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We study the static and dynamic properties of networks of crumpled creases formed in hand crushed sheets
of paper. The fractal dimensionalities of crumpling networks in the unfolded (flat) and folded configurations are
determined. Some other noteworthy features of crumpling networks are established. The physical implications
of these findings are discussed. Specifically, we state that self-avoiding interactions introduce a characteristic
length scale of sheet crumpling. A framework to model the crumpling phenomena is suggested. Mechanics of
sheet crushing under external confinement is developed. The effect of compaction geometry on the crushing
mechanics is revealed.
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I. INTRODUCTION

Randomly folded configurations of thin matter are ubiqui-
tous in nature and engineering. Examples range from crumpled
nanosheets of graphene [1–3], graphene oxide [4–6], and
proteins [7–9], to hand folded paper [10–15] and geological
formations [16]. Even when the crumpling processes appear
quite haphazard, the geometry of randomly folded materi-
als are well defined in a statistical sense and rather well
reproducible in experiments [1–15], because the topology
and self-avoiding interactions are the two most important
factors when dealing with the crushing of thin matter [17–19].
Accordingly, the studies of crumpling phenomena remain an
active area of research, both theoretically and experimentally
(see, for example Refs. [20–43] and references therein).

A remarkable feature of thin matter is that its stretching
rigidity is much more than the bending rigidity. Conse-
quently, the curvature imposed on an elastic sheet by external
confinement is concentrated largely in sharp creases and
developable cones [44], whereas a major fraction of sheet
area remains relatively flat and unstrained [45]. In the limit
of an infinitely thin sheet, creases and developable cones
asymptote to lines (ridges) and points (vertices) in accordance
with the Gauss’s theorema egregium which states that surfaces
could not change their Gaussian curvature without changing
distances and so sheet elements that are curved in two
directions must be strained [18]. Sharp ridges which meet at
pointlike vertices form the branched crumpling network with
an anomalously larger resistance to hydrostatic compression
[2,6,19,23,27–29,46,47], but a very low stiffness under axial
compression [13,15,31,43]. In this context, it was shown that
the total energy stored in a single ridge scales with its size
l as Er ∝ h3(l/h)1/3, where h is the sheet thickness [44].
Furthermore, it was assumed that that when a square sheet of
size L is folded in a ball of diameter R, the mean ridge length
and the total number of ridges obey simple scaling relations
〈l〉 ∝ R and Nr ∝ (L/〈l〉)2 ∝ R−2. Accordingly, the total
energy stored in the crumpling network formed in the sheet
folded in a ball is suggested to scale as EN ∝ NrEr (〈l〉) ∝
h8/3L1/3K5/3, where K = L/R is the compaction ratio [44].
If so, the folding force F = ∂EN/∂R should scale with the

ball diameter as F ∝ L2(h/R)8/3. Consequently, a set of balls
folded from elastic sheets of different sizes L � h = const
under the same force F0 = const is expected to obey the fractal
mass scaling relation,

RD ∝ L2, (1)

with the fractal dimension D = 8/3. Numerical simulations
of phantom elastic sheets crushing under hydrostatic compres-
sion [23] have confirmed the scaling relation (1) with D = 8/3.
However, in the case of self-avoiding elastic sheets, the fractal
dimension defined by Eq. (1) is less than 8/3 due to the effect of
self-avoiding interactions [23]. Accordingly, based on scaling
arguments, it was argued [33] that in the case of self-avoiding
sheet crushing the mean ridge length and the total number of
ridges both should scale with L and K as

〈l〉 ∝ LK−α and Nr ∝ (L/〈l〉)2 ∝ K2α, (2)

respectively. Accordingly, the total elastic energy stored in the
ridges is suggested to scale as

EN ∝ Nr (〈l〉/h)β ∝ (L/h)βKα(2−β), (3)

where the scaling exponents are α and β; α � 1 and 1/3 �
β < 2 [33]. Consequently, it is expected that the diameter of a
ball folded from the crumpled sheet depends on the hydrostatic
confinement force F as

F ∝ L2μ/DR−μ, (4)

where

μ = 1 + (2 − β)α, (5)

and so, a set of balls folded from self-avoiding elastic sheets
of different sizes under the same confinement force will obey
the fractal relation (1) with the mass fractal dimension

D = 2 + 2(1 − β)

β + (2 − β)α
. (6)

In numerical simulations of elastic self-avoiding sheets [33]
it was found that relations (1)–(4) hold in the range of
2.5 � K � 8 with μ = 3.83 ± 0.11, while α = 1.65, β =
1/3, and D = 2.5 ± 0.1. Furthermore, it was argued [33] that
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these values within error bars are numerically consistent with
relationships (5) and (6); nonetheless quite different values
D = 2.3 ± 0.1 and μ ≈ 4 were found in the numerical simu-
lations reported in Ref. [23]. Moreover, the results of numerical
simulations in Ref. [33] suggest that the plastic deformations
in crumpling ridges lead to decrease of D, whereas α, β, and
μ remain unchanged within the error of estimations. So, it was
assumed that scaling relationships (5) and (6) are not valid for
elastoplastic materials (see Ref. [33]). However, in contrast
to this, in experiments with predominantly plastic sheets it
was found that plastic deformations lead to increase of μ and
decrease of D [29] in qualitative accordance with Eqs. (5)
and (6). On the other hand, in the case of elastoplastic sheets,
such as paper, it was observed that once the folding force
is withdrawn, the ball diameter logarithmically increases in
time due to elastic strain relaxation [11–15]. In this way, it
was found that after complete relaxation during approximately
10 days the final ball diameter is almost independent of the
force applied during the sheet crushing [11]. Consequently,
a set of paper balls after compete elastic strain relaxation
is characterized by the material dependent fractal dimension
D [11,12]. It is also pertinent to note that in experiments
with randomly folded sheets of different materials it was
found that D varies in the range of 2.1 � D � 2.7 (see
Refs. [3,5,6,10–14,19,25,27,29,30,35]).

