖S1}: the

maximal projection distance out of all neural directions. While
the maximal S1 distance is almost always close to its maximum
0.5, the two trajectories regularly collapse to be arbitrarily
close together along any given S1 direction. This leads to a
global separation ‖θ1(t) − θ2(t)‖TN that is relatively stable
in time [Fig. 3(g)] yet produces temporary local convergence
(‖ · ‖TN refers to the geodesic distance on the flat N -torus, i.e.,
a cube [0,1]N with opposite faces identified). In what follows,
we will see that this mechanism translates into spike trains that
retain considerable temporal structure from trial to trial.

VI. RELIABILITY OF SPIKE TIMES

Thus far, we have been concerned in general with the
separation of trajectories arising from distinct trials [i.e.,
different ICs but fixed input ζ (t)]. However, of relevance to
the dynamical evolution of the network state are the spike
times: the only moments where distinct neural directions are
effectively coupled. Indeed, coupling between cells of this
network is restricted to a very small portions of state space,
namely, to a small interval around θi = 0 ∼ 1 when a cell
spikes (see Sec. II). This property is ubiquitous in neural

circuits and other pulse-coupled systems [37] and is central
to the time evolution of μt

ζ .

A. Spike reliability captured by probability fluxes

From the perspective of spiking, what matters is the time
evolution of projected measures on S1 in relation to the spiking
boundary. This is captured by the probability flux of pt

i,ζ at
θi = 0 ∼ 1: 
i(t). For our system, we can easily write down
the equation for the flux since inputs to a given cell have no
effect at the spiking phase [i.e., Z(0) = 0 in (1)]. From (1),
dθi

dt
|θi=0 = 2 and we have 
i(t) = 2pt

i,ζ (0). We emphasize that
this probability flux is associated with μt

ζ , and differs from
the usual flux arising from the Fokker-Planck equation. Here,
the source of variability between trajectories leading to wider
pt

i,ζ is due to chaotic network interactions, rather than to noise
that differs from trial to trial. Overall, 
i(t) is modulated by a
complex interaction of the stimulus drive ζ (t), the vector field
of the system itself, and “diffusion” originating from chaos;
as we have seen, the latter depends in a nontrivial way on the
geometric structure of the underlying strange attractor.

In the limit of infinitely many trials, 
i(t) is exactly the
normalized cross-trial spike time histogram, often referred to
as the peristimulus time histogram (PSTH) in the neuroscience
literature. A PSTH is obtained experimentally by repeatedly
presenting the same stimulus to a neuron or neural system and
recording the evoked spike times on each trial. Figure 4(a)
illustrates the time evolution of 
i . Perfectly reliable spike
times (repeated across all trials) are represented by a time
t∗ such that for an open interval U � t∗, 
i(t)|U = δ(t − t∗).
Equivalently, finite values of 
i(t) indicate various degrees of
spike repeatability. Of course, 
i(t) = 0 implies that cell i is
not currently spiking on any trial.

B. Spike events: Repeatable temporal patterns

Our next goal is to use 
i(t) to derive a metric of spike time
reliability for a network. Intuitively, given a spike observed in
one trial, we seek the expected probability that this spike will
be present in any other trial. This amounts to asking to what
extent the function 
i(t) is “peaked” on average.

To develop a practical assessment of this extent, we begin
by approximating 
i(t) from a finite number of trajectories. To
do so, we modify the definition of the flux from a continuous
to a discrete time quantity. For practical reasons we say
that 


approx
i (t) represents the fraction of a μt

ζ ensemble of
trajectories that crosses the θi = 1 ∼ 0 boundary within a
small time interval t + �t . As a discrete quantity, we now
have 0 � 


