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The random 3-satisfiability (3-SAT) problem is in the unsatisfiable (UNSAT) phase when the clause density α

exceeds a critical value αs ≈ 4.267. Rigorously proving the unsatisfiability of a given large 3-SAT instance
is, however, extremely difficult. In this paper we apply the mean-field theory of statistical physics to the
unsatisfiability problem, and show that a reduction to 3-XORSAT, which permits the construction of a specific
type of UNSAT witnesses (Feige-Kim-Ofek witnesses), is possible when the clause density α > 19. We then
construct Feige-Kim-Ofek witnesses for single 3-SAT instances through a simple random sampling algorithm
and a focused local search algorithm. The random sampling algorithm works only when α scales at least linearly
with the variable number N , but the focused local search algorithm works for clause density α > cNb with
b ≈ 0.59 and prefactor c ≈ 8. The exponent b can be further decreased by enlarging the single parameter S of
the focused local search algorithm.
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I. INTRODUCTION

The satisfiability (SAT) problem is a constraint satisfaction
problem of great practical and theoretical importance. On the
practical side, many constraint satisfaction problems and com-
binatorial optimization problems in industry and engineering
can be converted into a SAT problem; therefore many heuristic
solution-searching algorithms have been developed over the
years for single problem instances (see review [1]). On the
theoretical side, the SAT problem is the first constraint satis-
faction problem shown to be non-deterministic polynomial
(NP) complete [2,3]; all other NP-complete problems can
be transformed into the SAT problem through a polynomial
number of steps. Understanding the computational complexity
of the SAT problem has attracted a lot of research efforts.

The ensemble of random K-SAT problems has been the
focus of intensive theoretical studies by computer scientists
and statistical physicists in the last 20 years [4–11]. In a given
instance (formula) of the random K-SAT problem, the states
of N binary variables are constrained by M clauses, with each
clause involving a fixed number K of variables, randomly and
independently chosen from the whole set of N variables. The
clause density is defined as

α ≡ M

N
,

which is just the ratio between the clause number M and the
variable number N .

The random K-SAT problem has a critical clause density
αs(K) at which a satisfiability transition occurs. At the

thermodynamic limit of N → ∞, all the M clauses of an
instance of the random K-SAT problem can be simultaneously
satisfied if the clause density α < αs(K), but this becomes
impossible if α > αs(K). The value of αs(K) for K � 3 can
be estimated by the mean-field theory of statistical physics
[8,9,12]. For example, αs(3) = 4.267 for the random 3-SAT
problem.

Most previous investigations on the random K-SAT prob-
lem considered the SAT phase, α < αs(K). To prove a K-SAT
formula is satisfiable, it is sufficient to show that there exists a
single spin configuration of the N variables which makes all the
M clauses to be simultaneously satisfied. However, to certify a
K-SAT formula to be unsatisfiable is much harder. In principle,
one has to show that none of the 2N spin configurations satisfies
the M clauses simultaneously.

Theoretical computer scientists have approached the K-
SAT problem from the UNSAT phase through spectral al-
gorithms [13–15]. These refutation algorithms are able to
certify the unsatisfiability of random 3-SAT formulas when
α > cN

1
2 (where the constant c should be sufficiently large).

The refutation lower bound for random 3-SAT was further
pushed to α > cN

2
5 by Feige et al. [16] from another

theoretical approach, namely, treating a given 3-SAT instance
also as a 3-exclusive or (3-XORSAT) instance. Feige and
coauthors [16] observed that if a 3-SAT formula is satisfiable,
the global minimum number of unsatisfied clauses of the
formula treated as a 3-XORSAT cannot exceed a certain
value. Proving the unsatisfiability of a 3-SAT instance is
thus converted to constructing a high-enough lower bound
for the ground-state energy (i.e., the global minimum number
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of unsatisfied clauses) of the corresponding 3-XORSAT
formula.

Using 3-XORSAT to prove a result on 3-SAT is in computer
science terminology a reduction, while a specific high-enough
lower bound is a witness of unsatisfiability. In this paper we
study two related questions. The first is if the reduction is
possible in random 3-SAT formulas with large but constant
clause density α. Using the (nonrigorous) mean-field method
of statistical physics, we answer this question affirmatively,
provided clause density α > 19. This means that when α < 19
the ground-state energy of a random 3-XORSAT instance is
(almost surely, in the thermodynamic limit) lower than the
value which would allow us to conclude that the corresponding
3-SAT instance is unsatisfiable. If, on the other hand, α > 19,
then the ground-state energy of a random 3-XORSAT instance
is (almost surely, in the thermodynamic limit) high enough,
and it should in principle be possible to find witnesses of
unsatisfiability. The method of Ref. [16] also gives, apart
from the reduction of 3-SAT to 3-XORSAT, a constructive
procedure to construct the lower bound. In this paper we
refer to such witnesses as Feige-Kim-Ofek (FKO) [16]
witnesses.

