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Muscle contraction and the elasticity-mediated crosstalk effect
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Cooperative action of molecular motors is essential for many cellular processes. One possible regulator of
motor coordination is the elasticity-mediated crosstalk (EMC) coupling between myosin II motors whose origin
is the tensile stress that they collectively generate in actin filaments. Here, we use a statistical mechanical analysis
to investigate the influence of the EMC effect on the sarcomere — the basic contractile unit of skeletal muscles.
We demonstrate that the EMC effect leads to an increase in the attachment probability of motors located near the
end of the sarcomere while simultaneously decreasing the attachment probability of the motors in the central part.
Such a polarized attachment probability would impair the motors’ ability to cooperate efficiently. Interestingly,
this undesired phenomenon becomes significant only when the system size exceeds that of the sarcomere in
skeletal muscles, which provides an explanation for the remarkable lack of sarcomere variability in vertebrates.
Another phenomenon that we investigate is the recently observed increase in the duty ratio of the motors with
the tension in muscle. We reveal that the celebrated Hill’s equation for muscle contraction is very closely related
to this observation.
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I. INTRODUCTION

Skeletal striated muscles are tissues that contract in order
to produce the movement of the body. The fundamental
contractile unit of the muscle is the sarcomere, which is
composed of two types of filaments, actin and myosin, in
an arrangement that allows them to slide past each other [1].
Upon nervous stimulation, Ca2+ ions flow into the muscle cell
and expose binding sites located on the actin filament [2]. The
myosin thick filament consists of myosin II motor proteins with
a lever arm structure that bind to the binding sites on the actin
thin filament and, via ATP hydrolysis, change its conformation,
resulting in a “power stroke” that propels the myosin filament
on top of the actin filament [3]. Comparison of skeletal
muscle cells in different vertebrates reveals that the lengths of
their sarcomeres are almost identical. The length of the thick
filament is usually found to be close to 1.6 μm, while the length
of the thin filament is typically in the 0.95–1.25 μm range [4].
This fact is striking considering the different tasks that different
muscles perform in different species. Here, we argue that this
remarkable feature of muscles is closely related to the ability
of the myosin II motors to work in cooperation, which may be
jeopardized by the elasticity-mediated crosstalk (EMC) effect
arising from the compliance of the actin filament [5]. During
muscle contraction, the application of opposite forces (the
motor forces versus the external load) on the actin filaments
causes large force fluctuations. This leads to an increase in the
elastic energy stored in the filaments that can be lowered if the
duty ratios of the myosin II motors are changed. Our analysis
shows that, in contracting muscles, the EMC effect causes
the attachment probability of motors to become nonuniform
(spatially dependent). This feature negatively affects muscle
performance since it hampers the ability of the motors to
cooperate efficiently. Interestingly, this undesired phenomenon
becomes significant only when the system size exceeds that
of the sarcomere, which provides a plausible explanation
for the similarity of the sarcomeres in muscle cells across
vertebrates.

Our current understanding of the mechanics of muscle
contraction is very much influenced by two classical works.
The first one is Hill’s work [6], in which the muscle was
represented through a combination of elastic, contractile, and
resistive (viscous) elements. Hill postulated that in overcoming
the viscous resistance, the contracting muscle does work and
produces heat. Through a general notion of energy balance and
some empirical relations between the rate of heat production
during muscle contraction and the contraction velocity, Hill
derived his famous equation,

(P + a)(v + b) = (P0 + a)b, (1)

where P is the load opposing the contraction, v is the
contraction velocity, P0 is the isometric load (i.e., the load
for v = 0), and a and b are constants. Although generally
considered as a phenomenological force-velocity relationship
rather than a thermomechanical expression, Hill’s equation
has drawn much attention because of its simplicity and the
agreement it shows with experimental measurements [7].

The second seminal work is Huxley’s crossbridge theory
from 1957, which provides a molecular-level interpretation
for muscle contraction [8]. Within the model, the myosin
motor heads interact with specific binding sites along the actin
filament to form elastic crossbridges. When a motor is attached
to a binding site, the crossbridge stretches and force is applied
on the actin filament, resulting in the relative movement
of the actin (thin) and myosin (thick) filaments past each other.
The attachment and detachment of motor heads to and from the
actin filament are governed by “on” and “off” rate functions
that regulate the fraction of crossbridges (i.e., attached motors),
and which depend on the stretching energy of the crossbridges.
The “on” and “off” rates were chosen by Huxley to obtain a
good fit with Hill’s experimental data for the force-velocity
relationship [Eq. (1)].

