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A measure is derived to quantify directed information transfer between pairs of vertices in a weighted network,
over paths of a specified maximal length. Our approach employs a general, probabilistic model of network traffic,
from which the informational distance between dynamics on two weighted networks can be naturally expressed
as a Jensen Shannon divergence. Our network transfer entropy measure is shown to be able to distinguish and
quantify causal relationships between network elements, in applications to simple synthetic networks and a
biological signaling network. We conclude with a theoretical extension of our framework, in which the square
root of the Jensen Shannon Divergence induces a metric on the space of dynamics on weighted networks. We
prove a convergence criterion, demonstrating that a form of convergence in the structure of weighted networks
in a family of matrix metric spaces implies convergence of their dynamics with respect to the square root Jensen
Shannon divergence metric.
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I. INTRODUCTION

Complex systems in diverse fields are often represented
as weighted networks [1–3]. Inferring information transfer
between network elements from such representations can pro-
vide important insights into system structure and perturbations
[4–6]. This paper proposes a general methodology to quantify
such transfer based on information theory and probability on
graphs.

Previous attempts to infer dynamics from weighted net-
works include an interaction model based on electrical
circuitry, to discover active pathways contributing to the
pathogenesis of the brain cancer Glioblastoma multiforme
[4,5]. Reference [6] uses a model of infection transmission,
proportional to interaction frequency, to identify the spread of
disease through social networks. Such case by case approaches
have proved informative, however they are often tailor made to
their applications and the general quantification of information
transfer in weighted networks currently lacks a theoretical
foundation.

The purpose of this paper is to construct an information
theoretic measure, network transfer entropy, quantifying the
directed amount of information transferred between any two
vertices in a weighted network, with minimal assumptions
and general applicability. Following construction (Sec. II), we
demonstrate the measure on simple synthetic networks and a
biological signaling network (Sec. III).

In the construction of general measures, one aims at an
insight into the theoretical concepts governing the process
being studied. We demonstrate that the network transfer
entropy framework can be interpreted in the context of metric
spaces (Sec. IV). In this construction one defines a family of
mappings from the space of weighted networks (represented
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by matrices) to a family of metric spaces, whose elements
describe possible signal dynamics on networks.

We prove a convergence principle, demonstrating that a
form of convergence of weighted networks in the metric
space Lp(MN×N ) implies convergence in the constructed
metric space of signal dynamics. This result shows that in
our general framework, deformation of network structure
influences network dynamics in an intuitive way. This result
has real world implications in, for example, network drug
design, where one wishes to modify the chemical affinities of
interacting proteins in a pathological signaling network (i.e.,
modify the edge weights) to restore a healthy signaling regime
( i.e., modify the dynamics). Finally, we motivate how certain
further theoretical problems in network evolution and network
perturbation can be approached within this framework.

II. NETWORK TRANSFER ENTROPY

Transfer entropy was introduced by Schreiber, to quantify
the directed amount of information transferred between two
mutually dependent time series [7]. This problem shares
several important qualities with our problem of information
transfer between network vertices, thus we follow Schreiber’s
approach in the derivation of our measure.

The definition of transfer entropy required a model in which
it was possible to express whether two time series influenced
each other. For transfer entropy to be widely applicable, this
model needed to be sufficiently general to portray a wide array
of diverse systems. It was thus intuitive to describe time series
as realizations of (approximately) Markov processes of order
k. For such a process I the conditional probability of finding
the process in state in+1 at time n + 1 satisfies

p(in+1|in, . . . ,in−k+1) = p(in+1|in, . . . ,in−k). (1)

These generalized Markov process are not all encompassing
in their descriptive power; for example, they are in general
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not applicable to studying subsystems of Markov processes
[8]. However for a broad range of datasets including heart
and breathing rate data [7], magnetoencephalography data
[9], and financial time series [10], the approximate Markov
process model can be justified, making transfer entropy widely
applicable.

The choice of a general dynamic model for a weighted
network requires consideration of the literature. One must be
careful to ensure that the model makes minimal assumptions
yet has sufficient descriptive power to portray complex
systems. Much work has focused on interaction models known
as flow networks (see for example [11]), in which transport
from source nodes to sink nodes is subject to edge weight
dependant constraints. These models are useful in optimization
problems where one wants to find paths through a network that
maximize or minimise some function associated with path
traversal, and thus tend to be used in systems where traffic can
be manipulated, such as supply management [12].

Flow networks are less useful in the interrogation of
network dynamics where constraints on traffic are unknown,
and sink and source nodes are not readily defined. Moreover,
when network dynamics are stochastic and bursty rather than
continuous flows, such as in social communication systems
[13] and gene regulatory networks [14], adaptations of flow
networks are required. Such adaptations include discrete flow
networks [16] and stochastic flow networks [15], in which the
interaction of a vertex with neighbors is given by a probability
distribution proportional to the edge weight distribution. The
elegance of these discrete models is that they may approximate
continuous models (such as flow networks) in the large
time limit. Such models are generalized, for example by the
inclusion of holding rates, in queuing theory [17] which with
detailed information for parameter estimation can be used to
describe and simulate a large variety of real world systems.

