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Spatial correlations in nonequilibrium reaction-diffusion problems by the Gillespie algorithm
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We present a study of the spatial correlation functions of a one-dimensional reaction-diffusion system in both
equilibrium and out of equilibrium. For the numerical simulations we have employed the Gillespie algorithm
dividing the system into cells to treat diffusion as a chemical process between adjacent cells. We find that the
spatial correlations are spatially short ranged in equilibrium but become long ranged in nonequilibrium. These
results are in good agreement with theoretical predictions from fluctuating hydrodynamics for a one-dimensional
system and periodic boundary conditions.
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I. INTRODUCTION

Thermal fluctuations in nonequilibrium thermodynamic
systems have been widely studied during recent years. One of
the most striking features is that for nonequilibrium systems
the spatial correlations are generically long ranged, while
thermal fluctuations around equilibrium states are, except
in the vicinity of critical points, spatially short ranged [1].
This can be readily concluded theoretically from fluctuating
hydrodynamics [2], i.e., by the use of Langevin equations to
describe the spatiotemporal evolution of the fluctuations of
the thermodynamic fields [3]. The nonequilibrium problems
most thoughtfully studied theoretically have been quiescent
fluids subjected to a temperature gradient, both simple [4–6]
and binary mixtures [7,8], as well as fluids under flow [9–12].
The most salient aspects of the theory have been confirmed
experimentally, in particular for the case of fluids subjected to
temperature gradients [13–15].

Nonequilibrium fluctuations in reaction-diffusion problems
have also been considered theoretically, whether the system
is driven outside of equilibrium by a temperature gradient
[16,17], or by an external flow of particles [18] or by assuming
different direct and inverse reaction mechanisms [3].

Although some authors have presented numerical simula-
tions of nonequilibrium correlations [19–21], the number of
investigations is still scarce. Our goal here is to contribute to
fill this gap by presenting numerical simulations of equilibrium
and nonequilibrium reaction-diffusion problems, for which
the Gillespie [22,23] algorithm is particularly adequate. The
Gillespie algorithm is a Monte Carlo method that can simulate
efficiently a large network of coupled chemical reactions based
on the chemical master equation [22,23]. Although it was
developed in 1976, the interest in this algorithm has grown
during the last years, particularly because of its proven utility
in biophysical problems, like gene expression [24], regulatory
networks [25], or others [26,27]. The Gillespie algorithm was
originally conceived to describe chemical kinetics, but it can
be applied to diffusion processes as well [28].

The Gillespie algorithm simulates the chemical master
equation exactly, but for real applications in biology and bio-
physics it is often too slow. One way to speed it up is to solve the
master equation approximately, averaging the most common
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reactions and focusing only in the not-very-frequent ones, as in
the tau-leap method [29] or alternative improved approaches
based on related ideas [30]. Recently, a way to accelerate the
algorithm while keeping it exact was devised [31]; this method
is based on data structures called binary trees. In this approach
the updating of every reagent in the system is not needed, but
only of the reagents that are involved in the current reaction.
Hence, it is possible in some applications to convert the O(n)
original Gillespie algorithm into a O(log n) algorithm [31].
We have not found it necessary to use these improvements in
our case, because the gain is not very significative.

There are several previous works on numerical simulations
of spatial correlation functions in reaction-diffusion problems.
For instance, Wakou et al. [21] analyzed the spatial correlation
function of density fluctuations in a model chemical reaction
assuming that the monomolecular decay rate is fast enough
to consider the motion of the chemicals as ballistic instead of
diffusive. They obtained analytical expressions for the spatial
correlation functions under this approximation, and simulated
them with molecular dynamics. Gorecki et al. [20], in a
work closer to our present aims, compared spatial correlations
between equilibrium and nonequilibrium (broken detailed
balance) systems. Results of molecular dynamics simulations
were compared with a theory based on a master equation.

Before closing the introduction we should mention that spa-
tial correlations in nonequilibrium reaction-diffusion systems
have been also studied by kinetic theory [32], an approach
that goes beyond fluctuating hydrodynamics and in which the
local equilibrium assumption is not needed. These results [32]
agree with fluctuating hydrodynamics for sufficiently slow
chemical reactions, but also show that for very fast chemical
reactions fluctuating hydrodynamics does not apply. Again, in
our simulations the hydrodynamic approximation holds and
the kinetic theory approach is not very relevant.

The paper is organized as follows. First, in Sec. II, we de-
scribe the two chemical reactions to be studied, one displaying
a stationary state that is of equilibrium. The second chemical
reaction exhibits broken detailed balance, and the correspond-
ing steady state is out of equilibrium. In Sec. III we present the
theory and obtain analytic results for both the equilibrium
and the nonequilibrium processes in the continuous limit.
Then, in Sec. IV we describe the details of the simulations. In
Sec. V we present the results obtained from the simulations in
three steps: applicability of the chemical Langevin equation,
spatial correlation function of fluctuations in the number of
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particles per cell, and a third subsection devoted to details in
the comparison with the continuous theory of Sec. III. Finally,
in Sec. VI our main conclusions are summarized.