Huxley’s work, together with the development of improved
methods for experimental determination of the sarcomere’s
microstructure [9], as well as new biochemical measurements
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of ATP activity [10], have provided a fruitful field for further
investigations. In 1971, a widely accepted four-state scheme
for the mechanochemical cycle of myosin II was introduced
by Lymn and Taylor [11]. More recently, Duke [12], and
later others [13–18], came up with models that integrated
the Lymn-Taylor scheme into the crossbridge model. Duke’s
model (like Huxley’s) treats the motor heads as elastic
elements with strain-dependent on and off rates. The model
assumes that the viscous friction forces can be neglected
in the equation of motion of the contracting muscle. The
latter assumption remains controversial, and several alternative
models incorporating viscous effects have also been proposed
for the contractile process [19,20]. Both classes of models have
been successful in producing Hill’s force-velocity relationship.

Another major success of the theoretical models is their
ability to show that the fraction of working (force-producing)
motors, r , increases with the load P . This feature has
been recently observed by Lombardi and co-workers [21],
who showed, by using x-ray scattering and mechanical
measurements on the tibialis anterior muscles of frogs, that
r increases from roughly r = 0.05 for P = 0 to r = 0.3 for
the maximal isometric load. Related patterns of collective
behavior also emerge in models for motor protein motility
assays [22,23]. Specifically, several ratchet models have shown
that when two groups of antagonistic motors are engaged in
a “tug-of-war” competition, their detachment rates may be
considerably varied [24–26]. Another setup, closely related
to muscle contractility, is a single class of motors that work
against the force produced by an optical trap [27]. One of
the factors that significantly alters the detachment rates is the
EMC, whose effect on muscle contractility is studied here
using a simple spring-bead model.

II. HILL’S EQUATION

Before presenting our model and its results, we first wish
to examine more closely the experimental results of Ref. [21].
To that end, it is useful to define the dimensionless variables
0 � x ≡ P/P0 � 1 and 0 � y ≡ v/vmax � 1, where vmax is
the maximum contraction velocity at P = 0. When expressed
in terms of these variables, Hill’s equation (1) takes the
dimensionless form

y = 1 − x

1 + cx
, (2)

where c is a constant. Notice that Eq. (2) satisfies both the
relation that y = 1 for x = 0 (load-free contraction) and y = 0
for x = 1 (isometric contraction). The other important notion
in relation to muscle contraction is the observed [see Fig. 3 (D)
in Ref. [21]] increase in r with P , which is well approximated
by the linear relationship

r = r0 + (r1 − r0)x, (3)

where r0 and r1 denote the attachment probability for x = 0
and 1, respectively. To match the experimental data, we set
r0 = 0.05 and r1 � 0.3. Since the sarcomere contracts at a
constant velocity, then Newton’s first law of motion implies
that the forces generated by the motors are balanced by the
external load P and the friction forces in the system. The latter
originate from two sources: the surrounding medium and the

crossbridges. The balance of forces reads

r(fm − λmv) = λv + P

N
. (4)

The expression in parentheses on the left-hand side of Eq. (4)
can be identified as the force per motor,

f0(v) = fm − λmv. (5)

It includes a positive “active force,” fm, and a negative “motor-
friction force” characterized by the motor friction coefficient
λm [28]. This linear force-velocity relationship is consistent
with the experimental results shown in Fig. 4(B) of Ref. [21].
On the right-hand side of Eq. (4) we have the counter external
load, P/N , and the friction force caused by the surrounding
medium, λv (λ �= λm), both normalized per motor.