Given this literature we take our dynamic model for
weighted networks as a balance between the descriptive power
of stochastic networks of queuing theory and the simplicity
of the stochastic flow networks. We consider the following
Markovian model for signal dynamic evolution. Each vertex is
assigned a data derived value quantifying a signal that the given
vertex is capable of forwarding to one its neighbors. The vector
containing these values for every vertex is referred to as the
initial signal distribution (ISD) of the network. In real world
applications this distribution can be qualitatively diverse. For
example, in biological networks, where vertices represent
genes, the ISD may quantify the differential expression of
genes in pathological versus healthy samples. In the airport
transportation network where vertices are airports and edges
connect airports one can fly between directly, the ISD may
be the number of flights departing from each airport over a
given time frame [3]. There are no restrictions on the ISD
other than it being a vector in RN , where N is the number of
vertices.

We evolve this signal over the network W = (wij )Ni,j=1,
where wij > 0 for i,j = 1, . . . ,N , via a stochastic matrix
P = (pij )Ni,j=1 defined as

pij =
⎧⎨
⎩

wij∑
j∈Ni

wij
if

∑
j∈Ni

wij �= 0,

δ
j

i otherwise,
(2)

where Ni denotes the set of neighbors of vertex i and δ
j

i

denotes the Kronecker δ of i and j . We evolve the ISD over
multiple discrete time steps. At each time step the signal at
each vertex i is independently forwarded to vertex j ∈ Ni with
probability pij (we emphasize that self-edges can be added to
the network and the weights on such edges would determine
the probability that a vertex maintains its signal over a
single time step). Thus the number of time steps directly
corresponds to the maximal path length the ISD has traversed.

Given an ISD �X0 and path length n for every vertex i in
the network we can compute the probability distribution of the
signal at vertex i given that the ISD has been forwarded along
paths of length n (see Appendix A). We denote this distribution
P [Xi

n| �X0].
Given a model of interactions, we wish to quantify paths

of high or low traffic through the network. To proceed in this
aim it suffices to identify the directed amount of information
transferred between any two pairs of network vertices during
a period of system evolution. To achieve this we again turn to
Schreiber’s methodology. In the derivation of transfer entropy
the directed amount of information transferred from a process
J to a process I is formulated as the incorrectness of the
assumption that I is not conditional on J . This quantity can
be expressed as the Kullback-Leibler divergence [18],

∑
p
(
in+1
n−k+1,j

n
l

)
ln

p
(
in+1

∣∣inn−k+1,j
n
l

)
p
(
in+1

∣∣inn−k+1

) , (3)

where inm = (in, . . . ,im) for m < n. Thus to quantify the
amount of information vertex j in our network transfers to
vertex i over paths of length n we must derive a distribution
for Xi

n in which vertex j sends no information to vertex i. We
must then compute the informational distance between this
distribution and the above distribution P [Xi

n| �X0] in which j

is able to communicate with i. Clearly if we set the j th row
in the stochastic matrix P to �ej (i.e., make j an absorbing
state; �ej denotes the j th element of the standard basis of RN ),
then it is impossible for vertex j to communicate with any
vertex i �= j under our model. Given this modified matrix
we can compute the probability distribution of Xi

n given the
ISD and that j cannot communicate with i. We denote this
distribution P [Xi

n| �X0,j ]. Here we diverge from [7], however,
as the Kullback-Leibler divergence

∑
P

[
Xi

n

∣∣ �X0
]
ln

P
[
Xi

n

∣∣ �X0
]

P
[
Xi

n

∣∣ �X0,j
]

is only well defined provided{
x : P

[
Xi

n = x
∣∣ �X0,j

] = 0
} ⊂ {

x : P
[
Xi

n = x
∣∣ �X0

] = 0
}
,

which is an assumption that does not hold in general. Consider,
for example, a directed graph on two vertices 1 and 2, with
a single directed edge oriented from 1 to 2; if we assign the
ISD as �X0 = �e1, then it is trivial that P [X2

1 = x| �X0] = δ1
x and

P [X2
1 = x| �X0,1] = δ0

x .
Thus to quantify the directed amount of information trans-

ferred from vertex j to i we must employ a different measure
of statistical distance. There are several possible choices
available; among the most promising are the Jensen-Shannon
divergence, which is a linear combination of Kullback-Leibler
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divergences and the statistical distance introduced by Wootters
[19]. Both measures are theoretically rich; Wootter’s measure
was designed as a distinguishable distance between pure quan-
tum states after a finite number of observations, and applies
equally well to distinguishing two probability distributions.
The measure also has a geometric interpretation in the context
of Hilbert space. The Jensen Shannon divergence of two
distributions quantifies the total Kullback-Leibler divergence
from each distribution to the average of the two, and thus is
a measure of distributional similarity. The Jensen Shannon
divergence is also the square of a metric over the space of
probability distributions on a measurable set [20]. These two
measures have been shown to agree to second order in a
quantum mechanical framework [21].

We will use the Jensen Shannon divergence defined by

DJS(p,q) = 1

2

[ ∑
x∈X

(
p(x)ln

p(x)

m(x)
+ q(x)ln

q(x)

m(x)

)]
, (4)

where p,q : X → [0,1] are probability distributions (with no
restrictions placed on their kernels) and m = (p + q)/2. We
select this measure as the metric interpretation is of greater use
to our theoretical framework.

