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Stochastic sensitivity analysis of the noise-induced excitability in a model of a hair bundle
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We study effect of weak noise on the dynamics of a hair bundle model near the excitability threshold and near a
subcritical Hopf bifurcation. We analyze numerically noise-induced structural changes in the probability density
and the power spectral density of the model. In particular, we show that weak noise can induce oscillations with
two distinct frequencies in both excitable and limit-cycle regimes. We then applied a recently developed technique
of stochastic sensitivity functions which allows us to estimate threshold values of noise intensity corresponding
to these transitions.
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I. INTRODUCTION

The interplay between stochasticity and nonlinearity in
dynamical systems can generate various phenomena which
are not observed in noise-free cases [1,2]. New stochastic
regimes such as noise-induced transitions [3,4], stochastic
bifurcations [5–7], stochastic resonance [8–10], noise-induced
chaos [11–13], noise-induced excitability [14,15] and intermit-
tency [16–18], and coherence resonance [19–23] are still the
subject of intensive investigations.

Even weak noise can essentially deform the dynamics of a
nonlinear system due to nonuniformity of its states in phase
space. Usually such nonuniformity is associated with the
multistability of the deterministic system. Indeed, Gaussian
noise leads to global stability of a multistable system [24];
i.e., random phase trajectories eventually surmount separatrix
barriers separating basins of the attraction of coexisting states.
However, in realistic settings the observation time is fixed or
noise is bounded [25], which naturally leads to a threshold
value of noise strength. As the noise intensity exceeds this
threshold value, phase trajectories cross a separatrix and a
new dynamical regime is established [26]. The threshold value
of noise strength is determined by both the geometry of the
basins of attraction and the sensitivity of states to random
perturbations. Indeed, multistability is not the only condition
for noise-induced changes in dynamics to occur. Excitable
systems with a single attractor, e.g., stable equilibrium,
exhibit noise-induced large-magnitude excursions [14]. For
small perturbations the deterministic excitable system quickly
relaxes back to the stable equilibrium. Once the deviation from
the equilibrium reaches a certain threshold, a large excursion
is observed. Here, the zones of different types of dynamics in
phase space are separated by some curve “pseudoseparatrix”
[27]. In such systems, weak noise causes small-amplitude
stochastic oscillations around the deterministic equilibrium.
As the noise intensity increases, the system demonstrates an
abrupt rise of the amplitude of oscillations and a change of the
dominating frequency [28,29]. Furthermore, the coherence of
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noise-induced oscillations can be maximized at an optimal
noise level via the phenomenon of coherence resonance [19].

The challenge is to calculate the threshold noise strength
at which a qualitative change in the dynamics occurs. Direct
numerical simulations of random trajectories become cumber-
some in the weak-noise limit. Therefore, asymptotic methods
and approximations are commonly used for corresponding
Fokker-Planck equations [30–32]. For example, approaches
to the asymptotic probabilistic analysis of mixed-mode oscil-
lations for slow-fast dynamical systems have been developed
in [27,33].

Recently, a method for obtaining a statistical description of
stochastic attractors has been developed. This method is based
on the quasipotential theory [34,35], and it allows calculation
of the so-called stochastic sensitivity function (SSF) [36,37]
for the probabilistic description of stochastic attractors. Using
SSF one can construct confidence domains (ellipses, bands,
etc.) that adequately reflect the main features of the spatial
arrangement of random states for small noise.