approx
i (t) � 1. Borrowing a procedure from [38], we

convolve this discretized flux with a Gaussian filter of standard
deviation σ to obtain a smooth wave form [see Fig. 4(b)].
We then define spike events as local maxima (peaks) of this
wave form. A spike is assigned to an event if it falls within
a tolerance window of the event time defined by the width
of the peak at half height. If the spikes contributing to an
event are perfectly aligned, the tolerance is σ . However, if
there is some variability in the spike times, the tolerance
grows as the event’s peak widens. This procedure ensures
that spikes differing by negligible shifts are members of the
same event. For our estimates, we used �t = 0.005 (the time
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FIG. 4. (Color online) (a) Top and middle: Cartoon representations of the flux 
i(t). Bottom: Sample 
i time trace for a randomly chosen
cell approximated from 1000 trajectories. (b) Top: Illustration of spike event definition. Bottom: Distribution of spike event participation
fraction f . For (a) and (b), η = −0.5, ε = 0.5, and λ1 � 2.5. (c) Curves of 1 − 〈f 〉 (network), 1 − 〈f shuffle〉 (single cell with shuffled input
spike trains from network simulations), and 1 − 〈f Poisson〉 (single cell with random Poisson spike inputs) vs ε. Also shown is the fraction of
λi > 0, Mλ/N , vs ε. (d) Mean 1 − Rspike vs ε curves for three threshold values. Error bars show one standard deviation of the mean Rspike

across all cells in the network. For (c) and (d), η = −0.5.

step of the numerical solver) and found that σ = 0.05 was big
enough to define reasonable event sizes and small enough to
discriminate between most consecutive spikes from the same
trial. However, we note that the following results are robust to
moderate changes in σ .

Each spike event is then assigned a participation fraction f :
the fraction of trials participating in the spike event. Figure 4(b)
shows the distribution of f ’s for the events recorded from
all cells of our chaotic network testbed, using 2500-time-unit
runs with 30 trials and discarding the initial 10% to avoid
transient effects. There is a significant fraction of events with
f = 1 and a monotonic decrease of occurrences with smaller
participation fractions. The mean 〈f 〉 of this distribution is the
finite-sampling equivalent of the average height of 
i peaks
and therefore represents an estimate of the expected probability
of an observed spike being repeated on other trials.

Finally, we compare 〈f 〉 to the number of unstable direc-
tions of the chaotic attractor μt

ζ for a range of input amplitude
ε. Figure 4(c) shows both ε-dependent curves 1 − 〈f 〉 and
Mλ/N [previously shown in Fig. 2(b)]. For weak input
amplitudes (ε < 0.2), networks are asymptotically reliable and
thus Mλ/N = 0 and every event has full participation fraction
(1 − 〈f 〉 = 0). As ε increases, the network undergoes a rapid
transition from stable to chaotic dynamics. Most interestingly,
both 1 − 〈f 〉 and Mλ/N follow the same trend, suggesting
that the dimension of the underlying strange attractor plays an
important role in the expected reliability of spikes. While this
relationship is not perfect, it shows that the number of positive
Lyapunov exponents serves as a better predictor of average
spike reproducibility than the magnitude of λ1 alone.

The shapes of 1 − 〈f 〉 and Mλ/N show an initial growth
followed by a gradual decay, suggesting that, following a
transition from stable to chaotic dynamics, higher input
fluctuations induce more reliable spiking. In the limit of high ε,
this agrees with the intuition of an entraining effect by the input
signal. This raises an important question about the observed
dynamics: Is spike repeatability simply due to large deviations
in the input? Or equivalently, is the role of chaotic network
interactions comparable to noise in the inputs to individual

neurons? That this may not be the case for moderate input
amplitudes is suggested by the concentration of trajectories
in the sample measures μt

ζ . We now seek to demonstrate the
difference.

VII. RELEVANT LOCAL MECHANISMS

A. Network interactions vs stimulus

A natural question about the dynamical phenomena de-
scribed above is this: To what extent are they caused by net-
work interactions, compared to direct effects of the stimulus?
In our system, each cell receives an external stimulus ζi(t) as
well as a sum of inputs from other cells. Because of network
interactions, the latter inputs are highly structured even when
λ1 > 0, and can be correlated across multiple trials. Indeed, all
else being equal, the more singular and low-dimensional μt

ζ

is, the more cross-trial correlation there will be. The question
is whether we will still observe the same spiking behavior
when inputs from the rest of the network are replaced by more
random inputs.

To test this, we compare the response of cell i in a network
driven by the stimulus ζ (t) with that of a single “test cell.”
The test cell receives (i) the ith component ζi(t) of the same
stimulus, and (ii) excitatory and inhibitory spike trains with
statistics chosen to “match” network activity in two different
ways that we describe below. For each, the number of such
spike trains matches the mean in-degree K of the network.
That is, there are K excitatory and K inhibitory spike trains
and this balance is conserved.