In this context, it should be emphasized that the fractal
dimension D is a measure for how the sheet size affects its
compactification (see Refs. [3,6,12,19,29]), but tell us nothing
about the internal structure of a folded ball [48]. Furthermore,
it is a straightforward matter to understand that the scaling
exponent μ depends on the crumpling geometry (hydrostatic,
radial, or axial confinement) [43]. Therefore it was proposed
to relate μ to the fractal dimension of compaction geometry
Dc (see Ref. [43]). Specifically, the crumpling of a sheet
confined in the cylinder by the axial force is characterized
by 1 < μ = Dc < 2, whereas the sheet crushing under the
hydrostatic compression is characterized by 4 < μ < 6 [43].

Dimension numbers D and Dc characterize different
aspects of crumpling phenomena. Namely, Dc governs the
scaling relation (4) between the applied force and the com-
paction of the crumpled sheet [43], whereas D characterizes
the scaling relation (1) for the set of sheets of different sizes
crushed by the same force. Nonetheless, it is easy to understand
that D should depend on the crumpling geometry and so on Dc.
Moreover, although the radial mass distribution in a randomly
folded sheet is rather isotropic (see Refs. [30,38]), it was found
that the internal arrangements of randomly folded sheets also
exhibit statistical scaling invariance [12,14,30] characterized
by the scaling behavior of the spatially averaged mass density
〈ρ(r)〉R ∝ ρ0r

Dl−3, where ρ0 is the sheet mass density and
〈· · ·〉R denotes the average overall possible position of cube
(sphere) of size r � R within the folded ball of diameter
R, while Dl is the local mass dimension and 〈ρ(R)〉R =
6ρ0L

2h/πR3. Hence, the folded structure can be viewed
as a fractal porous medium with an almost homogeneous
distribution of pore space (such as, for example, percolation
backbone [49] and soils [50,51]), rather than as a fractal
growing from the mass center (such as clusters formed by the
diffusion limited aggregation [52]). In the x-ray tomography
experiments with randomly folded aluminum foils it was

found that the local fractal dimension of folding arrangements
is an increasing function of compaction ratio, such that
2.2 � Dl(2 < K � 6.25) � 2.8 [30]. In contrast to this, the
folding configurations of randomly crushed papers after elastic
strain relaxation are characterized by the universal local fractal
dimension Dl = 2.64 ± 0.05 ≈ 8/3 [12,14], whereas D is
material dependent. Therefore, the local density in a hand
folded paper ball after elastic strain relaxation obeys the
following scaling behavior:

〈ρ(r)〉R ∝ rDl−3RD−Dl , (7)

where D � Dl [12,14]. Furthermore, it is reasonable to expect
that the local fractal dimension of folding arrangement (Dl) is
dependent on the crumpling geometry (characterized by Dc),
as well on the rheological properties of the sheet. That is,
ideally elastic, such as rubber [31]; elastoplastic, e.g., paper
[12]; and predominantly plastic, e.g., aluminum foil [30] are
expected to obey Eq. (7) but with different Dl .

Another important issue is the geometry of the crumpling
network. Understanding the three-dimensional arrangement
of an interacting set of crumpling creases is a formidable
challenge, and it is crucial to understanding of the geomet-
ric and mechanical properties of randomly folded matter
[5,11,15,16,18,19,23,26,28,31–35,44,46,47]. To this respect,
it is pertinent to note that the second relation in Eq. (2) is based
on the assumption that the crumpling network is effectively
two dimensional on the length scale l � 〈l〉. However, the data
reported in Ref. [11,53] suggest that the crumpling networks
formed in paper sheets display statistical scale invariance
and within a bounded interval of length scale 〈l〉 � � < R

are characterized by the fractal dimension D
(2)
N < 2 [53]. If

so, the total number of ridges scales with the sheet size as
Nr ∝ (L/〈l〉)D(2)

N , rather than according to the second relation
in Eq. (2). Furthermore, it is reasonable to guess that in
sheets of finite rigidity and thickness the mean ridge length 〈l〉
depends on h, which is not accounted for by the first relation
of Eq. (2). Besides, one can suppose that due to long-range
correlations in the crumpling network the scaling exponent β

in Eq. (3) can deviate from its value β = 1/3 derived for a
single ridge.

To clarify these points, in this work we performed exper-
imental studies of scaling properties of crumpling networks.
Furthermore, to characterize the dynamics of the crumpling
network, we determined its spectral dimension. Experiment
details and results of experimental study of crumpling network
impressions on the unfolded flat sheets are reported in
Sec. II. Section III is devoted to analysis and discussion of
experimental findings. Specifically, the universalities in the
scaling properties of crumpling networks are discussed. The
fractal dimensionalities of the crumpling network in the folded
configuration are established on the basis of scaling arguments.
The mechanics of sheet crushing is developed. The main
results and conclusions are outlined in Sec. IV.