II. EQUILIBRIUM AND NONEQUILIBRIUM
CHEMICAL REACTIONS

Our goal is to obtain from simulations the spatial correlation
function of concentration fluctuations in a reaction-diffusion
system in equilibrium and in a reaction-diffusion system
exhibiting a steady-state solution that is out of equilibrium.
Several mechanisms have been devised and considered in the
literature to drive a reaction-diffusion system out of equilib-
rium. One possibility is to externally impose a flow, by adding
and removing particles [21,32–35]. Another option, that keeps
the system closed, is to consider a complex chain of chemical
reactions that effectively break detailed balance, like the
Schlögl kinetic mechanism [18] or other variants [20,21,32].
A third possibility is that of a single closed chemical reaction
in the presence of a temperature gradient [16,17]. For our
present purposes we tried to be as simple as possible, so
we adopted the kinetic mechanism proposed by van Wijland,
Oerding, and Hilhorst [36] (WOH), that consists of a closed
isothermal system with only two active chemical species with
broken detailed balance due to an inverse chemical reaction
mechanism different from the direct one [36].

Therefore, in our simulations we shall consider as a
representative example of reaction diffusion at thermodynamic
equilibrium a closed system of two active chemical species,
A and B, where a dissociation-association chemical reaction
occurs:

A
k1
⇀ B, B

k2
⇀ A. (1)

In addition, we consider the system to be spatially extended
(one-dimensional), so that there is diffusion of the two species
in a passive solvent. For simplicity we assume the two main
diffusion coefficients to be identical, D, and neglect cross-
diffusion effects,1 as expected for an almost ideal mixture
[37]. For the simulation purposes, we consider the extension
L of the system divided in W identical cells of size �x =
L/W . In Eq. (1), k1 and k2 represent the rate constants, i.e.,
in the i cell the direct reaction proceeds at a rate k1ai (with
ai the concentration of A molecules in cell i, ai = NA,i/�x)
while the inverse reaction proceeds at a rate k2bi (with bi

the concentration of B molecules in cell i, bi = NB,i/�x). In
a closed system where the chemical reactions (1) occur the
concentrations shall evolve to homogeneous stationary values,
aeq and beq given by

aeq = k2np

k1 + k2
, beq = k1np

k1 + k2
, (2)

that is, an equilibrium state (chemical potentials are equal).
In Eq. (2), np represents the total concentration of molecules
(A plus B), that is an homogeneous quantity under diffusion.
Our first goal will be to investigate thermal fluctuations in

1To adopt a diffusion matrix only adds mathematical complications,
the physical behavior being qualitatively the same, i.e., short-range
spatial correlations in equilibrium [3].

the number of molecules per cell around the equilibrium
concentrations given by (2).

We adopt as a representative example of a reaction diffusion
out of thermodynamic a closed system with two active
chemical species, A and B, evolving in accordance with the
WOH kinetic mechanism:

A
k1
⇀ B, A + B

k′
2

⇀ 2A. (3)

Diffusion will be treated as in the equilibrium case: The two
chemicals diffuse in a solvent, with equal main diffusivities D

and zero cross diffusion. In Eq. (3), k1 and k′
2 represent the

rate constants. In the i cell the direct reaction proceeds at a
rate k1ai , that for the present work we assume to be the same
as in the equilibrium case of Eq. (1). The inverse reaction,
which is different from the case of Eq. (1), proceeds at a rate
k′

2aibi . In a closed system where the chemical reactions (3)
occur, the concentrations shall evolve to one of two possible
homogeneous steady states [36]. The first being characterized
by ai = 0. Of course, fluctuations around this state cannot
be Gaussian, and that is precisely the reason why this
kinetic mechanism has received considerable attention in the
literature, being one of the simplest examples of nonlinear (or
non-Gaussian) fluctuations for whose study renormalization or
other complicated mathematical techniques are required [36].
But we are interested here in the second possible steady
state, that is characterized by homogeneous and stationary
concentrations, ass and bss, of A and B molecules given by

ass = np − k1

k′
2

, bss = k1

k′
2

, (4)

that indeed represent a nonequilibrium state since detailed bal-
ance is broken. Our goal is to simulate fluctuations around this
steady state, compute their spatial correlation, and compare
with the equilibrium case. For the stability of the steady-state
solution (4) we refer to the original publications [36], we just
mention that simulations were performed at parameter values
for which the solution (4) is indeed stable.

One can see, comparing Eqs. (1) and (3), that the WOH
kinetics amounts to imagine that the inverse reaction occurs
through a mechanism different from that of the direct reaction.
This and similar schemes have been criticized on grounds
that thermodynamics requires that any chemical reaction
must proceed in either of the two directions (from reactants
to products and vice versa). Of course, that is correct.
However, our purposes here are mostly to illustrate a generic
physical principle by a particular example based on numerical
simulations. For that goal we find it convenient to keep the
problem as simple as possible while maintaining the key
ingredient, i.e., breaking of detailed balance. Furthermore, one
can think of Eq. (3) as a limiting case, when the inverse rates go
to zero of a more complicated kinetics, kind of the ones adopted
by other investigators [18], not to mention many literature
examples adopting similar one-directional kinetics [21,32,36].