The second issue addressed in this paper is then to construct
FKO witnesses, which is expected to be very difficult for such
sparse formulas. A very simple random sampling algorithm is
tested in this paper. Without any optimization, the performance
of this naive algorithm is not good; it only works for α scaling
at least linearly with N . We then test the performance of a
simple focused local search algorithm. We find this algorithm
performs much better. It can construct UNSAT witnesses
for 3-SAT instances with clause density α > 8N0.59. Further
improvements are observed when some modifications are
made on this focused local search algorithm.

The paper is structured as follows: In Sec. II we review
the main ideas behind the reduction and FKO witnesses;
Sec. III demonstrates the reduction for the sparse random
3-SAT problem; and Sec. IV shows the performances of
the naive random sampling algorithm and the focused local
search algorithm. In Sect. V we conclude and discuss further
directions of this work.

II. THE FEIGE-KIM-OFEK WITNESS

Consider a system with N variables i ∈ {1,2, . . . ,N}.
Each variable i has a (binary) spin state σi ∈ {−1,+1}. A
configuration of the system is denoted as σ ≡ (σ1,σ2, . . . ,σN ),
and there are a total number 2N of such configurations. The
system has also M clauses a ∈ {1,2, . . . ,M}. Each clause a is
a constraint over K = 3 different variables (say i,j,k) and it
has three coupling constants (say J i

a,J
j
a ,J k

a ), each of which is
either +1 or −1. We consider two types of energies for clause
a, namely, the SAT energy

Esat
a (σi,σj ,σk) =

(
1 − J i

aσi

)(
1 − J

j
a σj

)(
1 − J k

a σk

)
8

(1)

and the XORSAT energy

Exor
a (σi,σj ,σk) = 1 − J i

aJ
j
a J k

a σiσjσk

2
. (2)

If the total energy of the system is defined as the sum of all
the SAT energies, then the problem is a 3-SAT formula with
energy function

Esat(σ ) =
M∑

a=1

Esat
a . (3)

A configuration σ is referred to as a satisfying assignment (or a
solution) for the 3-SAT formula if its energy Esat(σ ) = 0. The
3-SAT formula is referred to as satisfiable (SAT) if there exists
at least one satisfying assignment for this formula; otherwise
it is referred to as unsatisfiable (UNSAT).

For the same set of M clauses, we can also consider all
the XORSAT energies and define a 3-XORSAT formula with
energy function

Exor(σ ) =
M∑

a=1

Exor
a . (4)

The ground-state (i.e., global minimum) energy of the XOR-
SAT energy is denoted as Exor

0 :

Exor
0 ≡ min

σ
Exor(σ ).

Checking whether a 3-XORSAT formula is satisfiable (namely,
Exor

0 = 0) is an easy computational task (it is a linear
problem and therefore can be solved by Gaussian elimination).
However, if Exor

0 > 0, to determine the precise value of Exor
0 is

a NP-hard computational problem (see [17] for a pedagogical
explanation of this interesting issue).

The constrained system can be conveniently represented as
a bipartite graph with N circular nodes for the variables, M

square nodes for the constraint clauses, and 3M edges between
the variable nodes and the clause nodes (see Fig. 1). Such a
bipartite graph is often referred to as a factor graph [18]. In
the factor graph, each clause a is connected by three edges to
the three constrained variables, and the edge (i,a) between a
variable i and a clause a is shown as a solid line (if J i

a = 1) or
a dashed line (if J i

a = −1). In the factor graph of the system,
the number of attached edges of different variables might be
different. For a variable i the number of attached positive and
negative edges is denoted as k+

i and k−
i , respectively.

To prove the unsatisfiability of a 3-SAT formula is very
challenging, since in principle one has to show that for each
of the 2N configurations, the SAT energy Esat(σ ) > 0, but
such an enumeration becomes impossible for systems with
N > 100. Feige, Kim, and Ofek (FKO) [16] approached this
problem with the proposal of constructing UNSAT witnesses
through the 3-XORSAT energy (4). Here we review their main
ideas [16].

FIG. 1. (Color online) Factor graph representation for a 3-SAT
formula. The variables and clauses are represented by circles and
squares, respectively. Each clause has three edges attached. A solid
edge between a variable i and a clause a means that the coupling
constant J i

a = 1, while a dashed edge means that J i
a = −1.
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Consider a given 3-SAT formula with energy function (3).
Suppose this formula is satisfiable, then there is at least one
satisfying configuration σ such that Esat(σ ) = 0. An edge (i,a)
is referred to as being satisfied by σ if (and only if) the spin
of variable i is σi = J i

a in this configuration. With respect to
σ , the total number of clauses containing one, two, and three
satisfied edges is denoted as M1, M2, and M3, respectively.
These three integers satisfy the following two relations:

M1 + M2 + M3 = M, (5)

M1 + 2M2 + 3M3 � 3M

2
+ 1

2

N∑
i=1

|k+
i − k−

i |. (6)