II. EXPERIMENTAL STUDIES

Paper crushing offers a convenient economical means to
study crumpling phenomena. When a paper sheet is crushed by
hand into a small three-dimensional ball, large deformations
of paper lead to formation of irreversible scars leaving the
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crumpling network impression on the sheet. This permits the
study of crumpling networks on the unfolded sheets [11,26].
Accordingly, in this work, we study the static and dynamic
properties of crumpling networks formed in hand crushed
Biblia paper of thickness 0.039 ± 0.002 mm. Mechanical
properties of this paper were reported in Ref. [11]. Besides,
in Refs. [11,12], it was found that a set of balls folded by
hand from square sheets of different sizes of this paper,
after elastic strain relaxation, is characterized by the global
fractal dimension D = 2.30 ± 0.05, whereas the statistical
distribution of ridge length in unfolded crumpling networks
exhibits a crossover from the log-normal distribution at low K

to the gamma distribution at larger confinement ratios [12,31].
At the same time, it was found that the local fractal dimension
of folding configurations Dl = 2.64 ± 0.05 is independent of
the sheet size and confinement ratio [12,14].

A. Experiment details

In this work, the square sheets of edge size L = 5, 10, 15,
and 20 cm were crushed by hand into approximately spherical
balls of diameter R with four different initial confinement
ratios K = K/L repeated two times with sheets of each size
(32 balls in total). After complete strain relaxation during
10 days (see Refs. [11,12]), 16 balls were cut in half to obtain
photographic images of ball intersections with planes (see
bottom inset in Fig. 1). The box-counting fractal dimensions
D

plane
cross of each of 32 digitized images (see top inset in Fig. 1)

were determined by the box-counting method (see Fig. 1) with
the help of the BENOIT1.3 software [54].

The rest of the 16 balls were unfolded and flattened to
study the crumpling network impressions. Accordingly, after
unfolding the ridges stamped on sheets were marked by
pencil (see Ref. [11]) and the resulting images were digitized
(see Fig. 2) to determine the coordinates and degrees of
vertices. Furthermore, the fractal dimension of each crumpling
network impression (D(2)

N ) was measured by the box-counting
method using the BENOIT1.3 software [54], whereas the fractal
dimension of shortest path between two randomly chosen
vertices of the crumpling network impression was obtained

FIG. 1. Log-log plot of number of boxes covering the image of
intersection (N ) versus box size � (pixels); symbols: experimental
data averaged over 32 images of 900 × 900 pixels; straight line:
power-law fitting (full circles are excluded from fitting). Insets show
typical photo and digitized image of intersection.

FIG. 2. Digitized images of crumpling networks stamped on
unfolded sheets of edge size L = 10 cm from balls folded with
the confinement ratios K = (a) 3.33, (b) 4, (c) 4.76, and (d) 5.6,
respectively.

from the scaling behavior,

�min ∝ �d
(2)
min

e , (8)

where �min and �e are the chemical and Euclidean distances be-
tween the chosen vertices, respectively [55,56]. Consequently,
the chemical dimension of crumpling network impression was
calculated using the relationship dN

� = D
(2)
N /d (2)

min [55].
The chemical dimension quantifies how the “elementary”

structural units (ridges) are “glued” together to form the entire
fractal structure and so tells us “how many directions” the
observer feels in the configuration space of the crumpling net-
work by making static measurements. Hence dN

� determines
the number of independent coordinates needed to define the
position of a point vertex on the crumpling network. However,
the number of dynamic degrees of freedom is equal to the
spectral dimension dN

s which governs the density of vibration
modes with frequency ω as 
(ω) ∝ ωds−1 and thus determines
the scaling behavior of local energy distribution (Lagrangian)
in the crumpling network (see Ref. [57]). In this work, the
spectral dimension of each crumpling network was determined
using the scaling behavior,

P0 ∝ n−ds/2, (9)

of the probability P0(n) to find (still or again) the random
walker (RW) at step n at the randomly chosen starting vertex
[58]. As pointed out in Ref. [58] P0(n) exhibit a shorter
transient regime than the probability of first return. This allows
the determination of the spectral dimension with a smaller
number of steps. We tested our program using the 6-iteration of
the Sierpinski gasket to obtain ds = 1.34 ± 0.06 in simulations
with 105 RW trajectories of 104 steps each, whereas the
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exact value (in the limit of infinite number of iterations) is
ds = 2 ln 3/ ln 5 = 1.3652 . . . [59].

Regarding the use of power-law fits, it is imperative to
point out that ranges of variations of some parameters (L,
K , �min, and box sizes in the measurements of box-counting
dimensions) are rather small. In this context, it is pertinent to
note that in experimental and numerical studies of randomly
crumpled two-dimensional materials the ranges of L and K

variations are always of the order or less than one decade
due to their nature and technical limitations (see, for example,
data fittings in Refs. [5,10–14,19,22–37,43]). To handle this
limitation, in this work the χ2 tests for goodness of fit were
performed to verify the relevance of the power-law scaling in
comparison with other fits in each case.