III. SPATIAL CORRELATION OF CONCENTRATION
FLUCTUATIONS

A theoretical calculation of the spatial correlation function
of concentration fluctuations for the two chemical kinetic
mechanisms, Eqs. (1)–(3), is presented in Sec. 11.4 of the book
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by Ortiz de Zárate and Sengers [3]. However, those results
refer to an infinite system and are not directly applicable to the
simulations to be presented here. Nonequilibrium fluctuations
are spatially long ranged and, hence, strongly depend on the
boundary conditions for the fluctuating fields. In this section
we present a theoretical derivation of the spatial correlation
function for periodic boundary conditions, which are the ones
actually used in the simulations.

Our present derivation is based on the chemical Langevin
equation. There has been some debate in the literature on
whether the use of a Langevin equation is correct for chemical
reactions, or whether fluctuations in chemical reactions must
always be described by a chemical master equation [29,38,39].
From a strictly microscopic point of view, we acknowledge
that the proper theoretical framework to describe fluctuations
in chemical reactions has to be based on the chemical
master equation [40], in particular when a small number of
molecules is involved. However, starting from the chemical
master equation, through a Kramers-Moyal approximation
combined with the system-size expansion proposed by van
Kampen [41,42], it is possible to obtain a Fokker-Planck (or
Langevin) equation which is approximately equivalent to the
original chemical master equation [40,43]. It is known that
this approximation scheme fails when there is a bistability
in a system of chemical reactions [43], so that the Langevin
equation is only valid when fluctuations decay to a single
stable solution of the deterministic kinetic equations, and when
there are many particles per unit volume in the system. When
presenting our simulations in Sec. IV, as a preliminary step,
we shall first discuss how many particles per spatial cell are
required to justify the use of a chemical Langevin equation to
interpret the results.

A. Equilibrium concentration fluctuations

We first evaluate the spatial correlation of concentration
fluctuations in the equilibrium reaction-diffusion problem
of Eq. (1). As anticipated, following Gardiner [40] and
others [41,42], we adopt the simplest procedure to study
the spatiotemporal evolution of these fluctuations, that is
the hydrodynamic approximation given by the chemical
Langevin equation. Hence, the evolution of the concentration
fluctuations around the equilibrium state (2) will be described
by the following set of linear stochastic partial differential
equations [3]:

∂δa

∂t
= D∂2

x (δa) − k1δa + k2δb − ∂xδJ
(A) + δξ,

(5)
∂δb

∂t
= D∂2

x (δb) + k1δa − k2δb − ∂xδJ
(B) − δξ,

where x is the only continuous space variable in our 1D prob-
lem, while δa(x,t) = a(x,t) − aeq and δb(x,t) = b(x,t) − beq

represent the concentration fluctuations around the equilibrium
value (2). Notice that here the diffusion fluxes are given in
terms of molecules (per surface unit and unit time), while
other developments [3] use diffusion fluxes in terms of mass.

In Eq. (5), following the general rules of fluctuating hydro-
dynamics [2,3], we have introduced three random dissipative
fluxes as thermal forcing terms: δJ (A)(x,t) and δJ (B)(x,t)
represent the two independent random diffusive fluxes, while

δξ (x,t) represents the random reaction rate [40]. The statistical
properties of these random dissipative fluxes are specified by
the so-called fluctuation-dissipation theorem that in this case
reads [3,40]

〈δJ (A)(x,t)δJ (A)(x ′,t ′)〉 = 2Daeqδ(x − x ′)δ(t − t ′),

〈δJ (B)(x,t)δJ (B)(x ′,t ′)〉 = 2Dbeqδ(x − x ′)δ(t − t ′), (6)

〈δξ (x,t)δξ (x ′,t ′)〉 = [k1aeq + k2beq]δ(x − x ′)δ(t − t ′),

while all the cross correlations are zero. Since in the present
case we are considering one-dimensional space, diffusion
fluxes are scalar. However, we are not considering coupling
between the random diffusion and reaction rate, as in the
more general three-dimensional (3D) case. To obtain the third
of Eq. (6) the van Kampen system-size expansion [41,42]
was used. One identifies in the noise strength the typical
result (forward rate plus backward rate) obtained from such a
development [40,42].

The goal is to obtain the statistical properties of the
fluctuating fields from the statistical properties of the random
dissipative fluxes (6). First, as usual [3,44], since fluctuations
are around a stationary (in this case equilibrium) state, we
apply to Eq. (5) a Fourier transform in time. Next, to account
for periodic boundary conditions in space for the (Fourier
transformed) fluctuating fields δa(ω,x) and δb(ω,x), we
express them as(

δa(ω,x)

δb(ω,x)

)
=

∞∑
N=−∞

(
AN (ω)

BN (ω)

)
exp

(
i
2Nπ

L
x

)
, (7)

where ω is the frequency of the fluctuations and L the spatial
periodicity.