The SSF technique has been successfully applied to the
analysis of backward stochastic bifurcations [38], noise-
induced phenomena in the FitzHugh-Nagumo model [39],
and noise-induced chaotic oscillations [40]. In the present
study we extend the SSF method to the case of subcritical
Andronov-Hopf (AH) bifurcation in which a noise-free system
possesses coexisting stable equilibrium and stable limit cycle.
Recently, several works were devoted to noisy subcritical
AH bifurcation, e.g., in nonlinear optics [23] and in the
Hodgkin-Huxley neuron model [41]. Our approach provides a
statistical measure to assess directly and theoretically, i.e.,
without numerical simulations of stochastic equations, the
critical noise intensities resulting in qualitative changes of
the system’s dynamics. To be specific, we investigate noise-
induced effects in a realistic biophysical model of ciliary
bundles of sensory hair cells near a subcritical Andronov-
Hopf (AH) bifurcation and clarify a mechanism of interplay
of stochasticity and geometrical arrangement of the phase
trajectories using the SSF technique. We first introduce the
model and show noise-induced bifurcations in an excitable
regime and in a regime of coexistence of stable equilibrium
and limit cycle using direct numerical simulations. Next we
analyze the stochastic dynamics with the aid of the SSF
technique and statistical confidence domains and provide
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FIG. 1. Contour lines of the probability density function in the excitable regime for the indicated values of noise parameter ε. The parameters
are Fmax = 50.3 pN and S = 0.6212.

theoretical estimates of threshold noise intensity leading to
noise-induced bifurcations.

II. STOCHASTIC HAIR BUNDLE MODEL

We used a biophysical model developed in [42] to describe
spontaneous mechanical oscillations of hair bundles in bullfrog
saccular hair cells. Sensory hair cells are the first stage in
conveying the mechanical stimuli into the electrical signals.
The hair bundle is a bunch of 10–100 stereocilia emanating
from the apical membrane of a hair cell. A hair cell converts
deflection of the attached hair bundle into changes of the
membrane potential using the mechanically gated ion channels
on stereocilia. In the model the hair bundle is represented by a
single structure subjected to three types of force: elastic forces,
forces due to mechanoelectrical transduction ion channels, and
forces due to myosin molecular motors, resulting in adaptation
of the bundle to external forces. The state variables are the
position of the bundle tip, x, and the position of the molecular
motors, xa , along the hair hair bundle axis projected to x.
The hair bundle is subjected to random forces mimicking
thermal Brownian motion of the bundle in viscous endolymph,
stochastic cluttering of MET channels, and fluctuating forces
on molecular motors [42]. The model’s equations are

λẋ = −KGS[x−xa − DPo(x,xa)]−KSPx+ε
√

2kBλT ξ (t),

λaẋa = KGS[x − xa − DPo(x,xa)] − Fmax(1 − SPo)

+ ε
√

2kBλaTa ξa(t), (1)

where λ and λa are the effective friction coefficients for the hair
bundle and molecular motors, respectively, KGS is an effective
spring constant of gating links connecting stereocilia, KSP is
the stiffness of stereocilia pivots, and D is the gating swing of
the MET channels. In Eq. (1) Po(x,xa) is the open probability
of MET channels given by

Po(x,xa) = 1

1 + Ae−(x−xa )KGSD/(NGSkBT )
,

(2)
A = e[�G+KGSD2/(2NGS)]/(kBT ),

where NGS is the number of MET channels, kB is the
Boltzmann constant, T is the absolute temperature, and �G =

10 kBT [42]. In Eq. (1) ξ (t) and ξa(t) are uncorrelated white
Gaussian zero-mean noise terms describing fluctuating forces
on the hair bundle, ξ (t), and on the molecular motors, ξa(t). The
control parameters of the deterministic model are the calcium
feedback strength, S, and the maximal force of molecular
motors, Fmax. To study the influence of noise we introduced
another control parameter, ε, which was used to reduce the
strength of thermal noise. We note that the intensity of noise in
the model (1) is effectively reduced, e.g., in hair bundles cou-
pled by elastic springs [43–45]. The values of other parameters
used in the numerical simulations were [42,46] as follows:
λ = 2.8 μN s/m, λa = 10 μN s/m, KGS = 0.75 mN/m,
KSP = 0.6 mN/m, D = 60.9 nm, NGS = 50, T = 300 K,
and Ta = 450 K. We used a Runge-Kutta method to integrate
stochastic differential equations of the model (1) with the
fixed time step �t = 10−5 s.