We define the network transfer entropy (NTE) from j to i

over path length n and given an ISD �X0 by

τn
�X0

(j ||i) := DJS

(
P

[
Xi

n

∣∣ �X0
]
,P

[
Xi

n

∣∣ �X0,j
])

. (5)

This is the central concept of the paper. Note that τn
�X0

(j ||i) ∈
[0,ln2] is inherently asymmetric, and thus quantifies informa-
tion transfer through a network in a directed sense, permitting
the inference of causality.

III. EXAMPLES

In order to demonstrate the use of NTE we consider
three examples, two synthetic networks and one application
to biological signal transduction. To evaluate NTE in these
examples, we estimated the probability distributions P [Xi

n| �X0]
and P [Xi

n| �X0,j ] for all j , using a simulation. We also devised
a method to estimate the statistical error in the probability
distributions (see Appendix B).

The first and most simple example we consider is a directed
path of length 5 with equal edge weights (Fig. 1). This induces

the stochastic matrix

P =

⎛
⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1

⎞
⎟⎟⎟⎠. (6)

The structure of this network provides a completely
predictable path for signal transfer and thus is ideal for proving
the capability of our measure to detect information transfer.
We consider two ISDs on this network, first �X0 = �e1, where
the first vertex in the path is given an initial signal and all other
vertices have no signal to transfer. If we number the vertices 1
to 5 from the start of the path to the end, then it is clear that for
this ISD, over path length n = 1, vertex 1 sends information
to vertex 2, and no other vertices communicate, for n = 2
vertex 1 sends information to vertex 3 and vertex 2 sends
information to vertex 3 and no other vertices communicate,
and similarly we can compute all pairwise information transfer
events up to n = 4 beyond which all signal is absorbed at vertex
5 and cannot be transmitted through the network. This pattern
is precisely what is seen if we calculate the NTE between all
vertex pairs over different path lengths n (Fig. 1).

We next consider the ISD �X0 = (1,1,1,1,1)T , on the same
network, in order to demonstrate the ability of the NTE
measure to discern between situations where networks with
identical edge weights have different starting signal states.
One would expect that with this ISD, for n = 1, rather than
just vertex 1 forwarding information to vertex 2, we have vertex
j forwarding information to vertex j + 1 for j = 1, . . . ,4, and
similar extensions for longer path lengths. The NTE measure
can detect these differences due to initial signal distribution
(Fig. 1).

The next network we consider is a slight extension to the
deterministic path which constitutes a directed feedback from
vertex 2 to vertex 4 weighted w = x/(1 − x) (Fig. 2). This
induces the stochastic matrix

P =

⎛
⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 x 0 0 1 − x

0 0 0 0 1

⎞
⎟⎟⎟⎠. (7)

FIG. 1. (Color online) Matrices showing NTE between all vertex pairs in a deterministic path over path lengths n = 1–5 for ISDs
(1,0,0,0,0)T (a) and (1,1,1,1,1)T (b).
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FIG. 2. (Color online) Matrices showing NTE between all vertex pairs in the modified, weighted path with feedback from vertex 4 to
vertex 2, over path lengths n = 1–5, for a range of feedback strengths. Note that as the weight on the edge (4,2) rises the NTE from vertices
1-4 to 5 falls.

The network introduces some indeterminism in that if
vertex 4 holds the signal, it can either forward it to
vertex 5 with probability 1 − x or feedback the signal to vertex
2 with probability x. This essentially sets up a feedback loop
which dampens the signal received at node 5 over a given path
length, by a factor dependant on x. We calculated the NTE
for all vertex pairs in this altered path for x = 0.1,0.5,0.9 and
found that as x is increased the NTE to vertex 5 from all other
vertices falls, as expected (Fig. 2). Thus in the context of these
very simple synthetic networks, the use of NTE as a tool for
detecting information transfer is clear.

We next demonstrate NTE in a real world biological
network. To do this we consider the human primary naive
CD4 + T cell intracellular signaling network analyzed by
Sachs et al. [22], consisting of 11 vertices (Fig. 3). In this
network vertices are proteins which can be phosphorylated and
directed edges connect kinases (capable of phosphorylating
proteins) with their targets. The kinases must be in an
active state before they can phosphorylate a target; activity
can be achieved by either phosphorylation by an upstream
kinase or activation by a reagent. Sachs et al. generated data
accompanying this network consisting of quantification (by
flow cytometry) of the amount of phosphorylated protein
for each vertex in the network following ten independent
perturbations. The network perturbations consisted of the
administration of reagents which could either activate or inhibit
the kinase activity of particular vertices. To apply NTE we
considered two of these perturbations: first, treatment with
anti-CD3 and anti-CD28 to activate the T cells and induce
flux through the network; second, treatment with anti-CD3,

anti-CD28 and psitectorigenin, a reagent which specifically
inactivates PIP2. We computed the NTE between all vertex
pairs in the network over paths of length 1–5 for the two
perturbations as described in Appendix C (see Fig. 5 in
Appendix C, for matrices of NTEs for each perturbation).

