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We study the percolation behavior of two interdependent scale-free (SF) networks under random failure of 1-p
fraction of nodes. Our results are based on numerical solutions of analytical expressions and simulations. We
find that as the coupling strength between the two networks q reduces from 1 (fully coupled) to 0 (no coupling),
there exist two critical coupling strengths q1 and q2, which separate three different regions with different behavior
of the giant component as a function of p. (i) For q � q1, an abrupt collapse transition occurs at p = pc. (ii)
For q2 < q < q1, the giant component has a hybrid transition combined of both, abrupt decrease at a certain
p = p

jump
c followed by a smooth decrease to zero for p < p

jump
c as p decreases to zero. (iii) For q � q2, the giant

component has a continuous second-order transition (at p = pc). We find that (a) for λ � 3, q1 ≡ 1; and for
λ > 3, q1 decreases with increasing λ. Here, λ is the scaling exponent of the degree distribution, P (k) ∝ k−λ.
(b) In the hybrid transition, at the q2 < q < q1 region, the mutual giant component P∞ jumps discontinuously at
p = p

jump
c to a very small but nonzero value, and when reducing p, P∞ continuously approaches to 0 at pc = 0 for

λ < 3 and at pc > 0 for λ > 3. Thus, the known theoretical pc = 0 for a single network with λ � 3 is expected
to be valid also for strictly partial interdependent networks.
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I. INTRODUCTION

Complex networks appear in almost every aspect of science
and technology [1–15]. An important property of a network is
its robustness in terms of node and link failures. The robustness
of a network is usually characterized by the value of the critical
threshold analyzed by percolation theory. Recently, motivated
by the fact that modern infrastructures are significantly coupled
together, the robustness of interdependent networks has been
studied [16–29]. In interdependent networks, the failure of
nodes in one network generally leads to failure of dependent
nodes in other networks, which in turn may cause further
damage to the first network, leading to cascading failures and
catastrophic consequences.

The structure of complex networks is frequently non-
homogeneous with a broad degree distribution. In many
cases, the degree distribution obeys a power-law form, and
the networks are called scale-free (SF) [2]. Real networks
that have been found to be well approximated by power-
law degree distribution include, among many others, the
Internet, airline networks, protein regulatory networks, and
research collaboration networks [2,5,6]. Thus, the analysis of
interdependent scale-free networks with a power-law degree
distribution P (k) ∝ k−λ is needed. Buldyrev et al. [30]
developed a framework, based on percolation theory, to study
the robustness of interdependent networks. Analysis of fully
interdependent scale-free networks (where all nodes in one
network depend on all nodes in the other network and vice
versa) shows [30] that the critical threshold is pc > 0 even
for λ � 3, in contrast to a single network where pc = 0 [7].
In general, for fully interdependent networks with the same
average degree, the broader the degree distribution is (smaller
value of λ), the larger pc is [30]. This means that networks with
a broader degree distribution become less robust compared to
networks with a narrower degree distribution. This feature is in
contrast to the trend known in single noninteracting networks

where networks with broader degree distribution are more
robust. In real world, however, not all nodes in one network
depend on all nodes in the other network, so it is of interest to
study the robustness of two partially interdependent scale-free
networks. Parshani et al. [31] generalized the above framework
[30] to study partially interdependent networks. In Ref. [31],
Parshani et al. studied the case of partial coupling where only
a fraction q of nodes in each network are interdependent.
Their results for two interdependent Erdos-Renyi (ER) [32,33]
networks show that there exists a critical qc, bellow which
the system shows a second order percolation transition, while
above qc a first-order discontinuous percolation transition
occurs. The evolution of such a change from first-order to
second-order for SF networks when q changes remained
unclear, because the behavior of interdependent SF networks
is much more complex.