It is important to emphasize that Eq. (3) is empirical,
and we do not intend to discuss its physical basis. Here, we
simply want to demonstrate that Hill’s dimensionless equation
can be derived from Eqs. (3) and (4) without any further
assumptions. Explicitly, upon substitution of Eq. (3) in Eq. (4)
and rearrangement of the resulting equation, one arrives to the
following expression for the contraction velocity:

v = fmr0(1 − x)

λ + λm[r0 + (r1 − r0)x]
. (6)

Also, for P = 0, Eq. (4) takes the form

fmr0

vmax
= λ + λmr0. (7)

Dividing Eq. (6) by vmax and using Eq. (7) as well as the
relation P/N = xP0/N = xfmr1, one arrives at Eq. (2) with

c = λm(r1 − r0)

λ + λmr0
. (8)

We further note that for y = 1 (v = vmax), the following
expression can be derived for f0 if Eq. (7) is used in Eq. (5):

f0|y=1 = fm

λ

λ + r0λm

. (9)

The experimental data [21] give fm = 6 pN, f0|y=1 = 4 pN,
and r0 = 0.05, which, upon substitution in Eq. (9), yields
λm = 10λ. When this last result, together with the values
for r0 and r1, are used in Eq. (8), one arrives at c = 5/3,
which is within the range 1.2 < c < 4 where the constant c is
typically found for skeletal muscles [29]. Notice that in order to
match the experimental data, we included viscous terms in our
derivation, which (as noted above) is a matter of controversy.
Nevertheless, it is important to recognize that Eq. (8) has a
well-defined limit when both λ and λm vanish, provided that
λ/λm is finite.

III. MODEL

We now proceed to discuss the relevance of the EMC effect
to skeletal muscle contraction. Figure 1(a) shows a schematic
of the sarcomere structure, consisting of an array of parallel
actin thin filaments surrounded by thick filaments of myosin
motors. Adjacent sarcomeres are connected end-to-end to form
myofibrils. The ends of the actin filaments are anchored at the
Z-line, which transmits the external load to the actin filaments.
Our model of the sarcomere is depicted in Fig. 1(b). The
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FIG. 1. (a) Schematics of the sarcomere, consisting of an array of
parallel actin thin filaments surrounded by thick filaments of myosin
motors. Adjacent sarcomeres are connected end-to-end at the Z-line.
(b) In our model, the actin filament is represented as a chain of
nodes, connected by identical springs with spring constant ks . Each
node is either connected to a single myosin II motor, in which case it
experiences a force of magnitude f0, or disconnected, in which case it
experiences no force. The motor forces are countered by the external
force P which acts at the end of the chain.

elastic actin filament is modeled as a chain of N monomers
connected by N − 1 elastic springs with spring constant ks .
We assume that a motor exerts a force of magnitude f0 on the
actin filament in the attached state, and no force in the detached
state. The other model parameter is the attachment probability
of the motors, r . As discussed above, both f0 and r vary with
v. Our model neglects spatial (motor-to-motor) and temporal
variations of r and f0 at a given v, so these two quantities
represent the typical attachment probability and motor force,
respectively. As we will demonstrate below, it is the EMC
effect that leads to spatial variations in the effective (mean)
attachment probability of the motors, which we will denote by
〈r〉 (to be distinguished from the uniform “bare” attachment
probability r).

The motor forces work against the opposite external force
which is applied on the N th last monomer. The tug-of-war
competition between the motor forces and the external force
stretches the actin filament. Denoting by Eel the elastic
energy of the filament, the statistical weight of a config-
uration with n connected motors is given by w = rn(1 −
r)N−n exp(−Eel/kBT ), where kBT is the thermal energy. We
treat the elastic energy as an equilibrium degree of freedom
(of a system which is inherently out-of-equilibrium) because
the mechanical response of the filament to the attachment or
detachment of motors is extremely rapid and occurs on time
scales which are far shorter than the typical attachment time of
the motors. The elastic energy Eel is calculated as follows [30].
We denote by fi the force applied on the ith monomer, where
fi = 0 or fi = f0 for i = 1, . . . ,(N − 1), and fi = −P or
fi = −P + f0 for i = N . The total elastic energy is the sum
of spring energies, Eel = ∑N−1

i=1 F 2
i /2ks , where Fi is the force

applied on the ith spring. The forces Fi are calculated as

follows: We first calculate the mean force f̄ = (
∑N

i=1 fi)/N
and define the excess forces acting on the nodes: f ∗

i = fi − f̄ .
The force on the ith spring is then obtained by summing the
excess forces applied on all the monomers located on one side
of the spring: Fi = −∑i

l=1 f ∗
l = ∑N

l=i+1 f ∗
l .