B. Experiment findings

Making use of the BENOIT1.3 software, we found that the ball
intersections with plane (cuts) are characterized by the fractal
D

plane
cross = 1.66 ± 0.06 (see Fig. 1) which is independent of the

sheet size (L) and the ball diameter after complete relaxation
of elastic strains (Rrelax > L/K). We noted that this value
is consistent with the fractal dimension of ball intersections
with straight strings Dline

cross = 0.64 ± 0.06 = D
plane
cross − 1 [12],

as well as with the statement of universality of the local fractal
dimension after elastic strain relaxation [14]. Therefore, the
intersection of a folded sheet with a two-dimensional plane
can be roughly treated as the Cartesian product of the Cantor-
set-like set of dimension Dline

cross and a one-dimensional circle
Figure 7.3 from Reference [60]). Hence, taking into account
the isotropy of hand folded balls, the folding arrangement
can be viewed as Cartesian products of the Cantor-set-like set
with randomly deformed sphere, such that Dl = Dline

cross + 2 =
D

plane
cross + 1 ≈ 8/3. It should be emphasized that this universal

value characterizes the scale invariance of randomly folded
elastoplastic sheets such as paper only after the elastic
strain relaxation when the self-avoiding interactions become
negligible (see Refs. [12,14]).

In studies of crumpling networks we found that the numbers
of vertices Nv and ridges Nr both scale with the sheet size and
confinement ratio as

Nv ∝ Nr ∝
(

L

h

)φ

Kγ , (10)

where the scaling exponents

φ = 0.6 ± 0.1 and γ = 1.46 ± 0.05 (11)

are found to be independent of the sheet size and confinement
ratio [see Fig. 3(a)], such that the node degree distribution
remains invariant under the increase in the sheet size and/or
compression ratio with the universal mean

〈k〉 = 2Nr/Nv = 3.5 ± 0.1 (12)

[see Fig. 3(b)] and an exponentially decaying tail consistent
with the fitting by a log-normal distribution suggested in Ref.
[26]. We also noted that the data reported in Table 2 of Ref. [26]
are also consistent with the universal value (12). Although the
ranges of L and K variations in Eq. (10) are rather small,
the χ2 test for goodness of fit confirms the relevance of the
power-law scaling in comparison with other fits.

FIG. 3. Graphs of (a) normalized number nr = Nr (h/L)φ versus
the confinement ratio K; and (b) Nr versus Nv for crumpling network
impressions on sheets of size L = 5 (circles), 10 (squares), 15
(triangles), and 20 cm (rhombs). Fitting curves: nr = 0.001625K1.4622

(R2 = 0.99) and Nr = 1.75Nv (R2 = 0.99).

Furthermore, with the help of the BENOIT1.3 software [54]
we found that the number of square boxes of size � needed
for the network covering obeys the scaling behavior,

Nbox ∝
(

L

�

)D
(2)
N

, (13)

within the interval of length scale �c � � � L/4 (see Fig. 4)
with the universal (independent of L and K) fractal (box-
counting) dimension

D
(2)
N = 1.83 ± 0.02, (14)

while the lower cutoff of self-similarity (�c � h) is found to
decrease as K increases (see bottom inset in Fig. 4). Although
the intervals �c � � � L/4 are of the order of one decade, we
found that the data for all 16 crumpling networks of different
sizes can be well collapsed to the single line on the log-log
plot of normalized number of boxes N∗ = Nbox(�)/Nbox(�C)
versus �/�C with the slope given by Eq. (14) (see top inset
in Fig. 4). Once more, the relevance of the power-law fit is
confirmed by the χ2 test for goodness of fit.

FIG. 4. Log-log plots of numbers of boxes covering the crumpling
network images shown in Fig. 2 versus box size � in mm for K =5.6
(circles), 4.76 (triangles), 4 (squares), 3.33 (rhombs); full symbols
corresponding to � < �C are excluded from fitting. Insets show the
plots of (bottom) �C (in mm) versus K; (top) normalized number of
boxes N∗ = N (�)/N (�C) versus �/�C averaged over 16 crumpling
network impressions.
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FIG. 5. Graph of normalized dimensionless mean ridge length
lnorm = (〈l〉/h)(L/h)−θ versus K; curve: data fitting lnorm = 5.8K−α .
Inset shows the graphs of in mm versus dimensionless compaction
ratio K) for sheets of size L = 5 (circles), 10 (squares), 15 (triangles),
and 20 cm (rhombs); curves: data fittings with Eq. (15).

From Eqs. (10) and (13) it follows that the mean ridge
length should scale with the sheet size and compression
ratio as

〈l〉 ∝ L

(
L

h

)−θ

K−α, (15)

instead of the first scaling relation in Eq. (2). We found that
our experimental data (see Fig. 5) are consistent with Eq. (15)
with the scaling exponents

θ = φ/D
(2)
N = 0.33 ± 0.1 and α = γ /D

(2)
N = 0.8 ± 0.1,

(16)

which are calculated with values of φ, γ , and D
(2)
N given in

Eqs. (11) and (14), respectively.
Furthermore, we found that the scaling behavior (8) is

robust over more than 500 realizations. Accordingly, we
found that the fractal dimension of the minimum path on the
crumpling network

d (2)
min = 1.15 ± 0.06 (17)

FIG. 6. Log-log plot of chemical distance �min versus Euclidean
distance �e between two randomly chosen points of crumpling
network impression averaged over 16 networks; fitting curve �min =
0.72�1.15

e , R2 = 0.99 (full circles are excluded from fitting).