In this paper, we study the robustness of two partially
interdependent scale-free (SF) networks under random attack.
We assume that only a fraction q of nodes in each network are
interdependent. We find that for SF networks there are three
types of behaviors for different q. In addition to first-order
transition for large q and second-order for small q, there
is a mixed first-second-order transition in intermediate q

values. Specifically, we find: (i) As the coupling strength
between the two networks, q, reduces from 1 to 0, the giant
component, P∞, of the interdependent networks shows three
different types of transitions with p. For q1 < q � 1, an
abrupt collapse transition occurs. In the range q2 < q < q1, a
hybrid transition, which combines both abrupt and continuous
transitions, appears. For q < q2, a continuous second-order
transition appears. (ii) The threshold q1, which separates
the first-order and the hybrid transition, is equal to 1 for
λ � 3 and decreases with increasing λ. When q2 < q < q1,
at the steady state of the cascading failures, there exists a p

value, p
jump
c , at which the coupled SF networks will suffer a
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substantial damage due to cascading failures but a very small
nonzero mutual giant cluster P∞ will survive. For p < p

jump
c ,

P∞ will continuously approach 0 at p = pc = 0 for λ � 3
and at p = pc > 0 for λ > 3. Thus, the theoretical critical
threshold pc = 0 for λ � 3 for single networks [7] is expected
to be valid also for strictly partially interdependent networks.
(iii) For q < q2, the percolation transition becomes a regular
second-order transition, where P∞ continuously decreases to
zero with decreasing p.

II. CASCADING FAILURES

A. Initial failure in one network

When the system contains interdependent networks, which
are several networks fully or partially coupled with each other,
the initial attack on first network can trigger a systematic
cascade of failures between the networks [30]. This can be
explained as follows: suppose we have a system of two
interdependent networks A and B. When, at the initial attack, a
fraction 1 − p of nodes in network A (A − nodes) are removed
since a fraction q of one-to-one bidirectional dependency links
exists between A − nodes and B − nodes, so these B − nodes,
which depend on the removed nodes in A, are also removed
from the network B. Due to initial removal, network A may
break into some connected parts, which are disconnected
between themselves, called clusters. We assume that only the
largest cluster (known as the giant component) will function
and all the other smaller clusters will become dysfunctional.
Then the malfunctioning of the nodes in the small clusters of
network A will cause failures of their counterparts that depend
on them in network B, so network B will also break into
clusters and will cause further fragmentation in network A.
This cascade of failures will keep going on iteratively until no
further failures will occur.

To theoretically study the pair of coupled SF networks
under random failures, we apply the framework developed
by Parshani et al. [31] to study the cascading failures of
partially interdependent random networks. Define pA and pB

as the fraction of nodes belonging to the giant components
of networks A and B, respectively. Define ψ ′

n and φ′
n as

the fraction of network A nodes (A − nodes) and network
B nodes (B − nodes) remaining, and ψn and φn the giant
components of networks A and B, respectively, after the
cascade of failures stage n. Since ψ ′

1 stands for the remaining
fraction of A − nodes after the initial removal, it follows that
ψ ′

1 = p. The remaining functional part of network A therefore
contains a fraction ψ1 = ψ ′

1pA(ψ ′
1). Because a fraction q of

nodes from network B depends on nodes from network A,
the number of nodes in network B, which loses functionality,
is (1 − ψ1)q = q[1 − ψ ′

1pA(ψ ′
1)]. Similarly, φ′

1 = 1 − q[1 −
ψ ′

1pA(ψ ′
1)], among these B − nodes, the fraction of nodes

in the giant component of network B is φ1 = φ′
1p(φ′

1). The
general form of the iterations is

ψ ′
1 = p, ψ1 = ψ ′

1pA(ψ ′
1),

φ′
1 = 1 − q[1 − ψ ′

1pA(ψ ′
1)], φ1 = φ′

1pB(φ′
1),

ψ ′
2 = p{1 − q[1 − pB(φ′

1)]}, ψ2 = ψ ′
2pA(ψ ′

2)..., (1)

ψ ′
n = p{1 − q[1 − pB(φ′

n−1)]}, ψn = ψ ′
npA(ψ ′

n),

φ′
n = 1 − q[1 − pA(ψ ′

n)p], φn = φ′
npB(φ′

n).

At the end stage of the cascade of failures when nodes
failure stops, both networks reach a stable state where no
further cascading failures happen. According to Eq. (1), it
means

φ′
m = φ′

m+1, ψ ′
m = ψ ′

m+1, (2)

when m → ∞, since eventually the clusters stop fragmenting.
Let ψ ′

m be denoted by x and φ′
m by y, so we get ψ∞ =

pA(x)x, φ∞ = pB(y)y. Applying the previous conditions with
the last two equations in Eq. (1), we obtain the set of equations

x = p{1 − q[1 − pB(y)]}
(3)

y = 1 − q[1 − pA(x)p].