We found that in the psitectorigenin treated network
information transfer from PIP2 to the rest of the network
was reduced over all path lengths (Fig. 3). Specifically,
information transfer from PIP2 to PIP3 was greatly reduced
and information transfer from PIP2 to Plcg was reduced
over paths of maximal length greater than 1 (implying
PIP3 received less information from Plcg via PIP2 under
psitectorigenin treatment). At longer path lengths we also see
a reduced information transfer from PIP2 to Akt and p38 in
the psitectorigenin treated network. This indicates that specific
inhibition of PIP2 can lead to decreased Akt and p38 activation
downstream of PIP2 signaling.

Interestingly, we also notice that in the PIP2 inhibited
network, there is increased information transfer from PKA
to Akt and from PKC to p38. This points at a compensatory
mechanism, in which inhibition of PIP2 leading to reduced Akt
and p38 activation is compensated for by PKC dependant p38
activation and PKA dependant Akt activation. Thus our NTE
measure is capable of providing novel insights into signaling
mechanisms in biological networks.

IV. A GENERAL FRAMEWORK

In defining our NTE measure we have additionally con-
structed a family of mappings from the space of weighted
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FIG. 3. (Color online) Matrix displaying differential NTEs computed for every vertex pair over the displayed network, positive values (light
solid, green online) correspond to NTEs higher in the network perturbed with anti-CD3 and anti-CD28, whilst negative values (light dashed,
red online) are higher in the network also perturbed by psitectorigenin, a PIP2 inhibitor.

networks to a family of metric spaces, in which elements
of the metric spaces correspond to signal dynamics on the
networks. The mappings and structure of the metric spaces are
parametrized by the path length parameter n, the ISD �X0, and
the topology (i.e., the zero pattern, but not the edge weights)
of the network and their construction is explained in detail in
Appendix A.

This formalism allows a more theoretical treatment of
dynamics on networks from the perspective of metric spaces,
and permits a coupling between weighted network structure
and dynamics. In certain fields, understanding the reaction of
network dynamics to perturbations of edge weights is of great
importance. This is particularly true of network drug design
[23], in which one is interested in sequentially deforming
the quantitative strengths of interactions in a pathological
signaling network (via drugs) into those of a healthy network,
with the aim of establishing a healthy gene expression dynamic
and mitigating the pathology. If this notion of treatment is

logical within our framework, then one would postulate that
convergence in weight distribution of a sequence of networks
to a limit distribution (in a matrix metric space) would imply
convergence of the corresponding sequence of dynamics to the
dynamics of the limit network (in the network dynamic metric
space). We state and prove a theorem in Appendix D which
establishes this postulate as true. This result demonstrates an
intuitive coupling between network structure and dynamics
within our framework.

Further theoretical questions may consider which ISDs are
maintained under different networks; these represent persistent
(attractor) states of the network information distribution.
To identify such states we note that every graph (if we
permit self-edges at every vertex to represent a nonzero
probability of signal maintenance) admits a disjoint vertex
cycle decomposition [24]. Thus there is always a way of
sending a signal around the network, without combining a
signal from two vertices at any one vertex. This implies
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that for every weighted network W , with self-edges, there
must exist a permutation matrix φ, which admits at least
one vector �x satisfying φ�x = �x [e.g., the vector (1, . . . ,1)T ],
such that P [X1 = φ�x| �X0 = �x] > 0. The state �x thus has a
nonzero probability of being a persistent information state of
the network.

Questions concerning the evolution of self-assembling
networks can also be considered in our framework via an
application of dynamic programming. An introduction to this
approach is detailed in Appendix E.

V. CONCLUSION

We have derived a general information theoretic measure,
network transfer entropy, for quantifying the amount of
information transferred between any two vertices of a weighted
network over paths of varying length. We have demonstrated
our measure on simple synthetic weighted networks and ap-
plied it to biological signal transduction, revealing insights into
the robustness of kinase signaling. We have also constructed
a general metric space framework for dynamics on weighted
networks and proved a convergence principle relating weighted
network structure to dynamics. We outlined how problems
in network evolution and network dynamic stability can be
approached within our framework; formalization of these
approaches is a topic of future work.

APPENDIX A: P[X i
n| �X0] AND METRIC SPACE

In this Appendix we derive a closed form expression for
the probability distribution P [Xn

i | �X0], describing the signal
at a vertex i in a weighted network, given an initial signal
distribution (ISD), �X0, has traversed a path of length n.
Following the derivation of this expression we will explain
how the network transfer entropy (NTE) framework leads to
the construction of a family of mappings from the space of
weighted networks to a family of metric spaces describing
signal dynamics.

To compute the probability distribution P [Xi
n| �X0] for a

given weighted network W = (wij )Ni,j=1, with corresponding
stochastic matrix P = (pij )Ni,j=1 (see main text) we first note
that

P [Xi
n = y| �X0] =

∑
�x

P [ �Xn = �x| �X0]δy
xi
, (A1)

where δ
j

i denotes the Kronecker δ of i and j .
In addition, by the Markovian nature of our dynamic model

P [ �Xn = �x| �X0] =
∑

�X1,..., �Xn−1

P [ �Xn = �x| �Xn−1] . . . P [ �X1| �X0],

(A2)

reducing our problem to the calculation of the transition
probabilities P [ �Xk+1| �Xk], between states and the states them-
selves which must be summed over. These are not, however,
immediate. For the calculation consider the following: given
that we know the full signal distribution at time point k ∈ N,
i.e., �Xk = �xk , then all possible states of signal distribution at

time point k + 1 have the form

�Xk+1 = AT �xk. (A3)

Here A = (Aij )Ni,j=1, Aij ∈ {0,1} is a binary matrix with a
single nonzero entry in every row; the column index j of the
nonzero entry in row i corresponds to the unique vertex j that
i has sent its signal to during the time step k → k + 1. We note
that in addition Aij = 0 if j �∈ Ni and that A is independent
of �xk .