Equation (5) is a consequence of the assumption that Esat(σ ) =
0, while Eq. (6) is due to the fact that each variable i in its spin
state σi can satisfy at most max(k+

i ,k−
i ) edges. The above two

expressions lead to

M2 � 2M12 − 3

2
M + 1

2

N∑
i=1

|k+
i − k−

i |, (7)

where M12 ≡ M1 + M2.
On the other hand, it is very easy to check that the 3-

XORSAT energy (4) of the configuration σ is just Exor(σ ) =
M2. Therefore if Esat(σ ) = 0, then the 3-XORSAT ground-
state energy Exor

0 must not exceed M2. If Exor
0 exceeds M2,

then the 3-SAT energy function (3) must be positive for all the
2N configurations. A high-enough 3-XORSAT ground-state
energy then serves as a FKO witness that the corresponding
3-SAT formula is UNSAT.

Consider any spin configuration σ (not necessarily a
configuration with Esat(σ ) = 0). The value of M12 in Eq. (7)
is then calculated as

M12 =
M∑

a=1

(
3 + ∑

i∈∂a σiJ
i
a

)(
3 − ∑

j∈∂a σjJ
j
a

)
8

(8)

=
M∑

a=1

9 − ∑
i

∑
j σiσjJ

i
aJ

j
a

8
(9)

= 1

4

(
3M +

∑
i,j

σiMij σj

)
, (10)

where the matrix element Mij is defined as

Mij =
{− 1

2

∑
a∈∂i∩∂j J i

aJ
j
a for i �= j,

0 for i = j.
(11)

In the above expressions, ∂a denotes the set of variables that
are connected to clause a by an edge, and ∂i denotes the set of
clauses that are connected to variable i by an edge, and ∂i ∩ ∂j

denotes the intersection of ∂i and ∂j .
The maximal eigenvalue of the symmetric matrix formed

by the elements Mij is denoted as λ. This eigenvalue satisfies

λ �
∑

i,j yiMij yj∑
i y

2
i

(12)

for any nonzero real vector y = (y1,y2, . . . ,yn). Take yi = σi

for each variable i, and it is then easy to show that λ �
(4M12 − 3M)/N . Combining this with (7), an upper bound

M
upp
2 for M2 is obtained as

M2 � M
upp
2 ≡ 1

2
Nλ + 1

2

N∑
i=1

|k+
i − k−

i |. (13)

If Exor
0 > M

upp
2 for the given 3-SAT instance, then the

instance must be unsatisfiable.

III. THE REDUCTION OF SPARSE RANDOM
3-SAT TO 3-XORSAT

Feige and coauthors [16] have studied the existence of FKO
witness for random 3-SAT factor graphs. A random 3-SAT
factor graph with N variables and M clauses is a random
bipartite graph, with each clause being connected to three
randomly chosen different variables and the edge coupling
constant being assigned the value +1 or −1 with equal
probability. In the large N limit, it was proved mathematically
in [16] that, if the clause density α grows with N such that

α > cN0.4 (14)

with a sufficiently large constant c, then FKO witness exists
with probability approaching 1 for a random 3-SAT factor
graph of N variables and αN clauses.

However, it is not yet known whether witnesses of un-
satisfiability exist also for random 3-SAT factor graphs with a
large but constant clause density α. Here we demonstrate using
the mean-field statistical physics method that the ground-state
energy of random 3-XORSAT is (in the thermodynamic limit,
N → ∞) sufficiently large if α > 19. This estimated constant
lower bound of clause density is much improved as compared
to Eq. (14).

According to Eq. (8), the quantity M12 can be expressed
as

M12 = M −
M∑

a=1

δ

(∣∣∣∣∣
∑
j∈∂a

J j
a σj

∣∣∣∣∣ − 3

)
, (15)

where δ(x) is the Kronecker symbol, with δ(x) = 0 if x �= 0
and δ(x) = 1 if x = 0. Combining Eq. (15) with Eq. (7), we
obtain another upper bound for M2 as

Mmax
2 = 1

2

(
M +

N∑
i=1

|k+
i − k−

i |
)

− 2 min
σ

[
M∑

a=1

δ

(∣∣∣∣∣
∑
j∈∂a

J j
a σj

∣∣∣∣∣ − 3

)]
. (16)

The first term on the right of Eq. (16) is easy to calcu-
late, while the minimum of the second term over all the
configurations σ can be evaluated by the zero-temperature
first-step replica-symmetry-breaking (1RSB) cavity method
[9,19–21]. (Technical details of the computation are given in
the Appendix.) The upper-bound Mmax

2 is tighter (smaller) than
the upper-bound M

upp
2 of Eq. (13).