The model is studied by using Monte Carlo simulations
with trial moves that attempt to change the state (connected
or disconnected) of a randomly chosen motor. For each move
attempt, the elastic energy Eel of the chain is recalculated,
and the move is accepted or rejected according to the conven-
tional Metropolis criterion with the statistical weights given
by w.

IV. RESULTS

In half a sarcomere, each thick filament has about 150 motor
heads [2]. To simulate muscles operating under conditions
of optimal force generation, we assume that there is a full
overlap between the thick and thin filaments [1], and we
consider a chain with N = 150/2 = 75 monomers. (The
division by 2 is due to the 1:2 ratio between thin and thick
filaments.) We also simulate larger systems of N = 150
and 300 nodes and fix the model parameters to r = 0.05,
f0 = fm = 6 pN, and ks � 4.5 N/m (see the discussion on
how these values were set in [30]). Our simulation results
for the mean attachment probability, 〈r(i)〉, as a function of i

(1 � i � N ), the position of the monomer along the chain,
are depicted in Fig. 2 for N = 75 (a), N = 150 (b), and
N = 300 (c). The simulations reveal that due to the EMC
effect, the attachment probability becomes a monotonically
increasing function of i. The origin of this feature is the fact that
the springs are not equally stretched, as can be inferred from
the above derivation of the elastic energy. Generally speaking,
attachment of a motor to a certain node i leads to a reduction
in the energy of the springs with j < i. For each N , there is a
single node (i = i∗) where the attachment probability, 〈r(i∗)〉,
is independent of P and takes a value which is very close
to the bare attachment probability r . The difference between
the attachment probabilities at both ends of the chain (i.e., for
i = 1 and i = N ) increases with both N and P . For N = 75,
the variation in 〈r(i)〉 is quite small, becoming meaningful
only at near-stall forces P/(f0N ) � 0.05. In contrast, for
N = 150, the variations in 〈r(i)〉 are significant and may be as
large as 〈r(N )〉/〈r(1)〉 � 4. The mean attachment probability,
〈r〉 ≡ [

∑N
i=1 r(i)]/N , is plotted in Fig. 2(d) as a function of P .

For both N = 75 and 150 and for all values of P , we find that
〈r〉 � r , which shows that the decrease in 〈r(i)〉 for i < i∗ is
almost offset by the increase in 〈r(i)〉 for i > i∗. This is not the
case for N = 300, where 〈r〉 exhibits a steady increase with P .
The increase in 〈r〉 is due to the fact that at large forces (notice
that the applied loads are proportional to N ), the attachment
probability 〈r(i)〉 becomes a rapidly increasing function of i.
The implication of the rise in 〈r〉 is that the stall force per
motor increases to � 0.1f0 (from � 0.05f0 for N = 75 and
150).

The above results seem to indicate that for N > 75, the
variations in 〈r(i)〉 may be sufficient to disrupt muscle perfor-
mance. However, one needs to recall that the simulation results
depicted in Fig. 2 correspond to fixed values of r and f0, while
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FIG. 2. The attachment probability 〈r(i)〉 to the ith chain node, calculated for chains consisting of (a) N = 75, (b) N = 150, and
(c) N = 300 nodes. For each N , the attachment probability is plotted for various values of the load P . (d) The effective attachment probability
〈r〉 as a function of the dimensionless load per motor P/(f0N ) for N = 75 (triangles), N = 150 (squares), and N = 300 (circles).