Thus every realization of a single signal transfer event in
a given weighted network can be represented as a matrix
operation A, independently of ISD. We denote the set of such
matrices by A, and emphasize that it depends only upon the
topology of the weighted network.

It is clear that for N < ∞ the set A must be countable,
and its cardinality must be |A| = ∏N

i=1 ki , where ki = |Ni |.
Moreover, it is clear that we can construct every element in A
given ∪N

i=1Ni .
Following this, it is clear that given any ISD �X0 the

signal distribution at time point k > 0 must have the (possibly
nonunique) form

�Xk = AT
k . . . AT

1
�X0, (A4)

where Ai ∈ A for i = 1, . . . ,k, whence Eq. (A2) can be
expressed as

P [ �Xn = �x| �X0]

=
∑

A1,...,An−1∈A
P

[ �Xn = �x∣∣ �Xn−1 = AT
n−1 . . . AT

1
�X0

]
. . . P

[ �X1 = AT
1

�X0| �X0
]
. (A5)

Thus to compute P [Xi
n| �X0], it suffices to compute

P
[ �Xk+1 = AT

k+1 . . . AT
1

�X0

∣∣ �Xk = AT
k . . . AT

1
�X0

]
,

which is simply the probability of the signal dynamic Ak+1

being selected from A. By model construction this can be
expressed as

N∏
i=1

N∑
j=1

pijAij .

Whence combining this with (A1) and (A5) we derive the
closed form expression

P
[
Xi

n = y
∣∣ �X0

] =
∑

A1,...,An∈A
δ

y

(AT
1 ...AT

n
�X0)i

n∏
r=1

N∏
k=1

N∑
j=1

pkj (Ar )kj .

(A6)

1. Metric space

We demonstrated above how, for a specific network W , and
ISD �X0 we can calculate a set of matrices describing possible
signal dynamics over a single time step of our model, as well
as a probability distribution describing the signal on the entire
network after n time steps. We will denote these constructs for
the weighted network W by AW and PW [ �Xn| �X0], respectively,
and stress that the former only depends on the topology of W

and not the edge weights; we will denote the topology of W

by t(W ) (topology in this context refers to the zero pattern
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of the network and is independent of the edge weights). The
probability distribution PW [ �Xn| �X0] is a measure over the finite
set {

AT
1 . . . AT

n
�X0 : (Ai)

n
i=1 ⊂ AW

}
,

which we will denote by �n
�X0

[t(W )]. If we denote the space

of probability measures over �n
�X0

[t(W )] by M+
1 (�n

�X0
[t(W )]),

then it is clear that for any two weighted networks W1 and
W2 with the same topology T the probability distributions
PW1 [ �Xn| �X0] and PW2 [ �Xn| �X0] are elements of M+

1 [�n
�X0

(T )].
It has been shown that for any measurable space �, the

square root of the Jensen Shannon divergence induces a metric
on the space M+

1 (�) [20], thus the quantity√
DJS(PW1 [ �Xn| �X0],PW2 [ �Xn| �X0])

computes a metric distance between the probability distribu-
tions describing the dynamics on W1 and W2.

Thus our NTE framework results in a mapping from the
space of weighted networks to a family of metric spaces in
which elements of the metric space represent possible signal
dynamics.

APPENDIX B: ESTIMATING NTE

In this Appendix we explain how the NTE may be estimated
from a simulation of the Markovian dynamic model introduced
in the main text and how error may be compensated for in this
estimation.

Network transfer entropy is formulated as the Jensen
Shannon divergence between two probability distributions. As
explored above we can derive closed form expressions for
these probability distributions, however, their evaluation can
be computationally expensive, if there are multiple vertices of
a large degree. This is because a main step in the evaluation
of the expressions is constructing the set A of possible
signal dynamics over a single time step, which for a network
on N vertices is of dimension

∏N
i=1 ki . Moreover, the time

complexity of evaluation scales exponentially with the path
length parameter n.

For most networks, however, estimation of the probability
distributions involved in the NTE expression can be done
efficiently. As the model underlying these distributions is a
discrete time Markov chain, with a discrete state space, we
can employ Monte Carlo simulation for any ISD to provide
realizations of the signal distribution on the entire network,
for any path length parameter n. From these realizations the
probability of a specified signal level at vertex i, given an ISD
and path length parameter n, can be estimated as the proportion
of simulations in which the specified level is achieved.

Two major considerations need to be addressed to ensure
accurate estimation from this procedure. First, it is clear
that the more simulations of the model performed, the more
accurate the estimate of the probability distribution, moreover
the estimate computed from K simulations will converge to
the true distribution as K → ∞. Thus it is essential to select
K sufficiently large to ensure that the estimated distribution
is sufficiently near the true distribution with high probability.
Second, given a specified K it is important to establish how

the error in estimating the probability distributions translates
to error in estimating the NTE.