III. NOISE EFFECTS NEAR THE SUBCRITICAL
ANDRONOV-HOPF BIFURCATION

In the absence of noise, ε = 0, the model demonstrates two
types of attractor: equilibrium and limit cycle. In the parameter

FIG. 2. (Color online) Power spectral density of x(t) normalized
to the variance of x for the same data as in Fig. 1. Frequencies of
small-amplitude fluctuations around the stable equilibrium and of
large-amplitude noise-induced excursions are indicated by fe and fc,
respectively.
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fe

FIG. 3. Noise effect on the excitable regime. (a) Variance of x(t),
var(x), vs noise strength, ε. (b) Contour lines of the normalized
PSD plotted for the same values of ε as in panel (a). Frequencies
of small-amplitude fluctuations around the stable equilibrium and of
large-amplitude noise-induced excursions are indicated by fe and fc,
respectively. Other parameters are the same as in Fig. 2.

plane (S, Fmax) these regimes are separated by a curve of the
Andronov-Hopf (AH) bifurcation [42,46]. In the following,
we concentrate on the parameter region close to a subcritical
AH bifurcation. In particular, we fix Fmax = 50.3 pN and
vary the parameter S. For 0.6 < S < S1 = 0.621269, the
deterministic system exhibits a stable equilibrium (x̄,x̄a) only
and is excitable. At S = S1, a stable limit cycle is born
through a saddle-node bifurcation. In the parameter range
S1 < S < S2 = 0.6223 the model is bistable, possessing a
stable equilibrium and stable limit cycle separated by a saddle
limit cycle. At S = S2 the saddle limit cycle merges with the
equilibrium through the subcritical AH bifurcation and for
S > S2 the model has an unstable equilibrium and a stable

limit cycle. In the following sections we use direct numerical
simulations to show the noise effect near the subcritical
AH bifurcation in the excitable regime (in which a stable
equilibrium is the only attractor) and in the bistable regime (in
which a stable equilibrium and a stable limit cycle coexist).

A. Excitable regime

We first analyzed the influence of weak noise on the
excitable regime for S = 0.6212 < S1. We set the integration
time to be extremely large (5 × 104 s) to observe escape
from small-amplitude fluctuations around the equilibrium to
large-amplitude excitations. For ε � 0.01 these excursions
were very rare so that the phase trajectories of the stochastic
system spent most of their time in a small region around
the equilibrium, as indicated in Fig. 1 (first two panels). For
ε � 0.015 the system showed large excursions but returned
and fluctuated around the stable equilibrium, as indicated by
the high probability around the equilibrium in Fig. 1 (third
panel).

It is instructive to analyze this behavior further with the
aid of the power spectral density (PSD) of x(t). In order to
compare the frequency content of small fluctuations and large-
amplitude excitations we normalized the PSD to the variance
of x(t). Figure 2 shows the PSDs of the model for the same
noise amplitudes as in the previous figure for the probability
densities. For ε < 0.01 the bundle fluctuated around the stable
equilibrium and its PSD shows a single peak at fe = 12.69 Hz,
corresponding to the imaginary part of the equilibrium’s
eigenvalues. In this regime the system can be viewed as a
noise-perturbed linear damped oscillator. At ε = 0.01 large
excursions began to appear; these resemble a limit cycle which
was about to be born if the parameter S were to increase. Notice
that the frequency of large-amplitude stochastic excursions,
fc = 5.61 Hz, is lower than the frequency of small fluctuations
around the equilibrium, fe, indicated by the smaller amplitude
peak in the PSD (green dashed line in Fig. 2). In this regime
the dynamics of the hair bundle was biperiodic; i.e., the PSD
contained two peaks, fe and fc. Importantly, the peak at
fe (equilibrium fluctuations) became wider, indicating that