In our first use of the test cell, we present Poisson-
distributed spike trains that are adjusted to the network firing
rate (at each ε). Importantly, all trains are independent (both
within and across trials). We denote the corresponding average
spike event participation fractions by 〈f Poisson〉.

In our second use of the test cell, we present spike
trains taken from K excitatory and K inhibitory cells, each
chosen from a simulation with a different initial condition but
with the same stimulus drive ζ (t). In this way, the stimulus
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modulation of the individual spike trains is preserved, but
the global structure of the chaotic attractor is disrupted. The
corresponding average spike event participation fractions in
this case are denoted by 〈f shuffle〉.

Figure 4(c) shows 1 − 〈f Poisson〉 and 1 − 〈f shuffle〉 alongside
1 − 〈f 〉. For moderate values of ε, these three curves differ by
a factor of 2 (Poisson) and 1.5 (shuffle) and slowly converge
as ε increases. This confirms that two dynamical regimes are
present: When the input strength is very high, inputs tend
to entrain neurons into firing regardless of synaptic inputs,
as was intuitively stated above. However, for moderate input
amplitudes, network interactions play a central role in the
repeatability of spike times. Importantly, we note that many
repeatable spike events in chaotic networks are not present
in the test cell driven with either surrogate Poisson or trial-
shuffled excitatory and inhibitory events, even though the same
stimulus ζi(t) was given in each case.

A second, closely related, question is whether the reliable
spiking events we see are solely due to large fluctuations in the
stimulus, or if network mechanisms play a significant role. The
above results, which show that structured network interactions
can have a significant impact on single-cell reliability, suggest
that the answer is no. Here we provide a second, more direct,
test of this question.

To proceed, we first classify each spike fired in the network
as either reliable or not by defining a quantity Rspike: the
fraction of spikes belonging to an event with a participation
fraction f greater than or equal to some threshold. Rspike is the
cumulative density of events with f greater than the chosen
threshold. Equivalently, we say a spike event is reliable if
its f is greater than that threshold and unreliable otherwise.
Individual spikes inherit the reliability classification of the
event of which they are a member.

For visual comparison with Fig. 4(c), Fig. 4(d) shows 1 −
Rspike as a function of ε for three threshold values (0.5, 0.75,
and 1). These curves show the fraction of unreliable spikes,
out of all spikes fired, for a given threshold. The error bars
show the standard deviation of the value across all cells in the
network. As expected for small ε, 1 − Rspike = 0 since λ1 < 0.
Notice that, as in the case of 1 − 〈f 〉, the distinct choices of
threshold do not affect overall trends, but they greatly impact
the fraction of spikes labeled reliable (or unreliable). For what
follows, we adopt a strict definition of the spike time reliability
by fixing the Rspike threshold at 1 (i.e., a spike is reliable if it is
present in all trials). However, the subsequent results are fairly
robust to the choice of this threshold.

We can now address the question raised above via spike-
triggered averaging (STA). As the name indicates, this
procedure takes quantities related to a given cell’s dynamics
(i.e., stimulus, synaptic inputs, etc.) in the moments leading to
a spike, and averages them across an ensemble of spike times.
In other words, it is a conditional expectation of the stimulus in
the moments leading up to a spike; it can also be interpreted as
the leading term of a Wiener-Volterra expansion of the neural
response [39]. In what follows, we will distinguish between
reliable and unreliable spikes while taking these averages in
an effort to isolate dynamical differences between the two.

For illustration, we turn to our chaotic network testbed.
Figures 5(a) and 5(b) show the STAs of both excitatory and
inhibitory network interactions as well as the external inputs
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FIG. 5. (Color online) For (a) through (e), t = 0 marks the spike
time and rel or unrel indicates the identity of the spike used in the
average. (a),(b) Spike-triggered averaged external signal εZ(θi)ζi(t)
(black), excitatory (purple), and inhibitory (orange) network inputs
Z(θi)

∑
j aij g(θj ). (a) Triggered on reliable spikes. (b) Triggered on

unreliable spikes. (c) Spike-triggered support score S. (d) Spike-
triggered local expansion measure E. (e) Spike-triggered average
phase θi . For all panels, η = −0.5 and ε = 0.5 with λ1 ≈ 2.5. Shaded
areas surrounding the computed averages show two standard errors of
the mean. Computed standard deviations were verified by spot checks
using the method of batched means with about 100 batches of size
1000. No shade indicates that the error is too small to visualize.