Equation (3) [31] can be solved numerically to get the
values of x and y when an analytical solution is not possible.
This is the case for coupled SF networks, since the generating
functions of SF network do not have a convergent analytical
form, and only an infinite series can be obtained.

Next, we introduce the mathematical technique of generat-
ing functions for SF networks in order to get the analytical
forms of pA(x) and pB(x) [30,31,35,36]. The generating
function of the degree distribution is

GA(zA) =
∑

k

PA(k)zk
A. (4)

Analogously, the generating function of the underlying
branching processes is

HA(zA) = G
′
A(zA)/G

′
A(1). (5)

Random removal of a fraction 1 − p of nodes will change
the degree distribution of the remaining nodes, so the generat-
ing function of the new distribution is equal to the generating
function of the original distribution with the argument equal to
1 − p (1 − z) [34,36]. The fraction of nodes in A that belongs
to the giant component after the removal of 1 − p nodes is

pA(p) = 1 − GA[1 − p(1 − fA)], (6)

where fA is a function of p, fA ≡ fA(p), which satisfies the
transcendental equation

fA = GA[1 − p(1 − fA)]. (7)

For SF networks, the degree distribution is P (k) = ck−λ,
where λ is the broadness of the distribution and kmin < k < K .
In the case of SF networks [4],

GA(zA) =
K∑

k=kmin

[(
kmin

k

)λ−1

−
(

kmin

k + 1

)λ−1]
zk
A, (8)

and

HA(z) =

K∑
k=kmin

k[
(

kmin
k

)λ−1 − (
kmin
k+1

)λ−1]
zk−1
A

K∑
k=kmin

k
[(

kmin
k

)λ−1 − (
kmin
k+1

)λ−1] . (9)
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FIG. 1. (Color online) (a) The giant component ψ∞ as a function of p for coupled SF-SF networks system under random removal of
1 − p nodes in one network. SF networks with three different parameters are shown (i) λ = 2.7, q = 0.95, kmin = 2, 〈k〉 = 3 (solid black line
and circles), (ii) λ = 2.7, q = 0.5, kmin = 2, 〈k〉 = 3 (dashed red line and squares), and (iii) λ = 3.5, q = 0.7, kmin = 2, and 〈k〉 = 3 (dotted
green line and triangles). The lines represent the theory [Eq. (3)] and symbols are results of simulations. (b) Comparison between theory and
simulations of ψn, the fraction of the giant component obtained at p = 0.883, which is just below pc, after n stages of the cascading failures
for several random realizations of coupled SF networks with λ = 2.7, kmin = 2, 〈k〉 = 3, q = 0.95, and N = 1 280 000. One can see that for
the initial stages the agreement is perfect; however, for larger n, deviations occur due to random fluctuations in the topology between different
realizations [37]. Both simulations and theoretical predictions show a plateau that drops to zero, corresponding to a complete fragmentation of
the network. Note that some of the random realizations converge to a finite mutual giant component and are not completely fragmented.

From Eqs. (3)–(9), we obtain that

φ∞ = (1 − zA)[1 − GA(zA)]

1 − HA(zA)
,

(10)

ψ∞ = (1 − zB)[1 − GB(zB)]

1 − HB(zB)
,

where zA and zB satisfy

(1 − zB)

1 − HB(zB)
= 1 − q{1 − p[1 − GA(zA)]},

(11)
(1 − zA)

1 − HA(zA)
= p[1 − qGB(zB)].

Substituting the generating functions of SF networks into
the theoretical frameworks, Eqs. (1)–(7), we obtain, using
numerical solutions, the theoretical results and compare them
with results of computer simulations. Figure 1(a) shows good
agreement between the theoretical and simulation results for
the final giant component ψ∞ as a function of p for two
interdependent SF networks under random removal of 1 − p

nodes in one network. Three cases are studied: (i) λ = 2.7,
q = 0.95, kmin = 2, 〈k〉 = 3; (ii) λ = 2.7, q = 0.5, kmin = 2,
〈k〉 = 3; and (iii) λ = 3.5, q = 0.7, kmin = 2, and 〈k〉 = 3.
Figure 1(b) shows the cascading failure dynamics of the
giant components left after n cascading stages (denoted by
ψn) as a function of number of iterations n, for several
random realizations of SF networks, with λ = 2.7, kmin = 2,
〈k〉 = 3 (same parameter values as the numerical calculation),
N = 1 280 000 at p = 0.883 < pc, in comparison with the
theoretical prediction of Eq. (1). Initially, the agreement is
perfect, and when n is getting larger, the random fluctuations
in topology of different realizations play an important role [37].