The global minimum Exor
0 of the 3-XORSAT energy (4) can

also be evaluated similarly using the zero-temperature 1RSB
cavity method [19]. Figure 2 is the comparison between the
value Mmax

2 /N and the ground-state energy density Exor
0 /N

of (4) using clause density α as the control parameter.
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FIG. 2. (Color online) The down triangles connected by the solid
line are the minimum energy density Exor

0 /N of the 3-XORSAT
formula (4). The upper triangles are the upper-bound Mmax

2 /N

obtained by Eq. (16) under the assumption that the 3-SAT energy
(3) is satisfiable. The dashed line is a fitting curve of the form
Mmax

2 /N = c1 + c2
√

α. For α > 19 the predicted upper bound is
lower than the global minimum, indicating that the assumption that
Eq. (3) is satisfiable must be wrong.

When α > 19, the requirement of ground-state energy density
Exor

0 /N being lower than the upper-bound Mmax
2 /N is violated,

which gives an indication that the 3-SAT energy function (3)
has no zero-energy configurations. However, when α < 19,
Exor

0 /N < Mmax
2 /N is consistent with the assumption that the

3-SAT formula is satisfiable, indicating that the reduction to
3-XORSAT cannot be used for the most difficult region of
α < 19.

Previous stability analysis [22] has suggested that the
zero-temperature 1RSB mean-field theory is not completely
sufficient for calculating the ground-state energy density of
a finite-connectivity spin glass model. One has to extend the
theory to infinite steps of replica symmetry breaking to get a
marginally stable mean-field solution. However, experiences
obtained on the minimal vertex cover problem [23] and other
combinatorial optimization problems [21] have indicated that
even though the 1RSB mean-field solution is not stable,
the ground-state energy density predicted by this solution is
actually very close to the true value. We therefore believe
that the crossing point of the two curves of Fig. 2 will have
no noticeable change, even if using a more sophisticated
mean-field theory.

It is empirically well known that the random 3-SAT problem
is hardest when the clause density α is close to the satisfiability
threshold αs(3) = 4.267 [8,9,12]. Figure 2 suggests that only a
finite interval up to α ≈ 19 is truly hard, with the proviso that
it is not enough to know that good enough lower bounds can
be found in principle; we must also find them in practice. In
Sect. IV we discuss how this can be done for FKO witnesses.

IV. WITNESS CONSTRUCTION

The reduction works if we can show that the ground-state
energy Exor

0 of the 3-XORSAT formula (4) is higher than
either Mmax

2 or M
upp
2 . While the value of M

upp
2 is easy

to calculate, the exact determination of Exor
0 is a NP-hard

computational problem. Feige and coauthors circumvented
this computational difficulty by constructing a lower bound
for Exor

0 [16]. If the value of this lower bound is higher than
M

upp
2 , it is guaranteed that Exor

0 > M
upp
2 .

A. A lower bound on Exor
0

Given a 3-SAT formula F with N variables and M clauses,
a subformula f is obtained by choosing m clauses from the
M clauses. For such a subformula f its 3-SAT energy and
3-XORSAT energy can be defined similar to Eqs. (3) and (4).
It is computationally easy to determine whether a subformula
f is 3-XORSAT satisfiable.

It was noted in Ref. [16] that for a 3-SAT formula F , if
t subformulas can be constructed such that each of them is
unsatisfiable as 3-XORSAT, and each clause of F appears in
at most of the t subformulas d, such that

t

d
> M

upp
2 , (17)

then the formula F is unsatisfiable as 3-SAT.
To prove this statement, we simply notice that if F is

satisfiable as 3-SAT, the minimum number of simultaneously
unsatisfied clauses as 3-XORSAT cannot exceed M

upp
2 . On the

other hand, there are t unsatisfiable 3-XORSAT subformulas,
meaning that at least t clauses (some of them might be
identical) are simultaneously unsatisfied (as 3-XORSAT) by
any spin configuration. Since each clause can be present
in at most d different subformulas, the total number of
simultaneously unsatisfied different clauses is at least t/d [16].

Let us point out a simple improvement over the criterion
Eq. (17). Suppose we have a set of t unsatisfiable 3-XORSAT
subformulas constructed from the 3-SAT formula F . Let us
denote by da the number of times clause a appears in these
subformulas. Let us rank the M values of da in descending
order and denote the ordered values as {d (1),d (2), . . . ,d (M)},
with d (1) � d (2) � · · · � d (M). A better refutation inequality
can be written as

C > M
upp
2 , (18)

where C is the minimal integer satisfying

C∑
a=1

d (a) � t. (19)

To prove that (18) ensures the unsatisfiability of the 3-SAT
formula F , we only need to show that the ground-state energy
Exor

0 of the 3-XORSAT energy (4) cannot be lower than C.
We reason as follows. To make F satisfiable as 3-XORSAT,
some clauses have to be removed from F in such a way that
for each of the t constructed unsatisfiable subformulas, at least
one of the involved clauses should be removed. Therefore the
sum of numbers da of the removed clauses should be at least
t . This then proves the refutation inequality (18). The quantity
C as obtained by Eq. (19) is a lower bound of Exor

0 . This
lower bound actually is not tight. It is much lower than the true
ground-state energy.