FIG. 7. Log-log plot of probability P0(n) to find (still or again) the
random walker at step n at the randomly chosen starting vertex versus
n. Data are averaged over 16 networks with 105 RW trajectories in
each.

is independent of L and K (see Fig. 6) and so the chemical
dimension of crumpling network impression

dN
� = D

(2)
N

/
d (2)

min = 1.6 ± 0.1 (18)

is also independent of the sheet size and compression ratio.
Finally, the log-log plot of P0(n) in Fig. 7 provides the

spectral dimension

dN
s = 1.53 ± 0.06, (19)

which is independent of the sheet size and confinement
ratio. It should be emphasized that data presented in Fig. 7
were obtained by averaging over 105 RW trajectories with
about of 104 steps each, which were started from randomly
chosen vertices of 16 analyzed crumpling networks. Ac-
cordingly, using the Alexander-Orbach law [55], we found
that the random walk dimension of the crumpling network
impression is

D
(2)
W = 2D

(2)
N

/
dN

s = 2.39 ± 0.12, (20)

whereas the RW in the chemical space of the crumpling
network is characterized by the random walk dimension
dN

W = 2dN
� /dN

s = 2.09 ± 0.20 > dN
� .

III. DISCUSSION

The knowledge of fractal dimensionalities (D(2)
N , dN

� , and
dN

s ) and scaling exponents (γ and φ) is of crucial importance
for understanding the crumpling phenomena and the properties
of randomly folded thin materials. In fact, these parameters
govern the geometry, mechanics, and dynamics of hand
crushed paper. Moreover, as will be argued below, the fractal
dimensionalities of the crumpling network in the flat state are
expected to be universal, whereas the value scaling exponents
(γ , φ) and fractal dimensionalities of the crumpled network
in the folded configurations are dependent on the crumpling
geometry (hydrostatic, radial, uniaxial, and hand confinement)
and rheological properties of the sheet.

A. Scaling properties of crumpling network impressions

Regarding data reported in the previous section, it is
noteworthy to note that the fractal dimension (14) of crumpling
network impressions with mean node degree (12) is less than
the chemical dimension of the Sierpinski carpet with 〈k〉 = 4
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(dSC
� = ln 8/ ln 3 = DSC) and close to the fractal dimension of

the Sierpinski gasket with 〈k〉 = 3 (dSG
� = ln 3/ ln 2 = DSG),

whereas d (2)
min > dSC

min = dSG
min = 1 due to the tortuosity of the

shortest paths in the crumpling network impression and so
D

(2)
N > DSG, but D

(2)
N < DSC . Besides, it is interesting to note

that the value (17) is numerically close to the minimum path
dimension on the backbone of the percolation cluster on a
two-dimensional network (see Ref. [56]).

On the other hand, we noted that the fractal dimension of
the crumpling network impression (14) at least numerically
coincides with the fractal dimension of clusters formed in
the two-dimensional fuse network model with high disorder
Dcl = 1.86 ± 0.01 (see [61]). Although this coincidence can
be accidental, it also may indicate that both processes belong
to the same universality class. In this context, we also noted
that although the fuse network model is used in Ref. [61]
to study the fracturing of highly disordered materials, a
remarkable resemblance between networks of localized folds
in the thin films and fractures in drying pastes was pointed
out in Ref. [62]. Moreover, the authors of Ref. [63] have
stated that close to the stiffness divergence the buckling
of the sheet is hindered by sheet thickness, such that its
elastic behavior becomes similar to that of dry granular
media. So, the coincidence of fractal dimensions Dcl and Dl

can have a fundamental nature. If so, the two-dimensional
fuse network model with disorder introduced by random
boundary conditions can be used to simulate the crumpling
of two-dimensional matter, e.g., the nanosheets crumpled by
capillary forces in aqueous suspension [64] and geological
formations (see Ref. [16]). However, for strict demonstration
that forced crushing of self-avoiding elastic sheets belongs
to the universality class of a two-dimensional fuse network
model with high disorder, it is imperative to establish that
the chemical and spectral dimensions are also equal for both
systems.

Here we determine the spectral dimension of crumpling
networks formed in randomly crumpled two-dimensional
matter. So, it is pertinent to note that the experimental
value (19) is within the expected range (see Ref. [55]) of

2dN
�

dN
� + 1

= 1.24 ± 0.03 � dN
s = 1.53 ± 0.05 � dN

� , (21)

where the chemical dimension is provided by Eq. (18). Notice
also that dN

s is larger than the spectral dimension of percolation
clusters and their backbones in two and three dimensions (see
Ref. [65]), but it is less than the spectral dimensions of folded
proteins (1.6 � d

protein
s � 1.95) reported in Ref. [9].