B. Initial failures in both networks

When initially a 1 − p fraction of nodes is removed from
both networks [38,40], the system Eq. (3) becomes

x = p{1 − q[1 − pB(y)p]},
(12)

y = p{1 − q[1 − pA(x)p]}.
When the degree distribution of the two networks are the

same, it follows that pB(·) = pA(·), x = y, and φ∞ = ψ∞,
and the two Eqs. (12) become a single equation. Furthermore,
using Eqs. (10) and (11), we obtain

ψ∞ = φ∞ = (1 − z)[1 − G(z)]

1 − H (z)
, (13)

where z satisfies

(1 − z)

1 − H (z)
= p(1 − q{1 − p[1 − G(z)]}). (14)

Equation (14) is a quadratic equation of q, and only one
root has a physical meaning as

1

p
= [H (z) − 1]{1 − q +

√
[(1 − q)2 + 4qφ∞(z)]}

2(z − 1)
≡ R(z).

(15)

The maximum of R(z) corresponds to pc, and

pc = 1

max{R(zc)} , (16)

where zc is obtained when z → 1, i.e., φ∞ = 0, and thus

max{R} = lim
z→1

H (z) − 1

z − 1
(1 − q)

.= H ′(1). (17)

For two interdependent SF networks, when K → ∞,
max{R} → ∞, so pc = 0. However, in the numerical sim-
ulations, K cannot reach ∞, so pc seems greater than 0, but in
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FIG. 2. (Color online) (a) and (b) Numerical calculations of coupled SF networks with λ = 2.7, kmin = 2, average degree 〈k〉 = 〈kA〉 =
〈kB〉 = 3. The size of the giant mutually connected component, ψ∞, is shown as a function of p for several different values of q (q increases
from left to right). Note that (b) is the same as (a) only that the y axis is in a logarithmic scale. We see that when q = 1, it is a first-order
transition, since ψ∞ goes to zero for p below the jump (pjump

c ), but for q = 0.95, q = 0.9, and q = 0.85, just below p
jump
c , ψ∞ first reaches a

small nonzero value, then smoothly goes to zero at p = pc = 0 (For analytical proof, see Sec. II B). This is a typical property of hybrid phase
transition. For q = 0.6 there seems to be no jump of ψ∞ and the transition is purely second-order. (c) The number of iterations (NOI) [43] to
reach the end stage of cascade failure as a function of p. (d) Same plot as (a), but for φ∞, which is the giant component of network B, which is
not initially attacked. (e) and (f) are the same as (a) and (b) but for λ = 3.5, and for q = 1,0.9,0.8,0.7, and 0.

the theory pc = 0. Note that when q = 1, Eq. (17) can yield
for max{R} a finite value since 1 − q = 0 and, therefore, pc

can become different from zero as found earlier.
Now let us relate pc of failure in one network (po

c ) and
both networks failures (pb

c ). Our previous results [39] show
that for two networks (po

c )2 = pb
c , so we argue that for two SF

networks, when pb
c = 0, it follows that po

c = 0.

III. PERCOLATION BEHAVIOR

It is known that due to the existence of the interdependence
links, when the two-network-system is under random attack,
the iterative cascade of failures in both networks may result in

a percolation phase transition that completely fragments both
networks when the initial fraction of removed nodes is above
the critical threshold. When all nodes in both networks have
one-on-one dependency links toward their counterpart nodes in
the other network (given the size of both networks is the same),
i.e., q = 1, the percolation phase transition is discontinuous
and first order [30]; and when the coupling strength q reduces
to 0 (which becomes the case of a single SF network), a second-
order percolation transition exists [7]. However, the change of
transition from first- to second-order for SF networks when q