052807-4



WITNESS OF UNSATISFIABILITY FOR A RANDOM 3- . . . PHYSICAL REVIEW E 87, 052807 (2013)

B. Random sampling

A simple way of constructing an unsatisfiability witness
through 3-XORSAT for a given 3-SAT formula F is the
following:

(0) Calculate
∑

i |k+
i − k−

i | and the maximal eigenvalue λ

of matrix M for formula F . Set the subformula number as
t = 0 and set the counting number da = 0 for each clause a

of F .
(1) Randomly select Nγ variables from the set of N

variables, where γ ∈ [0,1] is a fixed parameter.
(2) Check if the subformula f of F induced by these Nγ

variables is 3-XORSAT satisfiable, and if yes, go back to step
1. Otherwise an unsatisfiable 3-XORSAT formula is obtained.

(3) Construct a subformula f̃ by adding clauses of f one
after the other in a random order, until f̃ becomes unsatisfiable
(and has ground-state energy 1) as 3-XORSAT. Then prune
the subformula f̃ by recursively removing those variables that
are connected to only one clause and the associated single
clauses. After this leaf-removal process is finished, we obtain
an unsatisfiable core subformula. The counting number da

of each clause of this core subformula is increased by one
(da ← da + 1), and the subformula number is also increased
by one (t ← t + 1).

(4) Calculate C according to (19) and then check if (18) is
satisfied. If yes, output “UNSAT witness found”; otherwise,
repeat steps 1–4.

Figure 3 shows the simulation results on two single 3-SAT
instances. The upper panel A is a 3-SAT formula with 100
variables and clause density α = 100, and the lower panel B

is another 3-SAT formula with 100 variables and clause density
α = 400. If the curve C(t) is able to go beyond M

upp
2 (marked

by the horizontal dashed line), then a FKO witness is found.
The random sampling algorithm succeeded in finding a FKO
witness for the instance with α = 400 but failed to do so for
the one with α = 100.

For N � 1, a random subformula constructed by the above-
mentioned procedure contains about 0.633Nγ clauses [24].
When there are a large number t of such subformulas, the total
number of clauses is about 0.633tNγ , and each clause appears
on average in d = 0.633tNγ /M subformulas. From this we
estimate that the solution C of (19) is roughly

C ∼ t

d
≈ M

Nγ
= αN1−γ . (20)

On the other hand, Mupp
2 scales as α1/2N (see Fig. 2 and [16]).

Therefore we see that for the inequality (18) to hold, it is
required that

α > N2γ . (21)

The average number of clauses among a randomly chosen
Nγ variables is about N3γ−3M = αN3γ−2. This value should
be proportional to Nγ so that the subformula induced by
these variables has a high probability to be unsatisfiable as
3-XORSAT. Therefore we require that αN3γ−2 ≈ Nγ , from
which we get

α ≈ N2−2γ . (22)

From Eqs. (21) and (22) we obtain that the parameter γ should
be chosen as

γ = 1
2 . (23)
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Subformula Number

0
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2000
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4000

C

(b)

100 101 102 103 104 105 106 107 108

Subformula Number
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1000

1500
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FIG. 3. (Color online) The evolution of witness value C as
the number of randomly sampled subformulas t increases. The
investigated random 3-SAT instance has variable number N = 100
and clause number M = 10 000 in (A) and M = 40 000 in (B). The
horizontal dashed lines in (A) and (B) mark the position of M

upp
2 .

The control parameter γ of the random sampling algorithm is set
to γ = 0.5.

The above analysis suggests that for random 3-SAT
instances with clause density α > N , it is relatively easy
to construct UNSAT witnesses. However, for clause density
sublinear in N , it is very hard to construct UNSAT witnesses
through the above random process.

The performance of this random construction process, with
γ = 0.5, is demonstrated in Fig. 4 for random 3-SAT formulas
with clause density α = cN . This figure shows that for clause
density scales linear with variable number N , the prefactor
c needs to be greater than c ≈ 2.5 for the random sampling
algorithm to find FKO witnesses.

The random sampling algorithm is therefore very inefficient
in obtaining FKO witnesses. For clause density α linear in N ,
other local refutation algorithms are more efficient. For exam-
ple, a simple 2-SAT refutation algorithm goes as follows. First,
a seed set of size s is chosen, which contains the s variables
of the highest degrees. Each of the 2s spin assignments of
these s variables will induce a 2-SAT subformula, and we can
check whether this 2-SAT subformula is satisfiable or not. If
all these 2s-induced 2-SAT subformulas are UNSAT, then the
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FIG. 4. (Color online) The probability of FKO witness being
found in a single run of the random sampling process. Each data
point was obtained by simulating ten random 3-SAT instances with
N variables and M = cN 2 clauses. Different curves correspond to
different variable numbers N .

original 3-SAT formula cannot be satisfied. The number of
clauses in the induced 2-SAT subformula is larger than 3

2 sα,
and the number of variables is at most N . Since a random
2-SAT formula is very likely to be unsatisfiable if the number
of clauses exceeds the number of variables, then we see that
the simple 2-SAT refutation algorithm has a high probability
of success if α > 2

3s
N . The simulation results shown in Fig. 5

confirm this expectation.