FIG. 4. Contour lines of the probability density function in the bistable regime for the indicated values of noise parameter ε. The parameters
are Fmax = 50.3 pN and S = 0.622.
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large-amplitude excursions destroyed the coherence of small-
amplitude stochastic oscillations around the equilibrium.
Furthermore, a peak at zero frequency indicated intermittency
between small-amplitude fluctuations and large excursions.
Thus, the structure of the PSD reflects the highly nonuniform
motion of the hair bundle with long segments of fluctuations
around the equilibrium interrupted by large-amplitude
excitations. With further increase of noise large stochastic
oscillations become dominant, as the PSD peaked at fc,
while the peak at fe vanished (red dotted line in Fig. 2).
However, the zero-frequency peak indicates that the system
spent considerable time in the vicinity of the equilibrium
(compare with the probability density in the third panel
of Fig. 1).

These results are summarized in Fig. 3, which clearly
shows the existence of a critical noise strength at ε ≈ 0.01.
First, the variance of the hair bundle position, var(x), shows
two qualitatively different growth laws as the noise strength
increases [Fig. 3(a)]. For ε < 0.01 the variance grows linearly
with ε2 as for a linear system perturbed by noise. This
linear dependence is broken for larger noise, ε > 0.01, when
large-amplitude excitations become more frequent. Second,
this tendency is reflected in the PSD shown in Fig. 3(b): a linear
response to noise is characterized by a single peak in the PSD
at f = fe. Noise-induced large-amplitude excitations result
in the appearance of a lower frequency peak at f = fc and a
zero-frequency peak due to intermittency between two types
of motion. As noise continued to increase, the zero-frequency
peak became smaller while the peak at fc grew, reflecting
that the residence of phase trajectories around the equilibrium
became shorter and more power was concentrated around
fc. This last effect of enhanced oscillatory coherence due to
noise abolishing the nonuniformity of motion is indeed well
known [47].

B. Bistability of equilibrium and limit cycle

Similar numerical procedures were used for the bistability
region, S = 0.622. We took initial conditions at the stable
deterministic limit cycle. For small noise, ε < 0.003, the phase
trajectories are weakly spread near the deterministic limit

FIG. 5. (Color online) Power spectral density of x(t) normalized
to the variance of x for the same data as in Fig. 4. Frequencies of
small-amplitude fluctuations around the stable equilibrium and of
large-amplitude limit-cycle oscillations are indicated by fe and fc,
respectively.

fe 2fc

fc

FIG. 6. Noise effect on the bistable regime. (a) Variance of x(t),
var(x), vs noise strength ε. (b) Contour lines of the normalized
PSD plotted for the same values of ε as in (a). Frequencies of
small-amplitude fluctuations around the stable equilibrium and of
large-amplitude limit-cycle oscillations are indicated by fe and fc,
respectively. Other parameters are the same as in Fig. 4.

cycle, as shown in Fig. 4 (left panel). The integration time of
5 × 103 s was not long enough for the system to surmount
a barrier set by the unstable limit cycle separating stable
attractors in phase space. However, a small increase of noise
intensity resulted in escape to the basin of attraction of stable
equilibrium. The integration time of 5 × 103 s was not long
enough for the system to escape back to the limit cycle. As a
result, the probability density peaked at the stable equilibrium,
as Fig. 4 (middle panel) indicates. Further increase of noise
results in hopping between the equilibrium and the limit cycle
shown in Fig. 4 (right panel).

The PSD shown in Fig. 5 reflects this transition. For
ε < 0.003 the PSD shows sharp peaks at the fundamental
frequency of the limit cycle, fc, and its higher harmonics (blue
thin solid line in Fig. 5). After noise-induced escape to the
equilibrium, ε ≈ 0.004, the PSD peaked at a higher frequency
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FIG. 7. Eigenvalues μ1 and μ2 of the stochastic sensitivity matrix
for the stable equilibrium vs the parameter S.
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FIG. 8. (Color online) Phase portrait of the deterministic system and confidence ellipses. The deterministic phase trajectory is shown by
the black thin line. The pseudoseparatrix is shown by the red thick line. Panel (b), an expansion of (a), also shows confidence ellipses (blue
dashed lines) for ε = 0.008 (small) and ε = 0.015 (large) and for the fiducial probability p = 0.999. Other parameters are Fmax = 50.3 pN and
S = 0.6212.