B. Fractal properties of crumpling network
in the folded configuration

Mathematically, folding of self-avoiding two-dimensional
sheets can be viewed as a continuum of isometric embeddings
of a two-dimensional manifold in three-dimensional space
[14,19]. The chemical dimension of a folded sheet is, per
definition, equal to the chemical dimension of a flat sheet, that
is, dball

� = 2. Therefore, the dimension of shortest path in a ball
folded from a thin sheet is

dball
min = Dl/d

ball
� = Dl/2, (22)

and so, in the case of hand crushed elastoplastic papers, which
after complete elastic strain relaxation are characterized by the
universal Dl ≈ 8/3, the minimum path dimension dball

min ≈ 4/3
is also universal. However, in the case of randomly crumpled
elastic (e.g., rubber) and predominantly plastic (e.g., aluminum
foil) sheets the local fractal dimension defined by Eq. (7)
and so dball

min defined by Eq. (22) are dependent on K and the
mechanical properties of the sheet (see Ref. [30]). Moreover,
it is easy to understand that the fractal dimension of RW in
the chemical space of a folded ball is equal to the random
walk dimension on the flat sheet (dball

W = 2), unless the jumps
in self-contacting zones are permitted. Therefore, the random
walk dimension of a folded sheet is Dball

W = dball
mind

ball
W = Dl .

However, dynamic properties of a randomly crushed sheet are
governed by the spectral dimension of the crumpling network.

In this context, it is a straightforward matter to demonstrate
that the spectral dimension of a crumpling network in the
folded configuration of a self-avoiding sheet is the same as
found for the crumpling network impression. In fact, per
definitions, the chemical dimension and the dimension of
random walk in the chemical space of a crumpled network
in the folded configuration are the same as in the unfolded
(flat) state. That is,

dN
� = D

(3)
N

/
d (3)

min = D
(2)
N

/
d (2)

min and
(23)

dN
W = D

(3)
W

/
d (3)

min = D
(2)
W

/
d (2)

min,

where d (3)
min is the fractal dimension of the minimum path on the

crumpled network in the folded configuration. Therefore, the
Alexander-Orbach law (see Ref. [55]) implies that the spectral
dimension of a folded crumpling network,

dN
s = 2D

(3)
N

D
(3)
W

= 2dN
�

dN
W

= 2D
(2)
N

D
(2)
W

, (24)

has the value given by Eq. (19). Notice that the last equality
in Eq. (24) does not hold in the case of crumpling networks
formed in randomly folded phantom sheets, because due to the
network intersection the second equality in Eq. (22) fails.

To determine the fractal dimension D
(3)
N and the fractal

dimension of the shortest path d (3)
min for crumpling networks in

the folded configuration, we noted that the folded network can
be covered ether by two-dimensional boxes of size �, or by
three-dimensional boxes of size δ such that Nbox ∝ δD

(3)
N . The

mass conservation implies that δDl ∝ �2 and so

Nbox ∝ δDlD
(2)
N /2 ∝ δD

(3)
N , (25)

such that

D
(3)
N = DlD

(2)
N

2
= dball

minD
(2)
N . (26)

Accordingly,

d (3)
min = (

D
(3)
N

/
D

(2)
N

)
d (2)

min = dball
mind

(2)
min. (27)

Consequently, the random walk dimension of the folded
crumpling network is

DN
W = 2D

(3)
N

/
dN

s = dN
Wd (3)

min. (28)

For convenience, the fractal properties of crumpling networks
in the flat and folded configurations are summarized in Table I
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TABLE I. Fractal properties of hand folded paper sheets and crumpling networks.

Crumpling network

Balls folded from paper sheet On unfolded flat sheet In sheet folded in ball

Chemical dimension 2 1.6 ± 0.1 (≈5/3)
Global mass dimension Dependent on the folding Not defined

(of a set of balls) conditions
Local mass dimension 2.64 ± 0.06 [12,14] (≈8/3) 1.83 ± 0.02 (Fig. 4); =11/6 2.43 ± 0.05 (=22/9)

[Eq. (42)]
Dimension of shortest path 1.32 ± 0.03 [Eq. (22)] (≈4/3) 1.15 ± 0.06 (Fig. 6) (≈11/10) 1.53 ± 0.16 [Eq. (27)]
Dimension of RW in the chemical space 2 2.1 ± 0.2 (≈20/9)
RW dimension DW = Dl 2.39 ± 0.12 3.2 ± 0.2
Spectral dimension 2 1.53 ± 0.06 (Fig. 7) (≈3/2)

together with the fractal dimensionalities of hand folded paper
balls. The knowledge of fractal dimensionalities is important
to understand crumpling phenomena and to model mechanical
and dynamical behavior of randomly folded materials. In
this regard, it should be emphasized that in contrast to
fractal dimensionalities dN

� , dN
s , dN

W , D
(2)
N , and d (2)

min which
are expected to be universal for randomly folded matter, the
fractal dimensionalities of a crumpling network in the folded
configuration (D(3)

N , d (3)
min, and D

(3)
W ) are material dependent,

because the folding arrangement of paper is characterized by
the universal dimension Dl only after complete relaxation
of elastic strains [11,12], whereas Dl of randomly folded
aluminum foil is dependent on the confinement ratio [30].
Nonetheless, following the arguments leading to Eq. (26) it is a
straightforward matter to understand that the fractal dimension
of clusters formed in the folded two-dimensional self-avoiding
fuse network will be equal to the fractal dimension of a
crumpling network in the folded configuration with the same
Dl even when Dl is not universal.