By substitution of Eq. (7) into the (Fourier transformed)
Eq. (5), after projection onto (1/L) exp[−i(2Mπ/L)x], one
can readily solve for the amplitudes, namely,[

AN (ω)

BN (ω)

]
= MN (ω)

[
F1,N (ω)

F2,N (ω)

]
, (8)

where the matrix MN (ω) is given by

MN (ω) =

[
iω + 4π2N2

L2 D + k2 k2

k1 iω + 4π2N2

L2 D + k1

]
[
iω + 4π2N2

L2 D
][

iω + D 4π2N2

L2 + k1 + k2
] , (9)

and the vector of projected random forces is[
F1,N (ω)

F2,N (ω)

]
= 1

L

∫ L

0
dx exp

(
−i

2Nπ

L
x

)

×
[

−∂xδJ
(A)(ω,x) + δξ (ω,x)

−∂xδJ
(B)(ω,x) − δξ (ω,x)

]
, (10)

with δξ (ω,x) (and so on) indicating the temporal Fourier
transform of the respective random force.

For the evaluation of the correlation function of interest,
〈δa(x,t)δa(x ′,t)〉, we need the correlations between the pro-
jected noise terms defined in Eq. (10). They can be evaluated
on the basis of the fluctuation-dissipation theorem, Eq. (6),
with the following result [3]:

〈F ∗
α,N (ω)Fβ,M (ω′)〉 = Cαβ(N )

1

L
δNM2πδ(ω − ω′), (11)
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where we introduce the correlation matrix:

C(N ) =
[

8N2π2

L2 Daeq + ξ 2 −ξ 2

−ξ 2 8N2π2

L2 Dbeq + ξ 2

]
, (12)

with ξ 2 the strength of the random reaction rate in the
fluctuation-dissipation theorem of Eq. (6), namely,

ξ 2 = k1aeq + k2beq. (13)

Next, we proceed to the calculation of the correlation function.
In view of Eq. (11) we conclude that it will be expressed as

〈δa∗(ω,x)δa(ω′,x ′)〉 = S(ω,x,x ′)2πδ(ω − ω′), (14)

where an explicit expression for S(ω,x,x ′) as a series of
exponentials can be readily obtained from Eqs. (7)–(12). We
shall not display it here, because it is a long expression not
really very informative. Note that for the (equal-time) spatial
correlation we only need its frequency integration. Indeed,
applying a double inverse Fourier transform to Eq. (14) one
readily obtains

〈δa(x,t)δa(x ′,t)〉 = 1

2π

∫ ∞

−∞
dωS(ω,x,x ′), (15)

indicating that the spatial correlation of concentration fluctu-
ations is independent of the time t at which it is evaluated, as
expected for a time-translational invariant equilibrium state.

It turns out that the frequency integral of the quantity
S(ω,x,x ′) introduced in Eq. (14) has a very compact expres-
sion:

〈δa(x,t)δa(x ′,t)〉 = aeq
1

L

∞∑
N=−∞

exp

(
i
2Nπ

L
(x − x ′)

)

= aeqδ(x − x ′), (16)

where the Fourier series expansion of the delta function for
periodic boundary conditions has been used.

Therefore, we conclude that the spatial correlation for
the equilibrium reaction-diffusion problem is spatially short
ranged. In the hydrodynamic continuous space description we
are employing here, 〈δa(x,t)δa(x ′,t)〉 is proportional to a delta
function. The proportionality constant equals the equilibrium
concentration. Indeed, as is well known, concentration fluctua-
tions for a chemically reacting system in equilibrium (detailed
balance) follow a Gaussian distribution whose variance equals
the square root of the mean value [40]. Of course, this is
only possible when the average number of particles per cell in
equilibrium is large enough, the same condition that is required
to apply a van Kampen system-size expansion [41,42] and,
thus, to justify the chemical Langevin equation itself.

B. Nonequilibrium concentration fluctuations

We now evaluate the spatial correlation of concentration
fluctuations around the steady state (4) of the nonequilibrium
WOH chemical kinetics of Eq. (3). We follow exactly the same
scheme as in Sec. III A and continue to adopt the chemical
Langevin equation as the starting point. In the nonequilibrium
case, the spatiotemporal evolution of the fluctuations around
the steady state (4) will be described by the following set of

linear stochastic partial differential equations [3]:

∂δa

∂t
= D∂2

x (δa) + k′
2assδb − ∂xδJ

(A) + δξ,

(17)
∂δb

∂t
= D∂2

x (δb) − k′
2assδb − ∂xδJ

(B) − δξ,

where now δa(x,t) = a(x,t) − ass and δb(x,t) = b(x,t) − bss

represent the concentration fluctuations around the nonequi-
librium steady state (4). We have neglected in Eq. (17) terms
quadratic in the fluctuations.

As was the case for the equilibrium fluctuations, Eq. (5),
we have considered three independent sources of stochastic
forcing: two random diffusive fluxes and a random reaction
rate. The statistical properties of the random diffusion fluxes
are the same as in the equilibrium case [Eq. (6)]. However,
the strength of the random reaction rate is different because of
the different underlying chemical kinetics. The reaction rate
correlation can be obtained by the usual system-size expansion
[40] for deriving the chemical Langevin equation from the
master equation, with the following result [3]:

〈δξ (x,t)δξ (x ′,t ′)〉 = [k1ass + k′
2assbss]δ(x − x ′)δ(t − t ′).

(18)

Again, we observe the typical result: rate of the forward
reaction plus rate of the backward reaction [40,42].

Next, the calculation accounting for periodic boundary
conditions follows the same steps as in Sec. III A for the
equilibrium kinetics. Of course, the matrices MN (ω) in Eq. (9)
and C(N ) in Eq. (12) will be different. The respective
expressions can be easily obtained, and we are not displaying
it here.