fe, corresponding to noise-sustained small-amplitude
oscillations around the equilibrium (green dashed line in
Fig. 5). The peak frequency, fe, and the width of the peak were
mainly determined by the eigenvalues of the equilibrium. With
further increase of noise the phase trajectories began hopping
between the two attractors, expressing their fundamental
frequencies in the PSD (red dotted line in Fig. 5). Note again
a peak at zero frequency due to hopping dynamics. Finally,
Fig. 6 summarizes the effect of noise on the bistable regime
near the subcritical AH bifurcation. The variance of limit-cycle
oscillations depended weakly on the noise intensity until ε

reached its critical values at approximately 0.004 [Fig. 6(a)].
The phase trajectories residing in the basin of attraction of the
stable equilibrium were characterized by a small variance and
a wide peak at f = fc in the PSD [Fig. 6(b)]. For ε > 0.005 the
dynamics was intermittent with phase trajectories residing in
both attractors and performing rare transitions between them.

IV. ANALYSIS OF NOISE EFFECTS USING THE
STOCHASTIC SENSITIVITY FUNCTION

In this section we use the stochastic sensitivity function
technique to calculate the confidence domains for random
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FIG. 9. (Color online) The distance between confidence ellipses
and the pseudoseparatrix for p = 0.99 (red line with squares) and
p = 0.999 (blue line with circles).

trajectories to remain in a certain region in phase space and
to estimate the threshold noise intensity for noise-induced
bifurcations described in the previous section. Random phase
trajectories remain within these domains with a prescribed
fiducial probability. We stress again that the SSF tech-
nique does not require numerical simulation of stochastic
trajectories. Instead it relies on stochastic sensitivity of a
system to small random perturbations. The last property is
quantified by the SSF function (see the Appendix). The
construction of the confidence domain allows us to set up
a straightforward criterion for the threshold noise intensity: an
intersection of the confidence domains with a separatrix of the
deterministic system provides the condition for noise-induced
bifurcation.

A. SSF analysis of excitability

We start with the excitable regime where a stable equi-
librium is the only attractor. Under random disturbances
the trajectories of the system (1) leave the deterministic
equilibrium and form a stochastic cloud around it. For small
noise the dispersion of this cloud increases as the parameter S

tends to the bifurcation value S2. This expansion is explained
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FIG. 10. (Color online) Stochastic sensitivity function m(t) of
limit cycles for the indicated values of S.
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by the unlimited growth of the stochastic sensitivity toward the
bifurcation point. The stochastic cloud around the equilibrium
is then characterized by the confidence ellipse, Eq. (A4). The
size of the confidence ellipse was determined by the noise
strength (ε) and by the inherent dynamics, characterized by
the eigenvalues of the stochastic sensitivity matrix, μ1 and
μ2, shown in Fig. 7. Figure 8(a) shows the phase portrait of
the deterministic system (1) along with a pseudoseparatrix
dividing the zones of large-amplitude and small-amplitude
trajectories in phase space. Here, the pseudoseparatrix is a
particular phase curve geometrically delimiting these zones.
The main results will not depend on the detailed choice of

this phase curve. A similar approach to calculation of the
pseudoseparatrix is discussed in [27].