leading to reliable and unreliable spikes. More precisely, say
we consider spike times {t1

i ,t2
i , . . .} from cell i. Then the

network interactions used in the STA are the ensembles of time
traces {Z(θi(t))

∑
j aij g(θj (t))|t∗i − 2 � t � t∗i } where Z(θ )

and g(θ ) are as in (1) and we differentiate between excitatory
and inhibitory inputs according to the sign of aij . Similarly,
the external inputs are taken from {εZ(θi(t))ζi(t)|t∗i − 2 � t �
t∗i }.

There are two main points to take from these STAs.
First, note that the average levels of spike-triggered recurrent
excitation and inhibition very roughly balance one another in
time periods well before spike times. However, right before
spikes this balance is broken, leading to an excess of recurrent
excitation which is stronger than the spike-triggered stimulus.
This gives further evidence that recurrent interactions shape
the dynamics with which the spikes themselves are elicited—
rather than spikes being primarily driven by the external stimuli
alone. Second, note that these STAs are qualitatively similar
for both reliable and unreliable spikes. Even though the peak
of the summed external input in Fig. 5(a) is higher than that
in Fig. 5(b), it is not clear that this difference is sufficient, by
itself, to explain the increase in reliability (as the magnitude
of the mean external input is relatively small). This suggests
that we look for other dynamical factors that might contribute
to reliable spike events, a task to which we now turn.

Recall that the support score si(t) measures the contribution
of a single cell’s subspace to tangent unstable directions of
a trajectory. Consider the corresponding STA S(t), i.e., the
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expected values of si(t) in a short time interval preceding each
spike in the network. Figure 5(c) shows the resulting averages
for both reliable and unreliable spikes. Moments before a cell
fires an unreliable spike, S(t) is considerably larger than in
the reliable spike case, thus indicating that global expansion
is further aligned with a spiking cell’s direction in unreliable
spike events. We now investigate properties of the flow leading
to this phenomenon.

B. Source of local expansion

To better capture space expansion in a given neural
direction, consider v(t), the solution of the variational equation

v̇ = J (t)v, (5)

where J (t) is the Jacobian of the stochastic vector field (1)
evaluated along a trajectory θ (t) (see the Appendix for details).
If we set v(0) to be randomly chosen but with unit length, then
v(t) quickly aligns with the directions of maximum expansion
in the tangent space of the flow about θ (t); moreover, because
of ergodicity λ1 = limt→∞ 1

t
ln(‖v(t)‖). We can equivalently

write a discretized version of this expression for small �t :
λ1 = limT →∞〈e(t)〉T where 〈·〉T denotes the time average up to
time T and e(t) = 1

�t
ln( ‖v(t+�t)‖

‖v(t)‖ ) is analogous to a finite-time
Lyapunov exponent. For our network, e(t) fluctuates rapidly
and depends on many factors such as the number of spikes
fired, the pattern of the inputs, and the phase coordinate of each
cell over the time �t . Its coefficient of variation is typically
O(10) for �t = 0.005, which is consistent with the fact that
stability is very heterogeneous in time. To better understand
the behavior of the flow along single neural directions, we
define the local expansion coefficient

ei(t) = 1

�t
ln

( |vi(t + �t)|
|vi(t)|

)
. (6)

Note that ei(t) is a local equivalent of e(t) and directly
measures the maximum expansion along a neural direction.

Define E(t) as the STA corresponding to ei(t), shown in
Fig. 5(d). Notice that at its peak, Eunrel(t) is much broader than
Erel(t), with

∫ 0
−2 Eunrel(t) − Erel(t)dt � 2.5 which indicates

that, prior to an unreliable spike, trajectories are subject to
an accumulated infinitesimal expansion rate higher than in the
reliable spike case.

In contrast to si(t), ei(t) is directly computable in terms
of contributions from different terms in the flow. We refer
the reader to the Appendix for a detailed treatment of input
conditions leading to reliable or unreliable spikes. Importantly,
the source of “local” expansion ei(t) is dominated by the effect
of a single cell’s vector field F (θi) [from Eq. (1)] which directly
depends on the phase trajectory θi(t) prior to a spike.