changes remained unclear. For coupled ER [32,33] networks
having Poissonian degree distribution, a critical point qc exists.
For q > qc, a first-order transition occurs, while for q < qc, a
second-order continuous phase transition occurs [31].
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The percolation behavior of two fully and partially interde-
pendent SF networks, obtained from the numerical solutions
of Eqs. (3)–(9), are shown in Fig. 2. Figures 2(a) and 2(b) show
for λ = 2.7, the fraction of nodes in the giant component of
network A, ψ∞, as a function of p (fraction of the initially
unremoved nodes) for several q values. We can see, as
expected, for SF networks, when q = 1 (fully coupled), the
phase transition is first-order [30]. This means as more and
more nodes are initially removed, abruptly, at some value of
p = pc, the critical threshold, the iterative cascading failure
process will completely fragment the system. Below pc, there
will not exist any cluster of the order of the network size.
Thus, what still will remain are only very small clusters or
single nodes. But just above this critical p value, when the
failures stop, there exists a giant component in the system.

When q < 1 but close to 1 (λ � 3), as p decreases from
1, ψ∞ first shows a sudden big drop similar to q = 1 case,
but ψ∞ does not drop to 0, instead, it drops to a small but
still nonzero value, which means though the giant cluster
in the network suffers a big damage, it does not collapse
completely [see Fig. 2(b)]. We name the p value where ψ∞
has the discontinuous drop to be p

jump
c . We mathematically

define the p
jump
c as

pjump
c = {p| max[ψ∞(+p) − ψ∞(−p)]}, (18)

where +p denotes approaching p from above p, and −p

denotes approaching p from below p.
As p keeps decreasing below p

jump
c , the small giant

component, ψ∞, smoothly decreases, until at p = pc = 0, ψ∞
will also reach 0. Thus, the real critical threshold for q < 1
is pc = 0 similar to single networks [7] (see the analytical
arguments at the end of Sec. II B). This phenomenon can be
seen more clearly in Fig. 2(b), which is similar to Fig. 2(a) but
the y axis, ψ∞, is plotted in a logarithmic scale. We see that at
p

jump
c , for q = 0.95, q = 0.9, and q = 0.85, the corresponding

giant component sizes are reduced from order of 1 by a factor
in the range of

ψ∞(−pjump
c ) ∈ [10−2,10−4],

(19)
ψ∞(+pjump

c ) ≈ o(1).

When p decreases further, ψ∞ decreases smoothly toward
zero for p = 0. (The analytical proof is given in Sec. II B.)

This behavior is typical of the behavior of a hybrid
transition, which includes both first- and second-order phase
transition properties similar to that found in bootstrap perco-
lation [41,42]. Note that our first-order transition is called
hybrid transition by Baxter et al. [41], since the critical
behavior above the transition is similar to second-order
transition. The giant component first undergoes a sharp jump,
which is a characteristic of first-order transition, and then
smoothly goes to 0, which is a characteristic of a second-order
phase transition. However, when q is getting smaller, this
hybrid-transition phenomenon becomes less apparent, and the
percolation phase behavior seems to become, at some threshold
of q = q2, an ordinary second-order transition. For example,
the curve for q = 0.6 in Figs. 2(a) and 2(b) seems to suggest a
second-order transition, since there is no obvious sudden drop
of the giant component size; instead, it continuously decreases
when p decreases. For the case of two interdependent ER

networks, the system shows either a first-order or second-order
phase transition but not a hybrid transition as here [30,38–40].

In network B, which is initially not attacked, similar
behavior of the giant component φ∞ can be observed; see
Fig. 2(d). However, the difference is that even at p = 0, φ∞
does not approach 0 but reaches a finite value. This can
be understood due to the partial dependency between the
networks (q < 1). Even if all nodes in A are removed (p = 0),
since q < 1, there is a finite fraction, 1 − q, of nodes in B that
are not removed, and in a SF network any finite fraction of
unremoved nodes will yield a giant component [7]. Only in
the fully coupled (q = 1) case, the mutually connected giant
cluster will completely collapse at pc > 0.

A. Estimate of pjump
c from P∞ as a function of p

So far, we saw (Fig. 2) that for q2 < q < q1, as p decreases,
the giant component shows an abrupt drop similar to a first
order transition as Eq. (19). However, the drop is not to P∞ =
0, like in a first-order transition, but to a small finite P∞ value.
As q decreases, as seen in Fig. 3, this drop becomes less
sharp and smoother, and tends toward a continuous second-
order transition as in Eq. (20). We analyzed this transition
and find that the phase transition is like a first-order transition
with a sharp drop of P∞ at p

jump
c . For q < q2, the hybrid

transition diminishes and the behavior becomes a second-order
transition with a continuous behavior. We are interested in
determining the values of q1 and q2, which separate the three
distinct regions. In order to achieve that, we first need to find
p

jump
c .