We focus then on the final result for the equal-time spatial
correlation function, which results in

〈δa(x,t)δa(x ′,t)〉 = assδ(x − x ′) + Sne(x − x ′), (19)

with

Sne(u) = −np

L
+ 2k1

k′
2L

∞∑
N=−∞

exp
(
i 2Nπ

L
u
)

1 + 8π2DN2

k′
2assL2

. (20)

We note in Eq. (19) that the spatial correlation contains two
contributions. First is a short-range part (proportional to a
delta function) that is the same as if the system were at
equilibrium at the steady-state concentration [see Eq. (17)].
However, because detailed balance is broken in the case of the
chemical kinetics (3), there appears an extra nonequilibrium
contribution represented by the function Sne(u). The sum of the
Fourier series in Eq. (20) can be performed analytically [45],
giving

Sne(u) = −np

L
+ 2k1μ

k′
2L sinh μ

cosh

[
2μ

( |u|
L

− 1

2

)]
, (21)

with

μ =
√

ass
k′

2L
2

8D
=

√
assk

′
2

8kD
, (22)

where kD = D/L2 is the rate corresponding to diffusion. A
simple inspection at Eq. (21) shows that the nonequilibrium
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contribution to the spatial correlation is long ranged. Depend-
ing on the value of the parameter μ, it can encompass the
whole system, as further discussed below.

The results (19)–(21) are for periodic boundary conditions,
as implemented by Eq. (7). Therefore they differ from the
solution for an infinite (bulk) system presented in Sec. 11.4
of a previous publication [3]. However, it can be verified
that, in the limit L → ∞, the present results converge to the
one-dimensional version of Eq. (11.35) elsewhere [3]. For
comparison with the simulations, Eqs. (19)–(21) must be used.
Obviously, numerical simulations can only be performed in a
system of finite extension, and due to their spatial long-range
nature, nonequilibrium fluctuations are strongly affected by
the boundary conditions [3,6].

IV. SIMULATIONS

We have performed extensive numerical simulations of
the equilibrium and the nonequilibrium reaction-diffusion
processes introduced in Sec. II and analyzed theoretically
in Sec. III. For this purpose we used the Gillespie [22,23]
algorithm, which has become very popular lately for simu-
lation of large and complex networks of chemical reactions
[24–27]. For a detailed description of the algorithm and
its many applications, we refer to the original publications
[22,23,30,31].

As discussed by Bernstein [28], simulation of diffusion
processes can be easily integrated into Gillespie algorithm.
This integration allows one to develop a fast and compact
code, where diffusion and chemical reactions are treated on
equal footing. The idea of Bernstein [28] is to divide the space
into cells, and to consider molecules in different cells as if they
were different chemical species. Diffusion (in one dimension)
is included by adding to the list of chemical reactions, for each
cell i and each chemical species, two reactions: one transform-
ing a molecule in the cell i into a molecule of the same species
in the cell i − 1, and another transforming a molecule in the
cell i into a molecule of the same species in the cell i + 1.
This amounts to adding a large number of items to the list of
chemical reactions, but the Gillespie algorithm is particularly
fast and good at handling such large numbers of reactions. It is
found that these extra reactions associated with diffusion have
to proceed at the diffusion rate kD. Bernstein [28] has presented
a large number of simulations, showing that this method
correctly simulates diffusion in one-dimensional systems.

Most of the simulations to be presented in this paper are for
a number W = 128 of cells and periodic boundary conditions,
so that they are effectively performed in a ring of 128 cells.
This number was selected after some preliminary runs that
demonstrated this number of cells enough to show the effects
searched for at a reasonable noise level. A smaller number
of cells gave a lot of spatial noise; a larger number of cells
took a prohibitive long time with the computing means at
our disposal. At each site we consider six effective chemical
reactions: two corresponding to either the equilibrium (1) or
the nonequilibrium (3) kinetics, two corresponding to diffusion
of A molecules to the two adjacent cells, and the other two
corresponding to diffusion of B molecules to the two adjacent
cells. Hence, the total list of chemical reactions comprises
6 × 128 = 768 items.

The Gillespie algorithm simulates solutions of the master
equation, while the theory presented in Sec. III is based
on a Langevin equation. Therefore, for the simulations to
correspond to the theory we need a large enough number
of molecules of the two species in all the spatial cells (see
discussion at the beginning of Sec. III). After some preliminary
runs, we settled at an average total number of molecules per
cell 〈N〉 = 3000, thus, the number of molecules in the system
(A plus B) is 128 × 3000, which is a conserved quantity.
We selected the reaction rates so that the average number
of molecules per cell is the same for the two species, equal to
half the total (average) number 〈N〉 of molecules per cell. This
selection makes sure that (for a given 〈N〉) the average number
of molecules is as far from zero as possible for the two species
simultaneously. As discussed later, this is a requirement for
the probability distribution of the fluctuations to be as normal
(Gaussian) as possible. In addition, to set the averages the
same for the equilibrium (1) and the nonequilibrium (3)
kinetics facilitates the comparison of the corresponding spatial
correlations. We then select the reaction rate of the first
chemical reaction [common to the equilibrium (1) and the
nonequilibrium (3) kinetics] as k1 = 30, which is equivalent
to fix the time unit of our simulations to the same vale for the
two kinetics. Consequently, the rates of the inverse reactions
were fixed at k2 = 30 for the equilibrium kinetics of Eq. (1)
and k′

2 = 0.02 for the nonequilibrium WOH kinetics of Eq. (3).
These choices set the steady average number of A molecules
per cell and the steady average number of B molecules per cell
at 〈NA〉 = 〈NB〉 = 〈N〉/2 = 1500 in both cases.