If θi(t) < 1
2 , F ′(θi(t)) is negative, and becomes positive for

θi(t) > 1
2 (in the absence of fluctuating inputs from the network

or an external source). When an uncoupled cell is driven by ζi ,
we know that on average, it spends more time in its contractive
region (θi < 1

2 ) and is reliable as a result [5,19]. While inputs
may directly contribute to J (t), their effect is generally so brief
that their chief contribution to ei(t) is to steer θi(t) toward
expanding regions of its own subspace (see the Appendix).
Figure 5(c) confirms that the average phase of a cell preceding
an unreliable spike spends more time in its expanding region.

Such a phenomenon has previously been reported in the form
of a threshold crossing velocity argument [40].

The key feature of this driven system, likely due to sparse
and rapid coupling, is a sustained balance between inputs
leading to contraction or expansion in local neural subspaces.
A bias toward more occurrences of “expansive inputs” yields
positive Lyapunov exponents (Mλ > 0) and implies on average
more growth than decay. What is perhaps surprising is that this
state space expansion remains confined to subspaces supported
by only a few neural directions, which creates this coexistence
of chaos and highly reliable spiking throughout the network.

VIII. DISCUSSION

In this article, we explored the reliability of fluctuation-
driven networks in the excitable regime—where model single-
cell dynamics contains stable fixed points. We showed that
these networks can operate in stable or chaotic regimes and
demonstrated that spike trains of single neurons from chaotic
networks can retain a great deal of temporal structure across
trials. We have found that an attribute of random attractors that
directly impacts the reliability of single cells is the orientation
of expanding subspaces, and that the evolving shape of the
random attractor is reflected in the intermittent reliability of
single neurons. We have also performed a detailed numerical
study to analyze the local (i.e., cell-to-cell) interactions
responsible for reliable spike events.

This said, a mechanistic understanding of the origins of
chaotic, structured spiking remains to be fully developed.
Specifically, we still need to work out the role of larger-scale
network structures, and how unreliable spike events propagate
through the network in a self-sustaining fashion in networks
with λ1 > 0. This is a target of our future work.

Throughout this work, we have found the qualitative theory
of random dynamical systems to be a useful conceptual
framework for studying reliability. Although the theory is
predicated on a number of idealizations, we expect that most
of them (e.g., the assumption that the stimuli are white noise
rather than some other type of stochastic process) can be
relaxed.

Finally, we note that the phenomena observed here may
have consequences for neural information coding and process-
ing. In particular, unreliable spikes are a hallmark of sensitivity
to initial conditions and may therefore carry information about
previous states of the system (or, equivalently, previous inputs).
In contrast, reliable spikes carry repeatable information and
computations about the external stimulus ζ (t) (either via
directly evoked spikes or propagated by repeatable network
interactions). We showed that both unreliable and reliable
spike events coexist in chaotic regimes of the system explored.
Preliminary results indicate that correlation across external
drives greatly enhances a network’s spike time reliability and
will be the object of an upcoming presentation. The resulting
implications for the neural encoding of signals are an intriguing
avenue for further investigation.
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APPENDIX A: MODEL AND COORDINATE
TRANSFORMATIONS FROM QIF

Our networks are composed of θ -neurons, which are
equivalent to the quadratic-integrate-and-fire model [22,23].
The latter is formulated in terms of membrane potentials, and
thus has a direct physical interpretation. However, it is a hybrid
dynamical system, i.e., its solutions are instantaneously reset
to a base value after a spike is emitted. For our purposes,
such discontinuities are rather inconvenient. Fortunately, there
exists a smooth change of coordinates mapping the QIF
(hybrid) dynamics to the θ space, where a cell’s membrane
potential is represented by a phase variable on the unit circle
S1. This representation has the advantage of being one of the
simplest to capture the nonlinear spike-generating mechanisms
of type-I neurons with solutions that remain smooth and exist
on a compact domain, a mathematical feature central to this
study. We now review this change of coordinates and the
equivalence of the two models.