To accurately evaluate the values of p
jump
c for each q, we

compute the number of iterations (NOI) in the cascading
process, which shows a maximum at p

jump
c [43]. The NOI

is the number of iterative cascade steps it takes the system
to reach the equilibrium stage. In the simulations, NOI = m

is defined by Eq. (2), i.e., the step where no further damage
occurs. But in the numerical solution, ψn is approaching ψ∞
only when n → ∞. Here we define NOI = m when

ψm − ψm+1 < ξ,
(20)

φm − φm+1 < ξ,

where ξ is a very small number. We choose ξ = 10−16 in this
paper, which is equivalent to the requirement for the cascading
failures to stop in a two-network system when both have 1016

nodes. Note that for other very small values of ξ , the position
of p

jump
c remains the same.

At the first-order and hybrid-order transition point, the NOI
has its peak value, which drops sharply as the distance from
the transition is increased [43]. Thus, plotting the NOI as
a function of p provides a useful and precise method for
identifying the transition point p

jump
c of the hybrid transition.

Figure 2(c) presents such numerical calculation results of NOI.
The transition point, pjump

c , can be easily identified by the sharp
peak characterizing the transition point. According to the NOI,
we define p

jump
c as

pjump
c = {p| max[NOI(p)]}. (21)
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FIG. 3. (Color online) The giant component, ψ∞ as a function of p for coupled SF networks with different values of λ, with kmin = 2, and
average degree 〈k〉 = 3. Only the critical region around the maximum jump of ψ∞ are shown, for different q values ranging from 0 (most left)
to 1 (most right), with increments of q of 0.01. From these graphs, we can find as the q decreases, ψ∞ becomes more continuous. It is also
seen that for large q the sharp jump of ψ∞ starts from small but nonzero values to large finite values. This behavior is typical to a hybrid-phase
transition. (a) λ = 2.0, the threshold of hybrid transition and second-order transition is q2

∼= 0.825, so the q = 0.82 and q = 0.83 curves are
shown with symbols. We can see that the jump in ψ∞ vanishes (shown by symbols) when q is reduced, as the phase transition becomes
second-order. (b) For λ = 2.7 and (c) for λ = 3.5, the curves in the region of q where the hybrid transition becomes second-order are shown
by symbols.

From Fig. 2(c), one can see that the definition of Eq. (18)
coincides with the definition of Eq. (21).

B. Determining q2

We know that when the transition is second-order, the order
parameter ψ∞ decreases continuously. As seen above, ψ∞ has
a maximum magnitude change at p

jump
c , which can used to

identify the position of p
jump
c by Eq. (21). Thus, we can now

investigate these maximum magnitude changes for different q

values at p
jump
c . In Fig. 3, we plot ψ∞ as a function of p only

near p
jump
c , for different q values ranging between 0 and 1,

for several different λ values. In order to estimate when these
changes are discrete and when they are continuous, we define

F (q) ≡ log10

{
ψ∞[+p

jump
c (q)]

ψ∞[−p
jump
c (q)]

}
. (22)

The rationale for this is as follows. The quantity
ψ∞(+p

jump
c ) is the value of the order parameter just before

the maximum drop at p > p
jump
c , and ψ∞(−p

jump
c ) is the value

of the order parameter right after the maximum drop. In
hybrid transition, as we discussed, this change in magnitude
is large. However, as q becomes smaller, and when finally the
transition becomes second-order, the change is continuous and
the ratio between the magnitudes in Eq. (22) should become

1. Thus, whenever F (q) goes to 0, the corresponding q is q2,
which is the threshold where the hybrid transition turns into a
second-order phase transition. When F (q) → 0,

ψ∞(+p) − ψ∞(−p)

dp
‖

p=p
jump
c

= 0. (23)

By extrapolating these q positions [where F (q) goes to 0]
for different λ, we get q2 as a function of λ and plot it in
Fig. 4(a). Interestingly, q2 is not monotonic with λ but has
a maximum around λ = 2.4. To alternatively identify q2, we
define the maximum slope as function of q as S(q),

S(q) ≡ max

{
ψ∞(+p) − ψ∞(−p)

dp
‖

p=p
jump
c

}
. (24)

When q is below or equal to q2, the value of S(q) is
very small, representing a continuous change of ψ∞, which
is second-order; when q reaches some value, the S(q) has
a sudden drop at q2; i.e., the maximum slope becomes
dramatically large, representing a sharp change in ψ∞, which
is a sign of the occurrence of a hybrid transition.