C. Focused local search

The subformulas constructed by the random sampling algo-
rithm are very sparse. Most of the loops in such a subformula
are long-ranged, with lengths scaling logarithmically with the
number of variables. We now consider another construction
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FIG. 5. (Color online) The probability of a random 3-SAT
formula with N variables and cN2 clauses (clause density α = cN )
being proven to be UNSAT by the 2-SAT refutation algorithm. The
seed size s is fixed to s = 1, s = 2, s = 3, and s = 4 in the four
sets of simulation curves. Each curve is the average over ten random
instances.

strategy, namely, focused local search. The goal of this strategy
is to construct 3-XORSAT unsatisfiable subformulas with only
short loops.

The details of the focused local search algorithm are as
follows:

(0) The used set U of clauses is initialized as empty.
(1) Arbitrarily choose a clause a that does not belong to the

set U . This clause and all its attached three vertices form the
“system” I . Any clause b that is connected to the “system” by
at least one edge and is not in U belongs to the “boundary,” B.

(2) In the “boundary” B some of the clauses have more
connections to the “system” than the other clauses. Randomly
choose a clause c in the “boundary” that has the maximal
number of connections with the “system” (i.e., the number of
edges to the “system” is the maximal among all the clauses in
the “boundary”). Include clause c and all its attached vertices
to the “system,” and add clause c to the set U . The “boundary”
B is then updated. Clause c is then removed from B, and all the
clauses that are connected to the “system” and do not belong
to set U are added to B.

(3) Check whether the “system” is 3-XORSAT satisfiable;
if yes and the “boundary” B is not empty, go back to step 2.
If the “system” is 3-XORSAT unsatisfiable, then go to step 4.
If the “system” is still satisfiable but the boundary B becomes
empty, then stop and output “construction failed”.

(4) After an unsatisfiable 3-XORSAT subformula is ob-
tained, the number of unsatisfied clauses in this subformula
is 1. We then prune the subformula by removing unnecessary
clauses so that an unsatisfiable core subformula is obtained.
In the pruning process, basically we test (in a random order)
whether each clause can be removed from the subformula
without making it 3-XORSAT satisfiable. If a clause is
removed from the subformula, it is also removed from the
used clause set U .

(5) Update the subformula number t to t + 1. If t � M
upp
2 ,

go back to step 1; otherwise stop and output “UNSAT witness
found”.

In the above-mentioned focused local search algorithm,
each clause can only appear in S = 1 subformula. Therefore
all the constructed subformulas are disjoint in the sense that
they do not share any clauses. Figure 6 shows the performance
of this focused local search algorithm on a set of random 3-SAT
instances with N = 1000 variables. As the clause density α

increases around a certain threshold value α0, the probability
of finding a FKO witness increases quickly from 0 to 1. The
simulation data can be well fitted by a sigmoidal curve

P (α) = 1

1 + exp
(−α−α0

�

) , (24)

where the parameter � controls the slope of the sigmoidal
curve. At α = α0 the focused local search algorithm has 1/2
probability of successfully constructing a FKO witness for a
random 3-SAT instance of N variables. We therefore take α0

as a quantitative measure of the algorithmic performance. The
scaling of α0 with variable number N is shown in Fig. 7. We
find that

α0 ≈ cNb, (25)

with exponent b ≈ 0.589 and prefactor c ≈ 8.0. The exponent
b is much larger than the value of 0.4, which was predicted
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FIG. 6. (Color online) The probability of FKO witness being
found in a single run of the focused local search process (control
parameter S = 1) for random 3-SAT instances with N = 1000
variables and M = αN clauses. Each data point was obtained
by simulating 100 random 3-SAT instances. The solid line is a
sigmoidal fitting curve with parameters α0 = 468.54 ± 0.09 and
� = 3.44 ± 0.08.

to be achievable at least by a weak exponential-complexity
algorithm [16]. It is also larger than the value of 0.5 achieved
by the spectral methods [13–15], which consider both the
local and the global structural properties of the random 3-SAT
problem. At the moment we do not have any analytical
argument with regard to the value of b of the focused local
search algorithm.

We find that if we allow each clause to be present in S � 2
subformulas, the performance of the focused local search algo-
rithm will be improved. The scaling behaviors of this modified
algorithm with S = 2 and S = 4 are also shown in Fig. 7. The
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FIG. 7. (Color online) Scaling behavior between variable number
N and the characteristic clause density α = α0 of the focused local
search algorithm. The control parameter of the focused local search
algorithm is S. The dashed lines are fitting curves of the form α0 =
c × Nb. The fitting parameters are c = 8.0 ± 0.1 and b = 0.589 ±
0.002 (top, S = 1); c = 7.7 ± 0.1 and b = 0.582 ± 0.002 (middle,
S = 2); and c = 7.5 ± 0.1 and b = 0.577 ± 0.002 (bottom, S = 4).

simulation data suggest that both the scaling exponent b and
the prefactor c decrease slightly with S. As we have not yet
performed systematic simulations for large values of S, we do
not know to what extent the exponent b can be reduced.