We have performed simulations at various values of the
diffusion rate constant kD, which we remember is the same
for the two species. The space unit is fixed by the length
L of the ring, which we take as L = 1. Hence, the size of
the cells that discretize the space is �x = L/W = 1/128.
The continuous theory presented in Sec. III is formulated
in terms of concentrations, i.e., molecules per unit volume.2

Thus, the selected number of molecules per cell corresponds to
steady concentrations aeq = ass = 〈NA〉/�x = W 〈NA〉/L =
128〈NA〉, and similarly for B.

All the simulations started from an initial state where A and
B molecules where homogeneously distributed among the W

spatial cells. Therefore we put 1500 molecules of type A and
1500 molecules of type B in all the 128 cells at t = 0. Then, we
run the algorithm at least 6 × 109 iterations for equilibration.
Only after that we started number tracking for further analysis.
Some simulations were performed with an alternative initial
state that was setup by randomly selecting an initial cell for
each one of the 128 × 1500 A molecules, and the same for
the B molecules. We found no difference between the results
obtained with the two alternative initial states.

Some runs for the nonequilibrium WOH kinetics of Eq. (3)
were done with a larger number of cells, W ′ = 256, at the
expense of a larger computing time. The goal was to simulate
the same system but with a finer space resolution. Therefore,
the average number of particles per cell was reduced to half the
value used for the main runs: 〈N ′

A〉 = 750 and 〈N ′
B〉 = 750,

to keep the (average) steady concentrations the same, i.e., the

2Per unit length in our one-dimensional case.
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same number of particles per unit length. The time unit k1 was
set at the same value as for the main runs. As a consequence, the
rate k′

2 of the inverse reaction has to be fixed at k′
2 = 0.04 for

these runs with 256 cells. Systems with a given diffusion con-
stant D have to be simulated with the same diffusion rate kD,
independent of the number of cells used for a finer description.

For the simulations, we wrote a specific C++ code that was
run in a state-of-the-art personal computer. To finalize, we
should mention that, for speeding up the process and since for
the present work we are only interested in equal-time fluctua-
tions, we often did not keep track of the time, in particular for
the simulations used to analyze the spatial correlations.

V. RESULTS AND ANALYSIS

A. Applicability of the chemical Langevin equation

Before starting an extensive set of simulations, we have to
make sure that the chemical Langevin equation used in the
theory Sec. III is adequate to describe the statistical properties
of the problem. With such a goal we performed a series of
simulations for the equilibrium kinetics of Eq. (1), tracking
the number of A molecules (NA,i) in a randomly selected
i cell at each time step. Afterwards, we built the corresponding
histograms, an example of which is shown in Fig. 1, which
corresponds to the cell number 12 and for kD = 1. These
histograms were fitted to Gaussians, and in all cases the
values obtained for the mean 〈x〉 and the variance σ were
reasonably close to the expected numbers, 〈NA〉 = 1500 and
σ = √

1500 	 38.73, on the basis of the chemical Langevin
equation of Sec. III.

Trying to be more quantitative, we also performed per-
centile normality tests (q-q plots). In Fig. 2 we show an
example computed from the same histogram displayed in
Fig. 1. In the ordinate we represent the value x calculated
from a standard Gaussian that accumulates (from x = −∞)
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FIG. 1. (Color online) Histogram of the number of A molecules
in a randomly chosen cell for the equilibrium kinetics [Eq. (1)] with
parameter values specified in the text. Number of iterations of the
algorithm is 2 × 109 for this particular case. The solid line is a fitting
to a Gaussian. In this particular case 〈x〉 = 1517 and σ = 36.59.
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FIG. 2. (Color online) Percentile (q-q plot) normality test applied
to the histogram of Fig. 1. The straight line corresponds to the
Gaussian fit also shown in Fig. 1. Some deviations from Gaussian
are observable at the tails, probably due to low sampling.

the same probability as the percentile accumulated by the
corresponding abscissa value in the measured histogram.
The solid line [y = (x − 1517)/36.59 for this particular
case] represents the Gaussian distribution fitted to the
histogram.

A simple look at Figs. 1 and 2 confirms that the histograms
obtained from the simulations are well represented by normal
distributions. Of course, some deviations are observable at the
tails, most likely due to low sampling. Note in Fig. 2 that
significative deviations appear at distances farther than ±3σ

from the mean, corresponding to very low probability.
From the data displayed in Figs. 1 and 2 and similar, we

conclude that the parameter values selected (in particular,
the number of particles per cell) are large enough to justify
the series of approximations, essentially a system-size expan-
sion [41,42], which make the chemical Langevin equation
equivalent to the more fundamental master equation. Since the
Gillespie algorithm obtains solutions to a master equation, it
is particularly well suited for this kind of investigation [46].