In Fig. 8(b), an enlarged fragment of the phase portrait
along with confidence ellipses is plotted. For small noise
intensity ε = 0.008, the confidence ellipse is localized near
the stable equilibrium in the subthreshold zone. In this case,
the random trajectories oscillate with a small amplitude
near the equilibrium (compare with the probability density
function of Fig. 1, left panel). As the noise intensity increases,
the confidence ellipses expands across the pseudoseparatrix
and begins to occupy the suprathreshold zone [e.g., large
ellipse in Fig. 8(b) for ε = 0.015]. This means that random
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FIG. 11. (Color online) (a) Phase portrait for S = 0.622 with the stable limit cycle (black thin solid line), unstable cycle (red thick solid
line), and stable equilibrium (asterisk). Confidence bands (dashed lines) for the fiducial probability p = 0.999 are shown for three noise
intensities: (b) ε = 0.002 (green), (c) ε = 0.004 (blue), and (d) ε = 0.008 (brown).
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trajectories of the forced system can exceed the boundary set
by the pseudoseparatrix and proceed to large excursions with
a high probability (see Fig. 1, middle and right panels). Figure
9 shows the distance d between confidence ellipses and the
pseudoseparatrix versus noise intensity ε. The condition d = 0
marks the intersection of the ellipse with the pseudoseparatrix
and thus sets up the threshold value of noise for the onset
of large-amplitude excitations. The value ε = 0.015 is in
agreement with the results obtained by direct numerical
simulation (Fig. 3).

B. SSF analysis of bistability

Further we considered the parameter range S1 < S < S2

where the deterministic system (1) possesses a coexisting
stable equilibrium and stable limit cycle. The basins of
attraction of these stable states are separated by an unstable
limit cycle. In the case of bistability the SSF analysis provides
confidence domains for both attractors. The confidence domain
for a stable limit cycle in two-dimensional (2D) phase space is
represented by a confidence band whose size was determined
by the stochastic sensitivity function m(t) calculated along
the limit cycle [Eq. (A5) in the Appendix]. Correspondingly,
the confidence domain for the stable equilibrium is given by the
ellipse as described in the previous section. Figure 10 shows
the SSF, m(t), for the stable limit cycle. The SSF is highly
nonuniform along the limit cycle, elucidating parts of the peri-
odic trajectory most susceptible to random perturbations. The
maximum value of the SSF grows unlimitedly as the parameter
S approaches the AH bifurcation value of S1 = 0.621269.

Figure 11 shows mutual arrangements of coexisting attrac-
tors and corresponding confidence domains. For small noise,
ε = 0.002, these domains (green dashed lines) do not cross the
separatrix formed by the unstable limit cycle (red thick line)
[see Fig. 11(b)]. In effect, random trajectories show small
deviations from stable attractors (see, e.g., Fig. 4, left panel).
So, the confidence domains adequately reflect the separation
of corresponding random trajectories. For intermediate noise,
ε = 0.004, the confidence band of the stable limit cycle (blue
dashed line) crosses the separatrix while the confidence ellipse
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FIG. 12. (Color online) Minimal distance between the separatrix
formed by the unstable cycle and confidence domains for p =
0.999 and S = 0.622: confidence ellipse of the stable equilibrium
(blue line with circles); confidence band of the stable limit cycle (red
line with squares).

of the stable equilibrium remains in its basin of the attraction
[Fig. 11(c)]. This means that random trajectories start near
the stable limit cycle, cross the separatrix, and remain near
the equilibrium with high probability (Fig. 4, middle panel).
Finally, for larger noise, ε = 0.008, both the confidence band
of the stable limit cycle and the confidence ellipse of the
equilibrium intersect the separatrix [Fig. 11(d)], resulting in
frequent random hopping of phase trajectories between two
basins of the attraction (Fig. 4, right panel).

To determine critical values of noise strength we again
calculated the minimal distance, d(ε), between the separatrix
(unstable cycle) and confidence domains as functions of
noise intensity ε, shown in Fig. 12. In agreement with direct
numerical simulations (Fig. 6) the SSF method results in two
critical noise values. The confidence band of the stable limit
cycle touches the separatrix for ε ≈ 0.004, indicating the first
critical noise intensity. The confidence ellipse exceeds the
separatrix for ε ≈ 0.008, corresponding to the second critical
noise intensity.