in reality the values of these quantities vary with the shortening
velocity v. Therefore, we also performed simulations where
for each value of P , the appropriate value of v is chosen and,
accordingly, the values of r and f0 are set. This has been done
by using Eqs. (2), (3), and (5), as outlined in the Appendix.
Our results for the sarcomere simulations are summarized
in Fig. 3, which shows the position-dependent attachment
probability, 〈r(i)〉, calculated for a chain of size N = 75 and
for different loads. Similarly to the results plotted in Fig. 2(a),
the results here indicate that 〈r(i)〉 remains fairly uniform for
1 � i � N = 75. This observation is consistent with the motor
mechanochemistry, where at high and medium velocities v the
detachment of motors occurs after the completion of the power
stroke. In the mechanochemical picture, the detachment rate
can be estimated by τ−1

det ∼ v/δ, where δ is the size of the
power stroke (δ ∼ 6 nm [21]), and this rate must be the same
for all the motors. Highly polarized detachment probability
hampers the motors’ ability to cooperate and, thus, constitutes
an undesired effect. Notice that Fig. 3(a) features a small
increase in the attachment rate near the Z-line (for y > 0.2).
This, in fact, represents a “positive” effect, as it enables the
muscle to sustain a larger load. We stress that the discussion
here is relevant only for high and medium velocities where the
motors attach, execute the power stroke, and then unbind. At
very low velocities (y � 0) close to the isometric load (x � 1),
the motors may detach and reattach multiple times before the

power stroke is completed [31]. The number of attachments
per power stroke need not be the same for all the motors and,
therefore, variations in the attachment probabilities (which are
indeed observed in Fig. 3 at small values of y) can be toler-
ated in this limit without negative consequences for muscle
contractility.
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FIG. 3. The attachment probability 〈r(i)〉 to the ith chain node,
calculated for different values of the rescaled velocity y.
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V. SUMMARY

We found that the EMC effect leads to an increase in the
attachment probability (duty ratio) of motors located near
the Z-line while simultaneously decreasing the attachment
probability of the motors in the central part of the sarcomere
(M-line). The resulting variations in the attachment prob-
abilities of the motors pose a serious problem for muscle
performance because the detachment rate of the motors is
primarily determined by the size of the power stroke and the
muscle shortening velocity and, therefore, should be fairly
uniform. We used a simple bead-spring model to demonstrate
that this undesired effect can be almost neglected for half-
sarcomeres consisting of fewer than approximately 2N = 150
motors, which is precisely the “universal” size of half a
sarcomere. Recent advances in single molecule techniques
[32] have paved the way for testing our theoretical predictions
concerning the polarization of the attachment probability.
Specifically, optical tweezers provide the means to apply
pico-Newton forces against the gliding motion of the thin
filament, while the duty ratio may be directly measured using
high-resolution atomic force microscopy (AFM).
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APPENDIX: DETAILS OF THE
SARCOMERE SIMULATIONS

In the simulations depicted in Fig. 3, the values of x

(rescaled load), y (rescaled velocity), f0 (motor force), and
r (duty ratio) are different for each curve. Their values are set
by using Eqs. (2), (3), and (5), with system parameters that
are chosen to match the experimental results of Ref. [21]. For
a given value of y, the value of x is determined from Hill’s

equation (2),

y = 1 − x

1 + (5/3)x
, (A1)

while the value of f0 is set according to Eq. (5),

f0 = 6
(

1 − y

3

)
(pN). (A2)

The determination of r is slightly more complicated. The
complication arises due to the fact that the bare attachment
probability r appearing in Eqs. (3) and (4) should be replaced
with the effective attachment probability, 〈r〉, which is the
experimentally measured quantity and which is not known a
priori. Therefore, for each value of y we simulated different
values of r and, using linear interpolation, we determined the
value of r that yields the desired 〈r〉. As can be inferred from
Fig. 3, the difference between r and 〈r〉 is quite small for high
and medium velocities.

Another important comment is the following: If the excess
forces used in the calculation of the elastic energy are
expressed in units of the motor force f0, F̃i ≡ Fi/f0, then
the Boltzmann weight of a configuration with n connected
motors can be written as

w = rn(1 − r)N−n exp

(
−β∗

N−1∑
i=1

F̃ 2
i

)
, (A3)

where β∗ = f 2
0 /2kskBT . In the simulations presented in Fig. 2,

the motor force is taken as f0 = fm = 6 pN, while the spring
constant ks = 4.5 N/m. This means that at a physiological
temperature of T = 310 K, β∗ � 10−3, which is the value of
β∗ used in the simulations depicted in Fig. 2. In Fig. 3, we
use the above Eq. (A2) to evaluate f0. This means that for
each curve in Fig. 3, the dimensionless parameter β∗ has been
redefined to β∗ = 10−3(1 − y/3)2.
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