We should mention that, before deciding on the current
parameter values, we performed simulations with a lower
number of particles per spatial cell, and indeed observed
deviations from normality. This is somewhat expected when
the number of particles per cell 〈NA〉 is reduced to become
a few units of

√〈NA〉. In that case it is obvious that the
probability of a given fluctuation δNA cannot be a Gaussian.
As already mentioned, we settled in our case to a large
enough 〈NA〉 = 1500 to make deviations from normality
negligible.

The results presented in this subsection provide further
evidence of the adequacy of the Bernstein [28] adaptation
of the Gillespie [22,23] algorithm for reliable simulation of
reaction-diffusion processes. Bernstein has shown [28] that
this extension of the algorithm gives concentration profiles
that, on average, evolve according to the diffusion equation.
Here, we have shown that the statistical properties of the
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fluctuations around a steady state also reproduce the expected
behavior for diffusion.

B. Spatial correlations

Next, we discuss the spatial correlation function
〈δNA(x)δNA(x ′)〉 of equal-time fluctuations in the number of
A particles per cell. We evaluated this correlation function by
direct spatial average, namely,

〈δNA(x)δNA(x ′)〉 = 1

W

W∑
i=1

(NA,i − NA)(NA,i+j − NA),

(23)

where NA,i is the number of A particles in the cell i,
and NA the average number of A particles over all cells.
We remember from Sec. III that for periodic boundary
conditions the spatial correlation function depends only on
the difference x − x ′ = j�x = jL/W , a fact that justifies the
spatial average conducted in Eq. (23). Moreover, the finally
reported correlations are averaged over various (typically, from
six to 10) individual 〈δNA(x)δNA(x ′)〉 obtained at different
times. Hence, we continuously run the algorithm for a large
number of iterations, saving the configurations {NA,i ,NB,i}
every 2 × 109 iterations. Later, individual correlation functions
were evaluated applying Eq. (23) to these saved configurations.
We found it important to wait for a large number of iterations
between consecutive saved configurations, because of the long
time it takes to dissipate some large fluctuations that appear
frequently, in particular for the case of the nonequilibrium
WOH kinetics of Eq. (3). Note that in this paper we do not
discuss the dynamics of fluctuations that, depending on the
value of the diffusion rate kD, can indeed be very slow.

As an example of the obtained spatial correlation functions,
we show in Fig. 3 three different cases. The left panel
corresponds to the equilibrium kinetics of Eq. (1) with kD = 1,
the center panel is for the nonequilibrium WOH kinetics
of Eq. (3) with kD = 3, and the right panel is for the
nonequilibrium WOH kinetics of Eq. (3) with kD = 1. For

easier comparison, the same vertical scale is used to represent
the three correlation functions. A simple look at Fig. 3 shows
our main result: For equilibrium reaction diffusion the spatial
correlation is zero everywhere, except for x1 = x2, hence it
is spatially short ranged, proportional to a delta function as
in Eq. (16). However, when the reaction-diffusion process is
out of (global) equilibrium, the correlation of the fluctuations
becomes spatially long ranged. Actually, for the periodic
boundary conditions and parameter values considered here,
the range of the correlation encompassed the whole system as
it is clearly observed both in the central and right panels of
Fig. 3.

Another typical feature of nonequilibrium fluctuations
clearly observed in Fig. 3 is the intensity enhancement. The
leftmost point in each panel of the figure corresponds to
fluctuations in the same cell, 〈δN2

A〉. For the equilibrium case
(left panel) we observe 〈δN2

A〉 	 1500, as discussed in more
detail in Sec. V A. However, in the center and right panels of
Fig. 3, one sees an important enhancement for the nonequi-
librium WOH kinetics of Eq. (3). This enhancement increases
as the diffusion rate decreases, in accordance with Eq. (21).
Indeed, the curves in the central and right panels of Fig. 3
represent fittings of the results to Eq. (21), using μ as the only
fitting parameter. We leave for the next section a quantitative
discussion of these fittings, while we stress here that they can
be considered as good. We conclude that our numerical results
are well represented by the continuous theory of Sec. III. In
particular, the numerical results contribute to justify one of
the approximations adopted in the theory, namely, neglecting
nonlinear terms in the fluctuations in Eq. (17).

Finally, we should mention that in none of the simulations
performed for the nonequilibrium WOH kinetics of Eq. (3) we
observed decay to the other possible homogeneous stationary
solution, ass = 0.