V. CONCLUSION

We applied an asymptotic method using the stochastic
sensitivity function to study noise-induced effects near a
subcritical Andronov-Hopf bifurcation in a biophysical model
of a hair bundle. We considered the weak-noise limit, which
distinguishes our study from other works on the so-called
coherence resonance [19] in which noise was not weak as,
e.g., in [23,47]. We have shown an interesting effect of
noise-induced bifurcations in the regime of bistability of stable
equilibrium and limit cycles. In the hair bundle model this
resulted in stochastic oscillations with three distinct time
scales: fast small-amplitude oscillations around the stable
equilibrium, large-amplitude oscillations associated with the
stable limit cycle, and slow noise-induced switching between
those two oscillatory states. The last two regimes correspond
to significant changes of the open probability of mechanoelec-
trical transduction ion channels and result in significant varia-
tions of the transduction current. Interestingly, the coherence
of oscillations drops abruptly at the critical noise intensity,
demonstrating a sort of coherence antiresonance, as Fig. 6
indicates. Such noise-induced transitions are hard to detect
and characterize using direct numerical simulations without
prior knowledge of the sensitivity of attractors to random
perturbations. In the model these effects were observed for a
rather weak noise, i.e., about two to three orders of magnitude
smaller than realistic thermal noise in a single hair bundle [42].
We note, however, that noise is effectively reduced for coupled
hair bundles [43–45]. In particular, for strong coupling the
noise strength ε scales with the number of bundles, N , as
ε = 1/N2 [44], which makes it possible to observe multimodal
oscillations in an experiment with N = 10–100 coupled
hair bundles operating near subcritical AH bifurcation. We
demonstrated how the stochastic sensitivity function method
is used to understand the stochastic dynamics and to predict
the critical noise intensity at which noise-induced transitions
are most likely to occur. An obvious advantage of this method
is that it does not rely on simulations of random trajectories,
while it is indeed limited to weak noise perturbation. We stress
that the SSF method is readily applicable to higher dimensional
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models with multiplicative noise. For example, the stochastic
Hodgkin-Huxley model with ion channel noise [41] can be
studied with the SSF method, provided a large number of ion
channels are present in a patch.
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APPENDIX: STOCHASTIC SENSITIVITY AND
CONFIDENCE DOMAINS

Consider a general nonlinear deterministic system

ẋ = f (x). (A1)

Here, x is an n vector, and f (x) is an n vector function.
It is supposed that the system (A1) has an exponentially
stable attractor. For analysis of the effects of random external
disturbances, we use a correspondent system of stochastic
differential equations:

ẋ = f (x) + εσ (x)ẇ. (A2)

Here, w(t) is an n-dimensional Wiener process and σ (x) is an
n × n matrix-valued function of the disturbances with intensity
ε.

Random trajectories of the forced system (A2) leave a
deterministic attractor and form a corresponding stochastic
attractor with stationary probability distribution ρ(x,ε), which
is a stationary solution of the corresponding Fokker-Planck
equation. In general, such a solution is hard or impossible to ob-
tain. For weak-noise, asymptotics based on the quasipotential
v(x) = − limε→0 ε2 log ρ(x,ε) are commonly used [34,35].
For small noise, one can write an approximation of ρ(x,ε)
as follows:

ρ(x,ε) ≈ K exp

(
−v(x)

ε2

)
.

At first, we consider stochastically forced equilibria. Let the
system (A1) have an exponentially stable equilibrium x̄. Under
random disturbances stochastic states of the forced system
(A2) concentrate around x̄ and form a corresponding stochastic
equilibrium with the stationary probabilistic distribution.
In this case, the following quadratic approximation of the
quasipotential v(x) ≈ 1

2 [x − x̄,V (x − x̄)] is known. Here V

is a positive definite n × n matrix. It allows an asymptotic of
the stationary distribution in the Gaussian form

ρ(x,ε) ≈ K exp

(
− [x − x̄,W−1(x − x̄)]

2ε2

)

with the covariance matrix ε2W , where W = V −1. For the
exponentially stable equilibrium x̄, the matrix W is a unique
solution of the matrix equation

FW + WF� = −Q, F = ∂f

∂x
(x̄),

(A3)
Q = GG�, G = σ (x̄).