V. CONCLUSION AND DISCUSSION

In this paper, we demonstrated through mean-field calcu-
lations that unsatisfiability of random 3-SAT by reduction to
random 3-XORSAT is possible for instances with constant
clause density α > 19. On the other hand, for α < 19 we
conclude that it is impossible to refute a random 3-SAT
formula through such an approach. The reduction and a lower
bound on the 3-XORSAT ground-state energy is a witness
of unsatisfiability. We investigated the empirical performance
of two algorithms to find Feige-Kim-Ofek (FKO) witnesses
[16]. A naive random sampling algorithm is only able to
construct such witnesses for random 3-SAT instances with
clause density α > cN (where N is the number of variables and
c is a constant). The focused local search algorithm has much
better performances; it works for α > cNb with b ≈ 0.59.
The value of the exponent b can be further decreased by
enlarging the control parameter S of the focused local search
algorithm. It would be interesting to systematically investigate
the relationship between b and S by computer simulations in
a future work.

The essence of the FKO witness is to construct a
rigorous lower bound for the ground-state energy Exor

0 of the
3-XORSAT formula (4). The tighter this lower bound to Exor

0
is, the better the refutation power of this witness approach.
A very big theoretical and algorithmic challenge is to obtain
a good lower bound for the ground-state energy of the
3-XORSAT problem. For the 3-SAT problem, Håstad proved
in Ref. [25] that no algorithm is guaranteed to construct spin
assignments that can satisfy more than (7/8)Mopt clauses in
polynomial time (Mopt being the maximal number clauses
that can be simultaneously satisfied), unless P = NP . This
actually gives an upper bound on the ground-state energy
of the 3-SAT problem. This upper bound can be converted
to an upper bound for Exor

0 of the 3-XORSAT problem. But
we do not know any energy lower bound for the 3-XORSAT
problem, whose value is proportional to the clause density α.
If such an energy lower bound can be verified algorithmically,
then the FKO witness approach could succeed for the 3-SAT
problem with constant α.

The 3-XORSAT energy lower-bound C as obtained from
Eq. (19) does not scale linearly with the clause density α but
only sublinearly. One possible way of improving the value of
C is as follows. For each constructed 3-XORSAT unsatisfiable
subformula f , we assign a properly chosen real-valued weight
wf . Correspondingly, the counting number da of each clause
a is modified as

da =
∑

{f |a∈f }
wf , (26)

where the summation is over all the subformulas f that contain
clause a. Then Eq. (19) is changed into

C∑
a=1

d (a) �
∑
f

wf . (27)
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When all the weights wf = 1, then Eq. (27) reduces to Eq. (19).
By optimizing the choices of the subformula weights {wf } we
expect that a better energy lower-bound C can be obtained
from Eq. (27).

The counting number da of each clause a can also
be considered as a real-valued parameter whose value can
be freely adjusted. Then the weight of each constructed
subformula f is defined as wf = mina∈f da (i.e., the lowest
value of da over all the clauses of f ). Another better energy
lower-bound C might be achievable by optimizing the choices
of {da}.

A systematic exploration of these two reweighting schemes
and other possible extensions will be carried out in a separate
study.
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APPENDIX: ESTIMATING THE GLOBAL MINIMUM
ENERGY DENSITY BY THE MEAN-FIELD

CAVITY METHOD

To obtain the value of Mmax
2 defined by Eq. (16), we need to

calculate the global minimum of the following energy function:

E(σ ) =
M∑

a=1

Ea =
M∑

a=1

δ

(∣∣∣∣∣
∑
j∈∂a

J j
a σj

∣∣∣∣∣ − 3

)
. (A1)

This energy E(σ ) is contributed by M clauses. The energy Ea

of clause a is unity if
∑

j∈∂a J
j
a σj = 3 or = −3; otherwise this

energy is zero. The global minimum of (A1) can be estimated
through the mean-field first-step replica-symmetry-breaking
(1RSB) spin glass theory [19]. Here we give a brief description
of the technical details. For readers unfamiliar with the mean-
field spin glass theory, all the equations mentioned below can
also be derived from the mathematical framework of partition
function expansion [26,27].

Consider all the configurations that are local or global
minima of the energy function (A1). It is assumed that
these configurations can be grouped into many well-separated
clusters, with each cluster C containing a set of minimum-
energy configurations that have the same energy EC and
are similar to each other. A grand partition function at the
level of minimum-energy configuration clusters is defined
as 	 ≡ ∑

C e−yEC , where y is a reweighting parameter. The
grand free energy is then G ≡ − 1

y
ln 	, and it is calculated

through

G =
N∑

i=1

gi+∂i −
M∑

a=1

(|∂a| − 1)ga + �G, (A2)

where gi+∂i is the contribution from vertex i and all its
connected clauses (a ∈ ∂i), ga is the contribution from a single
clause a (the value of |∂a| is equal to 3 in our case), and
�G is the total loop correction contributions. Because of the
absence of short loops in a random factor graph, the correction
contribution �G can be safely neglected in the thermodynamic
limit of N → ∞ [26,27].