C. Discussion

Next, we present a discussion of some quantitative details
of our results, that we preferred to separate from the big picture
presented in the previous subsection.
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FIG. 3. (Color online) Three examples of spatial correlation functions in reaction-diffusion problems. The left panel corresponds to the
equilibrium kinetics of Eq. (1) and the center and right panels correspond to the nonequilibrium WOH kinetics of Eq. (3). The kD values are
indicated. Other parameter values are given in the text. Number of spatial cells is W = 128 in all cases. For the nonequilibrium panels, the
solid curves represent a fitting to Eq. (21) as further discussed in the main text. Note that the vertical scale is the same for the three cases
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Regarding the equilibrium spatial correlations, like the one
plotted in the left panel of Fig. 3, they do indeed correspond
to delta functions when interpreted as fluctuations in the
concentrations and not in the number of particles. This is
best understood if one imagines having performed the same
simulations but with a larger number of spatial cells. For
instance, if the number of cells is doubled (keeping the size
of the system constant, L = 1), the size of the new cells will
be �x ′ = �x/2. In such a case and to simulate the same
problem, the average number of particles per cell, 〈NA〉 and
〈NB〉, has to be halved to keep the same concentration in
particles per unit length. Hence, a simulation of this equivalent
double number of cells system will give a correlation function
that is zero everywhere except for the same cell, where will
have the value 〈δN ′

A
2〉 = 〈δNA

2〉/2. To express the spatial
correlation function in terms of concentrations one has to
divide by the square of the cell size. As a consequence, in
terms of concentration fluctuations, one has 〈δa′2〉 = 2〈δa2〉.
We conclude that if one uses a finer spatial grid that is half
the original, the height of the only nonzero point in the spatial
correlation of the equilibrium concentration fluctuations will
double. Hence, in the continuous �x → 0 limit the spatial
correlation does indeed converge to a delta function.

Regarding the spatial correlations corresponding to the
nonequilibrium WOH kinetics of Eq. (3), we tried to explain
them on the basis of the continuous theory of Sec. III. However,
as also seen in Fig. 3, the nonequilibrium correlation functions
are quite noisy, more than the equilibrium runs at the same kD.
Therefore, we find it best to perform fittings to the theoretical
result of Eq. (21). For these fittings we fix the values of
Np and k1/k2 to the ones actually used in the simulations
(Np = 3000 and k1/k2 = 1500, for W = 128 cells), and used
μ as the only fitting parameter. The solid curves displayed
in the central and right panels of Fig. 3 represent the results
of such one-free-parameter fits, which give quite reasonabe
results. Next, the μ values obtained from the fits are to be
compared with the theoretical value of Eq. (22).

Such a comparison is shown in Fig. 4, where the μ values
obtained from the fits are represented as a function of the
kD values used in the corresponding simulations. Simulations
performed with W = 128 cells are represented as open
symbols. The solid curve represents the theoretical Eq. (22) for
assk2 = 30, which is the value used in the simulations. From
Fig. 4 we first note an important scatter in the μfit, likely
associated with the large spatial noise that was observed in the
nonequilibrium correlation functions of Fig. 3. It is also noticed
that the μfit values are systematically lower than the theoretical
result of Eq. (22). Indeed, we added as a dashed line a fit to the
function

√
P1/x (with P1 a fitting parameter) that it clearly lies

below the solid line representing the theoretical result. We at-
tribute this difference to the theory of Sec. III being for contin-
uous space x. For confirmation, we run a couple of simulations
with a larger number of cells W = 256 and, consequently, with
a smaller average number of particles per cell Np = 1500 and
larger k′

2 = 0.04 so as to represent the same system (same
concentrations ass) at increased spatial resolution. We added
the μfit values obtained from these larger scale simulations as
⊕ symbols to the data plotted in Fig. 4. We observe that these
two additional runs confirm our hypothesis: as finer spatial
resolution is used in the simulations, the μ values obtained

1.0 1.5 2.0 2.5 3.0

0.8

1.2

1.6

2.0

2.4

μ fit

kD

FIG. 4. Comparison with the theory of the nonequilibrium spatial
correlation functions. The μfit values obtained from the fits are
represented vs the kD values used in the corresponding simulations.
Open symbols correspond to runs with W = 128 spatial cells and
the ⊕ to runs with W = 256 cells. The solid curve represents the
theoretical Eq. (22). The dotted curve is a fit of the points obtained
with W = 128 cells.

from fits approach the theoretical value of Eq. (22). If one adds
up all these clues, it leads to the conclusion that the simulations
confirm the theory presented in Sec. III in the continuous
limit.

VI. CONCLUSIONS

We have presented simulations of two different reaction-
diffusion problems using the Gillespie algorithm. One set
of simulations represents a chemical reaction in equilibrium;
while the other set of simulations corresponds to a problem
where detailed balance was broken and, consequently, the
corresponding steady state is out of equilibrium. From our sim-
ulations we obtained and studied histograms of the probability
distribution of the number of particles in a given spatial cell,
which, for the parameter range selected, resulted Gaussian in
good approximation. We also evaluated from the simulations
the spatial correlation function of equal-time fluctuations in
the number of particles per cell. From this study we have
confirmed in a very visual and intuitive way some of the
most salient features of nonequilibrium fluctuations, namely,
an intensity enhancement and correlations becoming spatially
long ranged (as opposed to short-ranged spatial correlations in
equilibrium).

The long-range nature of nonequilibrium spatial correla-
tions means that they are affected by boundary conditions. For
the periodic boundary conditions used in the simulations, we
have developed a continuous theory that gives very compact
analytical expressions for the spatial correlations of both the
equilibrium and the nonequilibrium problems. The results
obtained from the simulations approach the theoretical values
in the continuous limit, as the number of spatial cells W is
increased.
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Note added in proofs. Recently a paper by Gillespie et al.
[47] appeared, where more background on the application of
the Gillespie algorithm to reaction-diffusion problems can be
found.
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