To address the first issue, we consider only the full network,
i.e., without any vertices set to absorbing state, as the stochastic
matrix for the full network will have the fewest deterministic
vertices, and thus will be the hardest to estimate probability
distributions for. For each probability to be estimated we
construct a trace plot describing the change of the estimate
with the number of simulations K . This plot allows us to assess
convergence of the estimate as K is increased. We select the
number of simulations K for each network as the maximal K

such that the shape of the trace plots indicates convergence
and the estimates (for every vertex signal probability) at K

and K − 100 differ by no more than 0.01.
To address the second issue of error in the NTE after

selecting K , we computed multiple (R) estimations of the
signal probability distributions for the full network from K

simulations. We then computed, for every
(
R

2

)
estimate pair,

the Jensen Shannon divergence between the two estimates of
the signal distributions at each vertex. This Jensen Shannon
divergence, computed for vertex i, can be interpreted as the
NTE from a vertex j to i; when j sends no information to i, if
the estimation is perfect, this quantity should be zero. As the
estimation is imperfect we obtain

(
R

2

)
estimates of the error in

the NTE, deriving from error in the estimation of the proba-
bility distributions from simulation, for each receiving vertex.
From these estimates we can estimate the first two moments
of the error distribution; a NTE for a given receiving vertex is
considered not attributable to error, provided that it lies at least
two standard deviations above the maximal error observed for
the vertex. An R code for computing the NTE on the biological
signaling network is provided as Supplemental Material [25].

APPENDIX C: COMPUTING THE ISD AND EDGE
WEIGHTS FOR THE BIOLOGICAL NETWORK

In this Appendix we explain in detail the application of NTE
to biological signal transduction, specifically the assignment
of an ISD and edge weights for each perturbation.

To compute the NTEs over the two perturbations of the
biological signaling network considered in the main text we
must first define the ISD and the edge weights from the
data. As the kinases in the network must be phosphorylated
to phosphorylate their direct targets, two connected proteins
with highly positively correlated phosphorylation levels across
single cell observations under a given perturbation are likely
interacting. Thus a suitable edge weight which captures the
strength of a phosphorylation interaction represented by an
edge (i,j ) under a given perturbation k is 1 + Ck

ij , where Ck
ij is

the Pearson correlation of phosphorylated protein levels across
single cell measurements under perturbation k.

Defining the ISD is less trivial and requires consideration
of the question we wish to answer and some technicalities. To
determine the differences in information transfer between the
two perturbations, it makes sense to consider an ISD which
quantifies the difference in phosphorylated protein levels
between the two treatments. A technical issue to consider
is how different signal distributions on the same network
lead to different NTE values between vertices. It is clear that
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FIG. 4. (Color online) Comparing the NTE from source vertices to a target vertex when the ISD at source vertices are nonunique (a) and
unique (b), note that a unique ISD at input vertices results in a higher NTE from source to target.

weighting a vertex with a nonzero signal leads to a higher
NTE value between that vertex and its downstream interaction
partners (depending on the value of n) than weighting the
vertex with zero signal. Thus vertices with an information
deficit in one perturbation versus another should be weighted
with a zero signal in that perturbation and a nonzero signal in
the other.

A more subtle issue concerns the number of unique signal
values attainable at each vertex for a given ISD and how this
relates to the NTE. It is somewhat intuitive that if the inputs to
a given vertex each have a unique initial signal value, then the
range of values attainable by the receiving vertex will be more
diverse than if all the inputs had the same initial signal value.
Thus one may hypothesize that the NTE from one vertex to
another vertex, with multiple inputs, will be larger if the input
vertices have unique initial signal values than if they have
identical signal values.

To explain this concept, consider the network shown in
Fig. 4, consisting of one central vertex with three possible
inputs, which are each as likely to forward a signal to central
vertex as they are to forward a signal to a separate independent
neighbor. We consider the effect of the ISD on the NTE from
the circled vertex to the central vertex for path length parameter
n = 1 via two cases. In the first scenario the initial signal at
every input vertex is identical (in this example this signal value
is 1), while the signal at every other vertex starts at zero. In
the second case every input vertex is given a unique value (in
our example these values are simply 1, 2, and 3), while the
other vertices are again given initial signals of 0. Consider the
probability distribution of signal at the central vertex after a
single signal transfer event. For the first ISD, this distribution
can take four unique values (namely 0, 1, 2, and 3), however
for the second ISD, with unique signal values at the inputs,
the distribution can take seven values (integers 0–6). Now
consider the signal distribution at the central vertex given that
we prevent the circled vertex from sending information. For
the first ISD, this distribution now admits only three possible
values (0, 1, and 2), while for the second ISD only four possible
values are now attainable (0, 2, 3, and 5). Thus the size of the
“coding alphabet” at the central vertex after removal of input
from the circled vertex has shrunk from 4 to 3 under the first
ISD but from 7 to 4 under the second ISD (a much greater
fall). Consequentially, we notice that the NTE from the circled

vertex to the central vertex is lower for the first ISD than the
second ISD.

If we follow this concept that inputs with unique initial
signal send more information to their outputs, it is logical that
vertices with a significantly higher signal in one perturbation
versus another should be given a unique initial signal value
in the first perturbation, reflecting their capacity to send more
information about the network.