The variable v represents the membrane potential of a
single neuron and its dynamics is described by the following
equation:

τ
dv

dt
= (v − vR)(v − vT )

�v
+ Ia + Id (t), (A1)

where τ is the cell membrane time constant, vR and vT are the
rest and threshold voltages, respectively, and �v = vT − vR .
Ia is an applied constant current, and Id (t) is a time-varying
input drive. If v(t) crosses the threshold vT , its trajectory
quickly blows up to infinity where it is said to fire a spike.
Once a spike is fired, v(t) is reset to −∞ and the trajectory
will converge toward vR . To implement this in simulations, a
ceiling value is set such that when reached, it represents the
apex of a spike and the voltage v(t) is “manually” reset to a
value below threshold. As we will see, the θ model circumvents
the need for this procedure.

In the absence of other inputs (Id = 0), the baseline current

Ia = I ∗ = (vT − vR)2

4�v
= �v

4

places the system at a saddle node bifurcation, responsible for
the onset of tonic (periodic) firing. Therefore, if Ia < I ∗, the
neuron is said to be in the excitable regime whereas if Ia > I ∗,
it is in the oscillatory regime.

Let us suppose that the input term Id (t) is a realization of
a white noise process scaled by a constant ρ. We can rewrite
(A1) as a stochastic differential equation

τdv =
(

(v − vR)(v − vT )

�v
+ Ia

)
dt + ρdWt, (A2)

where Wt is a standard Wiener process. We treat (A2) as an
SDE of the Itô type [27] as it is more convenient for numerical
simulations and carry out the change of variables accordingly.

Let us introduce a new variable θ defined by

v(θ ) = vT + vR

2
+ �v

2
tan[(2πθ − π )/2], (A3)

along with a rescaling of time

t �→ t

4πτ
. (A4)

Equation (A2) now reads

dθ =
[
F (θ ) + ηZ(θ ) + ε2

2
Z(θ )Z′(θ )

]
dt + εZ(θ )dWt,

(A5)

where F (θ ) = 1 + cos(2πθ ), Z(θ ) = 1 − cos(2πθ ), and

η = 4

�v
Ia − 1, ε = 2ρ

�v
√

τπ
,

which is the θ model on [0,1] that we want. In the absence of
stochastic drive and for η < 0, the two fixed points are given
by

θs,u = 1

2π
arccos

(
η + 1

η − 1

)
,

which for η = −1 yields θs = 1/4 and θu = 3/4. For η > 0,
the neuron fires periodically at a frequency of

√
η/2.

Typical parameter choices for the QIF model are

τ = 10 ms, vR = −65 mV, vT = −50 mV (A6)

with time in units of milliseconds. Expression (A4) implies that
one time unit in θ coordinates corresponds to about 125 ms.
In the absence of applied current Ia , we get η = −1.

1. Network architecture and synaptic coupling

In the main text, we explore the dynamics of Erdös-
Rényi-type random networks of N = 1000 cells of which
80% are excitatory and 20% inhibitory. Each cell receives on
average K = 20 synaptic connections from each excitatory
and inhibitory subpopulation. We implement a classical
balanced state architecture and scale synaptic weights of these
connections by 1/

√
K which ensures that fluctuations from

network interactions remain independent of K in the large-N
limit [9] (as long as K � N and cells fire close to indepen-
dently). Although we do not systematically explore the scaling
effects of N and K , preliminary results for combinations
of K = 50,100,200 and N = 2500,5000 indicate that our
findings are qualitatively robust to system size.

As mentioned earlier, one of the advantages of the θ -neuron
model is the continuity of dynamics in phase space. We
can therefore easily implement synaptic interaction between
two neurons with differentiable and bounded terms. Synaptic
interactions between θ neurons are modeled using a smooth
function

g(θ ) =
{

d
{
b2 − [(

θ + 1
2

)
mod 1 − 1

2

]2 }3
, θ ∈ [−b,b],

0 else,

(A7)

where b = 1
20 and d = 35

32 .
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For example, for two cells coupled as 2 → 1, we have

θ̇1 = F (θ1) + Z(θ1)[η + a12g(θ2)], (A8)

in which a12 is the synaptic strength from neuron 2 to neuron 1.
Neuron 2 affects θ1 only when θ2 ∈ [−b,b], mimicking a rapid
rise and fall of a synaptic variable in response to presynaptic
potential fluctuation during spike generation. We follow the
approach of Latham et al. [23] to assess the effective coupling
strength from neuron θ2 to neuron θ1 in the form of evoked
postsynaptic potentials (PSPs). Specifically, we first derive a
relationship between the value of a12 and the evoked PSP
following a presynaptic spike from θ2 in the θ coordinates. We
then translate this to the voltage coordinates.