C. Folding mechanics

The total elastic energy stored in a single crumpling ridge
of length l is Er ∝ h3(l/h)1/3, while the ridge width is w ∝
h1/3l2/3 [44]. However, the interactions between crumpling
creases in a randomly folded sheet can alter the power-
law scaling, such that more generally, Er ∝ h3(l/h)β [33].
Furthermore, from the empirical relations (10) and (15) it
follows that the total elastic energy stored in the crumpling
network should obey the following scaling relation:

EN ∝ h3

(
L

h

)φ+β(1−θ)

Kγ−αβ ∝ hϕLζR−μ+1, (29)

which differs from the relation (3) suggested in Ref. [33].
Consequently, the force-scaling exponent in Eq. (4) can be
expressed as

μ = γ − αβ + 1 = γ
(
1 − β

/
D

(2)
N

) + 1, (30)

while

ϕ = 3 − β
(
1 − φ/D

(2)
N

) − φ, and
(31)

ζ = φ + β
(
1 − φ/D

(2)
N

) + γ
(
1 − β/D

(2)
N

)
,

and so, the set of balls folded from “ideally elastic” self-
avoiding sheets of different sizes under the same confinement

force will obey the scaling relation (1) with the fractal
dimension

D = 2
D

(2)
N (1 + γ ) − γβ

D
(2)
N (β + φ + γ ) − β(γ + φ)

(32)

instead of Eq. (6). Notice that in the case of phantom sheets
crumpled under hydrostatic compression it is well established
theoretically and by numerical simulations that D = μ = 8/3
[23], while β = 1/3, φ = 0, γ = 2, α = 1 [44], and so
D

(2)
N = 2. Hence, relationships (29)–(31) are held. However,

D
(3)
N cannot be defined, because relation (22) is not valid

for the phantom sheets with intersection. Nonetheless, it is
reasonable to expect that crumpling networks in phantom
sheets under radial and uniaxial confinements are characterized
by the same scaling exponents β = 1/3, φ = 0, and D

(2)
N = 2.

Consequently, using the values of μ obtained in Ref. [23] for
phantom sheets under radial and uniaxial confinements (see
Table II), from Eqs. (15), (29), and (30) we found that the
mean ridge length in a phantom sheet crumpled under radial
confinement will scale as 〈l〉 ∝ L1/3R2/3 ∝ V

1/3
2 , whereas

under uniaxial confinement 〈l〉 ∝ L2/3R1/3 ∝ V
1/3

1 , such that
generally,

〈l〉 ∝ V 1/3
n , (33)

where

Vn ∝ L3K−n (34)

is the volume occupied by the crumpled sheet, while n is
the degree of compaction (n = 1 in the case of uniaxial, n =
2 radial, and n = 3 hydrostatic confinement, respectively).
Accordingly, in the case of phantom sheets Nr ∝ K−2n/3 and
so

γ = 2n/3 and μ = 1 + 5γ /6 = 1 + 5n/9, (35)

in accordance with results of numerical simulations [23] (see
Table II).

In the case of self-avoiding elastic sheets, under the assump-
tion that β = 1/3 (as is suggested by numerical simulations
[33]) and universal D

(2)
N (as it is expected if sheet crumpling

belongs to the universality class of a two-dimensional fuse
network model with high disorder) from Eqs. (29), (30),
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TABLE II. Force-confinement exponent μ and scaling exponents γ and α for crumpling networks formed in two-dimensional sheets with
different crumpling geometries.

Confinement Material [Reference] μ γ φ

Hydrostatic Phantom elastic sheet [23] 8/3a; 2.66b 2a; 2b; 2c 0a

Radial Phantom elastic sheet [23] 19/9a; 2.1b 4/3c 0a

Uniaxial Phantom elastic sheet [23] 14/9a; 1.55b 2/3c 0a

Hydrostatic compression Self-avoiding elastic sheet [23] 4b ≈4b; 3.66c 0.18d

Self-avoiding elasto-plastic sheet [33] 3.8 ± 0.1b 3.3b; 3.4c

Aluminum foil [29] 5.1e 5c 0.1d

Aluminum foil [27] 4.76e 4.6c 0.06d

Radial crumpling Self-avoiding elastic sheet [23] 3b 2.4c –
Crushing in hands Biblia paper (this work) 2.2 ± 0.1c 1.46 ± 0.05e 0.6 ± 0.1e

Uniaxial crumpling Self-avoiding elastic sheet [23] 2b 1.22c –
Tethered membrane [63] 1.85b 1c –
Mylar [47] 1.89e 1.1c –
Paper [43] 1.3e 0.4c –

aTheoretical values.
bResults of numerical simulations.
cCalculated with Eq. (30) with β = 1/3, while D

(2)
N = 11/6 for self-avoiding and D

(2)
N = 2 for phantom sheets.

dCalculated with Eq. (32) with β = 1/3, while D
(2)
N = 11/6 for self-avoiding and D

(2)
N = 2 for phantom sheets.

eExperimental values.

and (34) it follows that

μ = 1 + 0.82γ, (36)

where γ (n) is an increasing function of the degree of
compaction. In numerical simulations of self-avoiding elastic
sheets under hydrostatic compression it was found that μ = 4
[23]. Hence, according to Eq. (36) γ = 3.66, that is consistent
with γ ≈ 4 reported in Ref. [23]. Consequently, in the case of
crumpling of ideally elastic self-avoiding sheets,

γ =
(

1 − β

D
(2)
N

)−1

n = 1.22n and α = n

D
(2)
N − β

, (37)

such that

μ = 1 + n, (38)

in accordance with the results of numerical simulations [23]
(see Table II). It is pertinent that relation (38) was obtained
in Ref. [23] from quite different arguments. In this context,
the main point of our framework is that the mean ridge length
in a self-avoiding elastic sheet under increasing confinement
behaves as