All that remains now is to consider how to assign an initial
signal to vertices which do not display a great difference in
signal distribution across the two perturbations. One solution
to this problem is to assign all these vertices an identical initial
signal; in this way they can transfer more information than
vertices with a signal deficit in one perturbation versus another
but less information than vertices with a signal surplus.

Guided by these concepts we constructed the ISD for
each perturbation as follows. We utilized the LIMMA package
in R [26] to compute t values testing, for each vertex in
the network, the hypothesis that the phosphorylated protein
level of the vertex was significantly different in the two
treatments. If for a given vertex the phosphorylated protein
levels were significantly lower (p < 0.05) in one perturbation
versus another it was assigned an initial value of zero in that
perturbation and a unique initial value (here chosen as the
absolute t statistic of the test) in the other perturbation. All
vertices which did not display significant changes between the
two perturbations were assigned the same nonunique initial
value of 1 in both perturbations. The ISDs and edge weights
for the two perturbations alongside NTE matrices computed
for each perturbation are provided in Fig. 5. An R code for
computing the ISDs for the biological signaling network is
provided as Supplemental Material [25].

APPENDIX D: PROOF OF THE CONVERGENCE
PRINCIPLE

In this Appendix we prove the following theorem.
Theorem 1 (convergence principle). Let (Wn)n∈N be a

sequence of weighted networks on N vertices of fixed topology
T , and let (P m)m∈N ⊂ [0,1]N×N be the corresponding row
normalized stochastic matrices for the sequence. Let P ⊂
[0,1]N×N be a stochastic matrix of topology T . If P m → P

in Lp(MN×N ), p � 1, as m → ∞, then for fixed ISD �X0 and
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FIG. 5. (Color online) The left hand side of the figure shows the ISD and edge weights for the anti-CD3 and anti-CD28 treated network
(a) and for the anti-CD3, anti-CD28 and psitectorigenin treated network (b). The right hand side displays matrices of NTEs computed between
every vertex pair over path lengths n = 1–5, in the anti-CD3 and anti CD28 treated network (c) and the anti-CD3, anti-CD28 and psitectorigenin
treated network (d).
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path length parameter n, the signal distributions

PP m [ �Xn| �X0] → PP [ �Xn| �X0]

as m → ∞ in the metric space[
M+

1 (�n
�X0

(T ))
]
,

√
DJS(·,·).

Proof. First we define the Lp norm of a matrix A ∈ MN×N

||A||p :=
{(∑N

i,j=1 |aij |p
)1/p

if p < ∞,

maxi,j |Aij | if p = ∞.
(D1)

A well-known and easy to derive bound on Lp spaces, which
holds for any A ∈ MN×N , is ||A||∞ � ||A||p.

Fix ε > 0. As P m → P in Lp(MN×N ), we have that there
exists M ∈ N such that for all m � M ,

||P m − P ||p < ε.

Let us define the matrix �P ∈ (−1,1)N×N via

�P := P M − P ;

it is clear that ||�P ||∞ < ε.
We now consider for a fixed ISD �X0 and path length

parameter n the distributions PP [ �Xn = �x| �X0] and PP M [ �Xn =
�x| �X0], which we will hereafter refer to as PP (�x) and PP M (�x).
It was shown above that

PP (�x) =
∑

A1,...,An∈A
δ �x

(AT
1 ...AT

n
�X0)

n∏
r=1

N∏
i=1

N∑
j=1

Pij (Ar )ij . (D2)

The set of possible signal dynamics A for a given weighted
network was also explicitly constructed above and was shown
to depend only on the network topology and not on the
edge weights of the network. Consequentially as the sequence
(P n)n∈N and the network P have the same topology T , the set
of possible signal dynamics A is the same for every element
of the sequence and the network P .

Consider expanding the product

n∏
r=1

N∏
i=1

N∑
j=1

Pij (Ar )ij =
n∏

r=1

N∏
i=1

N∑
j=1

(
P M

ij − �P
ij

)
(Ar )ij (D3)

=
{[

N∑
j=1

(
P M

1j (A1)1j −
N∑

j=1

�P
1j

)
(A1)1j

]
. . .

[
N∑

j=1

(
P M

Nj (A1)Nj −
N∑

j=1

�P
Nj

)
(A1)Nj

]}

. . .

{[
N∑

j=1

(
P M

1j (An)1j −
N∑

j=1

�P
1j

)
(An)1j

]
. . .

[
N∑

j=1

(
P M

Nj (An)Nj −
N∑

j=1

�P
Nj

)
(An)Nj

]}
. (D4)

Grouping together terms we can express the product as

n∏
r=1

N∏
i=1

N∑
j=1

Pij (Ar )ij =
n∏

r=1

N∏
i=1

N∑
j=1

P M
ij (Ar )ij −

[
N∑

i=1

n∑
r=1

(
N∑

j=1

�P
ij (Ar )ij

)
n∏

l �=r

N∏
s �=i

(
N∑

j=1

P M
sj (Al)sj

)]
+ o(ε). (D5)

We will denote the second term in the above expression by

H(Ai )ni=1
(�P ) :=

[
N∑

i=1

n∑
r=1

(
N∑

j=1

�P
ij (Ar )ij

)
n∏

l �=r

N∏
s �=i

(
N∑

j=1

P M
sj (Al)sj

)]
, (D6)