The matrix W is a stochastic sensitivity function of the
equilibrium x̄. This matrix characterizes a spatial arrangement

and size of the stationary distributed random states of the
stochastic system (A2) around the deterministic equilibrium
x̄. Using this matrix, one can construct confidence domains
for the geometrical description of the stochastic attractors.

For the 2D case, a confidence ellipse can be given by the
following equation:

(x − x̄,W−1(x − x̄)) = 2k2ε2, (A4)

where ε is the noise intensity, k2 = −ln(1 − p), and p is the
fiducial probability. Let μ1,μ2 be eigenvalues and u1,u2 be
normalized eigenvectors of the stochastic sensitivity matrix
W . For the coordinates z1 = (x − x̄,u1),z2 = (x − x̄,u2), the
equation of the confidence ellipse can be written in standard
form as

z2
1

μ1
+ z2

2

μ2
= 2k2ε2.

Now consider a case when the system (A1) has an ex-
ponentially stable limit cycle corresponding to the T -periodic
solution x = ξ (t). Let 	t be a hyperplane orthogonal to the cy-
cle at the point ξ (t) (0 � t < T ). In this case, for the Poincaré
section 	t in the neighborhood of the point ξ (t) the quadratic
approximation of the quasipotential is the following: v(x) ≈
1
2 {x − ξ (t),W+(t)[x − ξ (t)]}. The corresponding Gaussian
approximation of the stationary probabilistic distribution can
be written as

ρt (x,ε) ≈ K exp

(
− [x − ξ (t)]�W+(t)[x − ξ (t)]

2ε2

)
.

Here the stochastic sensitivity matrix W (t) of the cycle is a
unique solution [37] of the Lyapunov equation

Ẇ = F (t)W + WF�(t) + P (t)Q(t)P (t)

with conditions

W (0) = W (T ), W (t)r(t) ≡ 0,

where F (t) = ∂f

∂x
[ξ (t)], Q(t) = σ (ξ (t))σ�(ξ (t)), r(t) =

f (ξ (t)), and P (t) is a matrix of the orthogonal projection
onto the hyperplane 	t .

For the case n = 2, the stochastic sensitivity matrix W (t)
can be written as W (t) = m(t)P (t). Here, m(t) > 0 is a
T -periodic scalar stochastic sensitivity function satisfying the
following boundary problem [36]:

ṁ = a(t)m + b(t), m(0) = m(T ) (A5)

with T -periodic coefficients

a(t) = u�(t)[F�(t) + F (t)]u(t), b(t) = u�(t)S(t)u(t),

where u(t) is a normalized vector orthogonal to f (ξ (t)). The
explicit solution m(t) of the problem (A5) is given by

m(t) = g(t)[c + h(t)],

where

g(t) = exp

(∫ t

0
a(s)ds

)
, h(t) =

∫ t

0

b(s)

g(s)
ds,

c = g(T )h(T )

1 − g(T )
.

The value M = max m(t), t ∈ [0,T ], plays an important
role in the analysis of stochastic dynamics near the limit cycle.
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We shall consider M as a stochastic sensitivity factor of the
cycle.

The stochastic sensitivity function m(t) allows us to
construct a confidence band around the deterministic cycle.
For the line 	t that is orthogonal to the cycle at the point ξ (t),
the corresponding confidence interval is given by the following
equation:

[x − ξ (t)]2 = 2k2ε2m(t).

Hence, the boundaries x1,2(t) of the confidence band can be
written in the explicit parametrical form

x1,2(t) = ξ (t) ± kε
√

2m(t)u(t). (A6)

Here the parameter k is connected with the fiducial probability
p by the formula k = erf−1(p), where erf(x) = 2√

π

∫ x

0 e−t2
dt

is the error function.
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