〈l〉 ∝ a−1V 2/3
n , (39)

in contrast to Eq. (33) for a phantom elastic sheet. Hence, self-
avoiding interactions in a randomly crushed sheet introduce
characteristic length scale

a = L(L/h)θ (40)

governing the geometry and mechanics of crumpling phe-
nomena. Furthermore, it should be emphasized that Eqs. (28)
and (39) are consistent if and only if

D
(2)
N − β = 3/2, (41)

and so

D
(2)
N = 11/6, (42)

if β = 1/3. The fact that the fractal dimension of crumpling
networks in ideally elastic sheets (42) is the same as found
experimentally for elastoplastic paper (14) supports the state-
ment of its universality, as well as the universality of β = 1/3.

To determine scaling exponents θ and φ = θD
(2)
N we noted

that a set of self-avoiding elastic sheets folded under the same
hydrostatic force obeys the scaling relation (1) with the fractal
dimension (32). In numerical simulations it was found that
D = 2.3 [23] and so φ = 0.18 and θ = 0.1. It is easy to
understand that a set of sheets crumpled by the same radial or
axial force will obey the scaling relation (1) with different D

and so θ (n) and φ(n) = θD
(2)
N are dependent on the crumpling

geometry characterized by the degree of compaction (n).
Furthermore, the plastic deformations can lead to deviation
from scaling behavior (39), such that the relationships (37)
and (38) do not hold anymore. Nonetheless, the force scaling
exponent μ is related to γ as is defined by Eq. (36) as long as
the relationship (41) holds. Accordingly, in Table II we present
the values of γ for different elastoplastic materials crumpled
under different confinement conditions which were calculated
with experimental values of μ reported in the literature. On
the other hand, using the experimental value of γ for hand
crumpled paper (11) we calculated the force exponent μ for
the case of hand crushing (see Table II).

As follows from data reported in Table II, hand crushing
resembles the radial crumpling (n = 2) rather than hydrostatic
confinement (n = 3). This is consistent with the concept of
fractional geometry of compaction, introduced in Ref. [43].
Moreover, our approach permits us to explicitly express the
fractal dimension of compaction Dc in terms of network
parameters. Namely, in the case of self-avoiding sheets, it is
expected that the mean length of crumpling ridges obeys the
scaling relation (33), but, generally,

Vn ∝ L3K−Dc , (43)
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and so

γ = 2DcD
(2)
N

3
, while μ = 1 + 2

3
Dc

(
D

(2)
N − β

)
, (44)

where 0 < Dc � 1 in the case of axial confinement, 1 < Dc �
2 in the case of biaxial or radial crushing, and 2 < Dc � 3 in
the case of three-dimensional compression. Specifically, the
hand crushing is characterized by Dc = 1.2, whereas experi-
ments reported in Ref. [43] are characterized by Dc = 0.3. It
is pertinent to note that the values 1 � μ � 2 explain relative
low resistance to axial compaction (0 < Dc � 1), whereas the
resistance of a folded paper ball to hydrostatic compression
(2 < Dc � 3) is enormously high (μ > 3). Moreover, in the
case of aluminum foil crumpled under hydrostatic pressure,
the values of μ > 4 [27,29] indicate that scaling relations (43)
and (44) fail due to plastic deformations, whereas Eqs. (29)–
(32) remain valid (see Table II). Likewise, it is important to
point out that under the increasing hydrostatic confinement
the folding configurations exhibit a phase transition associated
with the spontaneous symmetry breaking [30] and accompa-
nied by the change of the force-confinement ratio relation [29].

Since our approach to crumpling mechanics is generic,
it provides a general framework to model the crushing
phenomena in any scale from crumpled graphene structures to
geological formations. Furthermore, the knowledge of fractal
properties of a crumpling network (see Tables I and II)
permits us to map mechanics problems for the fractal ball

into the corresponding problems for fractal continua
dN

s

dN
l

�3
D

(see Ref. [66]).

IV. CONCLUSIONS

Summarizing, we found that under an increasing confine-
ment the network degree distribution remains invariant with
the universal mean 〈k〉 = 3.5 ± 0.1, whereas the number (10)
and mean length (15) of crumpling ridges are the power-law
functions of sheet thickness, linear size, and confinement
ratio. Furthermore, we determined the chemical (18) and
spectral (19) dimensions of crumpling networks formed in
randomly folded two-dimensional matter. It is argued that
the fractal dimensionalities of crumpling networks in the flat
and folded configurations are universal, whereas the scaling
exponents governed behavior of the mean ridge length and
total number of ridges under the increasing confinement ratio
are dependent on the crumpling geometry. The possible use of
the two-dimensional fuse network model with high disorder
to simulate the crumpling phenomena in different physical
systems is discussed.

The knowledge of fractal properties of a crumpling network
permits us to model mechanical and dynamic behavior of
randomly crushed matter. In this way, we state that self-
avoiding interactions introduce a characteristic length scale
(40) of sheet crumpling. Accordingly, mechanics of sheet
crushing is revised. Some useful scaling relations are derived.
The effect of compaction geometry on crushing mechanics is
revealed. These results provide a physically based framework
to study the crumpling phenomena in quite different systems
from graphene based nanosheets to geological formations.
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