To calculate ga , let us remove clause a from the energy
function (A1) to get a cavity system. For each minimal-energy
configuration cluster of this cavity system, a coarse-grained
frozen state fi→a for a vertex i ∈ ∂a is defined as follows: If
the spin σi of vertex i is always +1 in all the configurations of
this cluster, its frozen state is fi→a = +1; if σ ≡ −1 in all the
configurations of this cluster, its frozen state is fi→a = −1;
otherwise its frozen state is fi→a = 0 (unfrozen). Denote by
pi→a(fi→a) the probability distribution of fi→a over all the
configuration clusters of the cavity system. After clause a is
added to the cavity system to form the complete system, the
change ga in the grand free energy is expressed as

ga = − 1

y
ln

[ ∏
i∈∂a

∑
fi→a∈{−1,0,+1}

pi→a(fi→a)

× exp

[
−yδ

(∣∣∣∣∣
∑
i∈∂a

J i
afi→a

∣∣∣∣∣ − 3

)]]
(A3)

= − 1

y
ln

[
1 − (1 − e−y)

[∏
i∈∂a

pi→a

(
J i

a

)

+
∏
i∈∂a

pi→a

(−J i
a

)]]
. (A4)

In Eq. (A3), δ(| ∑i∈∂a J i
afi→a| − 3) is the increase to the

minimal energy of a configuration cluster caused by the
addition of clause a.

We can also remove vertex i and all the clauses a ∈ ∂i

from the energy function (A1) to get another cavity system.
The change in the grand free energy caused by adding these
removed vertex and clauses back to the system is

gi+∂i

= − 1

y
ln

[ ∏
a∈∂i

∏
j∈∂a\i

∑
fj→a∈{−1,0,+1}

pj→a(fj→a)

× exp

[
−y min

( ∑
a∈∂i

δ(ua→i − 1),
∑
a∈∂i

δ(ua→i + 1)

)]]
,

(A5)
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where ua→i is a warning message from clause a to vertex i

with the expression

wa→i =

⎧⎪⎪⎨
⎪⎪⎩

−J i
a, for

∑
j∈∂a\i J

j
a fj→a = 2,

J i
a, for

∑
j∈∂a\i J

j
a fj→a = −2,

0, for
∣∣∑

j∈∂a\i J
j
a fj→a

∣∣ � 1.

(A6)

The integer number min[
∑

a∈∂i δ(ua→i−1),
∑

a∈∂i δ(ua→i+1)]
is the increase to the minimal energy of a configuration
cluster caused by the addition of vertex i and the set of
clauses ∂i.

The grand free energy G should be stationary with respect
to the set of probability functions {pi→a(fi→a)}. The require-
ment that δG

δpi→a
= 0 leads to the following self-consistent

equation:

pi→a(fi→a) =
∏

b∈∂i\a
∏

j∈∂b\i
∑

fj→b∈{−1,0,+1} pj→b(fj→b)δ
[
fi→a − sgn(w+

i→a − w−
i→a)

]
e−y min(w+

i→a ,w
−
i→a )∏

b∈∂i\a
∏

j∈∂b\i
∑

fj→b∈{−1,0,+1} pj→b(fj→b)e−y min(w+
i→a ,w

−
i→a )

, (A7)

where w+
i→a ≡ ∑

b∈∂i\a δ(ub→i − 1), w−
i→a ≡ ∑

b∈∂i\a
δ(ub→i + 1), and the function sgn(x) is defined as sgn(x) = 1
if x > 0, sgn(x) = −1 if x < 0, and sgn(x) = 0 if x = 0.

At a given value of reweighting parameter y, we can
iterate the set of message-passing equations (A7) to reach a
fixed point. Then the free energy can be computed through
Eq. (A2) with �G being set to zero. The mean minimal
energy is then computed through 〈EC〉 ≡ ∂(yG)

∂y
, and the entropy

density 
 of configuration clusters contributing to this minimal
energy density can also be computed through 
 = y

〈EC 〉−G

N
.

As the reweighting parameter y increases, the mean minimal
energy density value decreases. At a critical value y = y∗ the

complexity 
 changes from positive to negative. The mean
minimal energy density obtained at y = y∗ is then regarded as
the energy density of the global energy minimum.

The above mean-field theory is applicable to a given random
factor graph. If we are interested in the ensemble-averaged
property, the calculation will be simpler. We just need to update
a large population of probability profiles {pi→a(fi→a)} using
Eq. (A7). During the updating process the average value of
gi+∂i over all the different vertices i and the average value of ga

over all the different clauses a can be obtained simultaneously.
The mean-field equations for the 3-XORSAT problem (4)

can be written down in a similar way (see also [19]).
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