By identifying the position of q where the abrupt drop is
located, we can also find the thresholds q2, which distinguish
second-order and hybrid transition. The results shown in
Figs. 4(b)–4(d) match very well the results in Fig. 4(a),
supporting our method for determining q2.
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FIG. 4. (a) Values of q2 (©) as a function of λ for SF networks with average degree 〈k〉 = 3 and kmin = 2. Note the maximum of q2 at
λ ∼= 2.4. (b) Values of q1 (�) as a function of λ. Plot of 1/S(q), as a function of q, where S(q) is maximum slope value in the ψ vs. p plot,
are shown for (c) λ = 2.0, (d) λ = 2.7, and (e) λ = 3.5, all SF networks are with average degree 〈k〉 = 3 and minimum degree kmin = 2. We
can see that the maximum slope values have a sharp change at q2 = 0.83,0.83, and 0.7 for λ = 2.0,2.7, and 3.5, respectively, supporting the
results in (a).

C. Determining q1

For coupled SF networks with λ � 3, only when q = 1 the
transition is a first-order, which means q1 = 1 for λ � 3. As
λ increases above 3, q1 becomes smaller than 1. To estimate
the q1 values for λ > 3, we define according to Eq. (19) the
system to have a first-order transition if ψ∞ satisfies

ψ∞
(−

pjump
c ,q

)
< σ. (25)

Otherwise, it is not a first-order transition. We set here a value
σ = 10−11, but similar results have been obtained for σ =
10−12 and 10−13. We plot q1 as a function of λ obtained this
way in Fig. 4(a).
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FIG. 5. The critical threshold pc as a function of q for λ =
2.0,2.7, and 3.5. The values of pc are defined as follows: for the
first-order transition, pc is where the ψ∞ jumps to 0; for hybrid
transition, p

jump
c is where the sudden jump of ψ∞ to a nonzero ψ∞

occurs; for second-order transition, pc is where ψ∞ goes to 0. For
λ > 3, we can clearly see three regions of pc. For λ < 3, q1 = 1 and
for q < q2 ≈ 0.83, p

jump
c disappears and pc becomes zero.

Now, for any given λ value, we plot in Fig. 5, pc as a
function of q [pc(q)]. For λ � 3, only when q = 1 is it a
first-order transition, where ψ∞ abruptly goes to 0 below pc(1);
when q < 1, it is either hybrid or second-order transition, and
ψ∞ is strictly 0 only at p = 0 for both cases. However, since
for the hybrid transition the giant component becomes very
small at p

jump
c , we can regard this point as an effective pc. For

second-order transition, although there still exists a p value
where there is a maximum change in the magnitude of ψ∞,
but since ψ∞ is continuous in all p region, we define pc where
ψ∞ goes to 0 and, thus, pc is always 0.

For λ > 3, the first-order transition happens also for q < 1
and at pc, ψ∞ jumps to 0. In this case, pc of the second-order
transition and of the hybrid transition is not 0.

IV. SUMMARY

We find that for two SF interdependent network models with
partial dependency q, the phase transition behavior of the giant
cluster under random attack shows a change from first-order
(for q1 < q < 1), through hybrid transition (q2 < q < q1), to
a second-order phase transition (0 � q < q2). In the hybrid
transition region, at an effective critical point p

jump
c , the giant

component ψ∞ has a sharp drop from finite value to a much
smaller, yet a nonzero value. The hybrid transition seems
to be unique for SF since it does not appear in coupled ER
networks [31–33]. Our results demonstrate that SF coupled
networks are more vulnerable (compared to ER) to random
failures since p

jump
c is usually high and the breakdown leads

to large drop of the size of the functional network. This is in
agreement with Buldyrev et al. [30], showing that for broader
degree distribution the coupled system is more vulnerable.
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