We assume that η = −1 (equivalent to Ia = 0), and that θ1

is at rest θR = 1
4 , and compute the value θS = θR + θPSP. As

the support of g is quite small, let us linearize (A8) for θ2 when
it crosses 0 ∼ 1. We obtain neuron 2’s phase velocity at spike
time, θ̇2 = 2, and hold this velocity constant in the calculation
that follows. Suppose that at t = 0, θ2 is at the left end of g’s
support; then

θ2(t) = 2t − b,

which gives us the nonautonomous equation for θ1,

θ̇1 = F (θ1) + Z(θ1)[−1 + a12g(2t − b)], θ1(0) = θR = 1/4.

(A9)

We make a final assumption for small PSPs and assume that the
behavior of (A9) is linear about the resting phase (θ1 = θR).
This yields θ̇1 = a12g(2t − β) which in turn gives us∫ θS

θR

dθ1 = a12

∫ t=β

0
g(2t − β)dt.

Notice that
∫ b

−b
g(θ )dθ = 1, which gives the relationship

a12 = 2(θS − θR).

Although we have made fairly strong assumptions about the θ

dynamics in deriving this expression, we tested it numerically
and found that predictions of postsynaptic θ variations were
accurate up to the third significant digit, for the range of PSPs
of interest. Using (A3), we get the equivalent expression

vPSP = vT + vR

2
+ �v

2
tan[(πa12 − π )/2].

For K = 20 and aij = 1/
√

K , we get the following approx-
imations for excitatory and inhibitory PSPs: vEPSP � 4.0 mV
and vIPSP � −8.4 mV.

Finally, we note that all synaptic couplings, when present
between two cells, are of the same strength throughout
the network (only the sign changes to distinguish between
excitatory and inhibitory connections). Additionally, while
both η and ε are networkwide constants, we introduce O(10−2)
perturbations randomly chosen for each cell in order to avoid
symmetries in the system.

APPENDIX B: LYAPUNOV SPECTRUM APPROXIMATION

In the main text, we present approximations of the
Lyapunov spectrum λ1 � λ2 � · · · � λN and related quan-
tities for the network described by (1). Under very general

conditions, the λi are well defined for system (1) and they do
not depend on the choice of IC or ζ (t). However, the Lyapunov
exponents generally cannot be computed analytically and we
therefore use Monte Carlo simulations to approximate them.
We numerically simulate system (1) using an Euler-Maruyama
scheme with time steps of 0.005. At each point in time, we
simultaneously solve the corresponding variational equation

Ṡ = J (t)S, (B1)

where J (t) is the Jacobian of (1) evaluated along the simulated
trajectory and S(0) is the N × N identity matrix. Following
the notation of (2), J (t) represents the spatial derivative of
the stochastic velocity field and takes the form: J (t)dt =
Da(xt )dt + ∑N

i=1 Db(xt )dWi
t . The solution matrix S(t) is

then orthogonalized at each time step in order to extract
the exponential growth rates associated with each Lyapunov
subspace. See [41] for details of this standard algorithm.

All reported values of λi have a standard error less
than 0.002, estimated by the method of batched means [42]
(batch size = 500 time units) and cross-checked using several
realizations of white noise processes and random connectivity
matrices. We have also verified, by spot checks, that varying
the batch window size does not affect the error estimate
significantly.

Numerical simulations were implemented in the PYTHON

and CYTHON programming languages and carried out on NSF’s
XSEDE supercomputing platform.