Substitution of (D5) into (D2) yields

PP (x) =
∑

A1,...,An∈A
δ �x

(AT
1 ...AT

n
�X0)

[
n∏

r=1

N∏
i=1

N∑
j=1

P M
ij (Ar )ij − H(Ai )ni=1

(�P ) + o(ε)

]
. (D7)

Clearly from (D2) the first term can be expressed

∑
A1,...,An∈A

δ �x
(AT

1 ...AT
n

�X0)

n∏
r=1

N∏
i=1

N∑
j=1

P M
ij (Ar )ij = PP M (x). (D8)

For the second term, notice that∣∣∣∣ ∑
A1,...,An∈A

δ �x
(AT

1 ...AT
n

�X0)
H(Ai )ni=1

(�P )

∣∣∣∣ �
∑

A1,...,An∈A
δ �x

(AT
1 ...AT

n
�X0)

N∑
i=1

n∑
r=1

⎛
⎝ N∑

j=1

||�P ||∞(Ar )ij

⎞
⎠ n∏

l �=r

N∏
s �=i

⎛
⎝ N∑

j=1

P M
sj (Al)sj

⎞
⎠

< ε
∑

A1,...,An∈A
δx

(AT
1 ...AT

n
�X0)

N∑
i=1

n∑
r=1

n∏
l �=r

N∏
s �=i

⎛
⎝ N∑

j=1

P M
sj (Al)sj

⎞
⎠ �

(
N∏

i=1

ki

)n

nNε, (D9)
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where the second inequality follows from ||�P ||∞ < ε and∑N
j=1(Ar )ij = 1 by construction of the set A. The final

inequality follows from the facts that
∑N

j=1 P M
sj (Al)sj � 1 and

|A| = ∏N
i=1 ki . Given these bounds and Eq. (D7) it follows

that

PP (x) < PP M (x) +
(

N∏
i=1

ki

)n

nNε + o(ε). (D10)

An identical argument can be used exchanging P M and
P , in which case the sign of H(Ai )ni=1

(�P ) in (D7)
changes to positive, however the bound established in
(D9) bounds the modulus of H(Ai )ni=1

(�P ) and thus will
always be greater than the largest negative or largest pos-
itive value of H(Ai )ni=1

(�P ). Thus we obtain the symmetric
bound

PP M (x) < PP (x) +
(

N∏
i=1

ki

)n

nNε + o(ε). (D11)

Let us define

m(x) := 1
2 [PP (x) + PP M (x)];

it follows from (D10) and (D11) that

PP (x)

m(x)
<

2PP (x)

2PP (x) − ( ∏N
i=1 ki

)n
nNε + o(ε)

(D12)

and

PP M (x)

m(x)
<

2PP M (x)

2PP M (x) − (∏N
i=1 ki

)n
nNε + o(ε)

. (D13)

Thus it follows that

DJS(PP ,PP M )

= 1

2

(∑
x

PP (x)ln
PP (x)

m(x)
+ PP M (x)ln

PP M (x)

m(x)

)

<
1

2

[ ∑
x

ln

(
2PP (x)

2PP (x) − ( ∏N
i=1 ki

)n
nNε + o(ε)

)

+ ln

(
2PP M (x)

2PP M (x) − (∏N
i=1 ki

)n
nNε + o(ε)

)]
. (D14)

By algebra of limits, it is clear that as ε → 0

2PP (x)

2PP (x) − ( ∏N
i=1 ki

)n
nNε + o(ε)

→ 1

and
2PP M (x)

2PP M (x) − ( ∏N
i=1 ki

)n
nNε + o(ε)

→ 1,

whence it follows that

DJS(PP ,PP m ) → 0

as m → ∞ and the theorem is true.
We note that the theorem also holds if the topologies of the

sequence of weighted networks and limit network are different
from one another; the proof of this statement follows precisely
as above, the only difference being the set A utilized is that
induced by the complete graph topology.

APPENDIX E: NETWORK EVOLUTION AND DYNAMIC
PROGRAMMING

In this final Appendix we outline an approach to network
evolution from the perspective of dynamic programming.

As mentioned in the main text the evolution of self-
assembling networks can also be considered in our framework
via an application of dynamic programming. To see this we
consider the space A (explicitly constructed above) containing
matrix representations of all possible single path length,
signal forwarding choices, induced by the complete graph on
K vertices. We note that for every weighted network W on
N vertices, where N < K , the corresponding stochastic matrix
P can be expressed as a convex combination of elements in A,
P = ∑KN

j=1 ρjAj where {Aj }KN

j=1 = A,
∑

j ρj = 1, ρj � 1 for
all j . If one interprets the space A as a state space of possible
choices of signal dynamics through the network and considers
�ρ = {ρj }KN

j=1 as a policy, giving a probability distribution of
selecting a given global signal dynamic from the state space,
that has been obtained by some optimality criterion, then one
has a dynamic programming framework for network dynamic
evolution. We note that one can calculate the policy explic-
itly, as ρi = P [ �X1 = Ai

�X0| �X0]. Thus we have information
to guide construction of an optimality criterion describing
network evolution. Forms of such a criterion can be posited
and parametrized for different systems and suitable parameter
regimes can be reverse engineered from the policy solution �ρ.
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