APPENDIX C: SPIKE-TRIGGERED FLOW
DECOMPOSITION

We take a closer look at the single-cell flow in an attempt to
better understand the origin of reliable and unreliable spikes.
We concentrate on the effect of inputs on the local expansion
coefficient ei(t) [see Eq. (6)]. Consider the time evolution of
vi(t) by unpacking the ith component of the discretized version
of (5):

vi(t + �t) = vi(t) + vi(t)

[
�tF(θi) + �tZ′(θi)

∑
j

aij g(θj )

+
√

�tξtεZ
′(θi)

]
+�tZ(θi)

∑
j

aij g
′(θj )vj (t),

(C1)

where F(θi) = F (θi) + ηZ(θi) + ε2

2 Z(θi)Z′(θi) and ξt ∼
N (0,1); �t is the time increment.

We substitute expression (C1) as the numerator in the
definition of ei(t) [Eq. (6)], in order to discern the contributions
of different terms in the network dynamics to state space
expansion. Let us define the following terms:

H0(t) = �t |vi(t)|F ′(θi),

H1(t) = �t |vi(t)|Z′(θi(t))
∑

j

aij g(θj (t)),

H2(t) = �tZ(θi(t))
∑

j

aij g
′(θj (t))|vj (t)|sgn[vi(t)vj (t)],

H3(t) =
√

�t |vi(t)|εZ′(θi(t))ξt . (C2)
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FIG. 6. (Color online) (a) Distinct terms of the single-cell flow
and Jacobian. Inset: Synaptic coupling function g(o). For (b)–(f),
t = 0 marks the spike time and reliable and unreliable indicate the
identity of the spike used in the average. (b) Spike-triggered average
phase θi [as in Fig. 5(e)]. (c)–(f) Spike-triggered average terms H0(θi),
H1(θi), H2(θi), and H3(θi). Network parameters are η = −0.5 and
ε = 0.5, yielding λ1 � 2.5. For all panels except (a) the shaded areas
surrounding the computed averages show two standard errors of the
mean. Standard errors of the mean were verified via spot checks using
the method of batched means, with about 100 batches of size 1000.
No shade indicates that the error is too small to visualize.

Notice the use of the absolute value for v(t) components,
which ensures that Hk(t) > 0 implies expansion [or, if
Hk(t) < 0, contraction] in whichever of the positive and
negative directions vi(t) is pointing.

Here, H0 captures the contribution of the single-cell vector
field to the proportional growth (or decay) of vi(t). Note

from Fig. 6(a) that F ′(θi), the main contributing part of
H0, is negative for θi ∈ (0,1/2) and positive for θi ∈ (1/2,1).
Meanwhile, H1 measures the contribution of synaptic inputs
and H2(t) the relative contribution of presynaptic neurons’
coordinates. The latter varies quite rapidly, because the deriva-
tive of the coupling function g(θj ) [shown in Fig. 6(a)] takes
large positive and negative values. In essence, it quantifies the
transfer of expansion from one cell to the next: If |vj (t)| is large
and sgn[vi(t)vj (t)] = 1, then H2 causes expansion in the vi(t).
Finally, H3 captures the contribution of the external drive.

We now assess the relative importance of all of these
dynamical effects to spike time reliability. We do this by
comparing the magnitude and sign of the H terms. Specifically,
we compute spike-triggered averages of these terms in periods
before reliable and unreliable spike events. We continue to
use the criterion from the main text that a spike is considered
reliable if it occurs on each of the simulated trials.

Notice first that inputs—synaptic or external—enter mul-
tiplicatively with Z′(θi), which is negative in θ ∈ ( 1

2 ,1) (see
Fig. 6). This implies that more-excitatory synaptic inputs—or
more-positive external inputs—arriving shortly before spikes
promote contraction for H1 and H3. We see that both of these
terms are primarily negative in the time periods before spikes
[Figs. 6(d) and 6(f)], as positive inputs push cells across the
spiking threshold.

Expansion—especially for unreliable events—arises from
the coupling term H2 and from the term H0 representing
internal dynamics. Note in particular that this latter term is
an order of magnitude higher than the others; thus, we focus
our attention on this next. Figure 6(b) shows that the speed
at which phases cross the threshold is lower for unreliable
spikes than for reliable ones. This further explains why the
H0 averages—mainly depending on F ′—are larger for the
unreliable spikes.

Thus, we conclude—as noted in the main text—that the
primary dynamical mechanism behind the unstable dynamics
is that inputs steer θi(t) in expansive regions of its own sub-
space [see Figs. 6(c) or 5(e)]. This conclusion that instabilities
in the flow are mainly generated by intrinsic dynamics is
interesting, as it suggests that network stability could vary
in rich ways depending on cell type and spike generation
mechanisms.
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