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Slow closure of denaturation bubbles in DNA: Twist matters
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The closure of long equilibrated denaturation bubbles in DNA is studied using Brownian dynamics simulations.
A minimal mesoscopic model is used where the double helix is made of two interacting bead-spring freely rotating
strands, with a nonzero torsional modulus in the duplex state, κφ = 200 to 300 kBT . For DNAs of lengths N = 40
to 100 base pairs (bps) with a large initial bubble in their middle, long closure times of 0.1 to 100 μs are found.
The bubble starts winding from both ends until it reaches a ≈ 10 bp metastable state due to the large elastic
energy stored in the bubble. The final closure is limited by three competing mechanisms depending on κφ and N :
arms diffusion until their alignment, bubble diffusion along the DNA until one end is reached, or local Kramers
process (crossing over a torsional energy barrier). For clamped ends or long DNAs, the closure occurs via this
last temperature-activated mechanism, yielding a good quantitative agreement with the experiments.
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I. INTRODUCTION

Since the discovery of the double helical DNA structure by
Watson and Crick in 1953 [1], many studies have highlighted
the role played by local DNA winding or unwinding in
important biological processes, such as DNA replication,
transcription, or repair [2]. Biophysical experiments using
single-molecule techniques [3] have shown that applying an
external torque to DNA induces the formation of plectoneme
or other structural changes [4]. Among them, the nucleation of
a DNA denaturation bubble, a segment of several consecutive
broken base pairs (bp), has been observed [5] and theoretically
predicted [6–10] when a superhelical stress is imposed.

In this paper, we focus on the role played by DNA
torsional elasticity and twist dynamics in the spontaneous
closure of equilibrated large denaturation bubbles at room
temperature. At first sight, once the bubble has been nucleated,
for instance, in vivo by the help of enzymes, it should close
almost instantaneously since the temperature is smaller than
the denaturation one. However, very large bubble lifetimes, in
the 20–100 μs range for a 30-bps DNA, have been observed
in in vitro experiments by Altan-Bonnet et al. [11]. These
lifetimes are interpreted as closure times of the central bubble
made of 18 adenosine and thymine (AT) nucleotides, flanked
by two guanine and cytosine (GC) arms, known to be more
stable.

Several models [12–15] have studied the bubble breathing,
i.e., intermittent and fast opening and closure of small bubbles,
by considering an effective dynamics of the base-pairing states
without focusing on the chain degrees of freedom. For instance,
the Peyrard-Bishop model [16] has been extended to consider
twist degrees of freedom [17–19]. This model suffers two
strong approximations: (i) the helical axis is kept straight,
i.e., both the bending and the chain orientational entropy are
neglected and (ii) local breathing bubbles (or “breathers”)
emerge as localized excitations of a nonlinear wave equation
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which comes from a Hamiltonian dynamics with inertia [20].
However, since the dynamics of DNA in water is overdamped,
these excitations have a lifetime of a few picoseconds [21,22].
These approaches are thus only valid at a short time scale, such
that the chain configuration can be considered as frozen, and
cannot explain such large lifetimes as considered here.

Other numerical works focus on the chain and internal dy-
namics with various levels of coarse-graining, using molecular
dynamics [23–26] or Langevin dynamics simulations [27–30].
However, they failed to capture the μs time scale time due
to their high level of precision, or they are limited to short
30-bp-long DNA [31]. In a recent paper [32], we have proposed
a simple coarse-grained model where two semi-flexible strands
interact and form a planar “ladder” in the double-stranded
(ds) DNA form (without helicity). The coupling between
base-pairing and bending elasticity was introduced through
a varying persistence length equal to �ds = 150 bp for dsDNA,
and �ss = 3 bp for single-stranded (ss) DNA [33]. Closure
times of 0.1μs to 4μs, following a scaling law of τ ≈ N2.4,
where N is the DNA length, were found, but still much smaller
than the experimental closure lifetimes.

In this paper, we improve this numerical model so that the
two strands interwind to form a double helix in the dsDNA
state. The torsional modulus κφ is chosen between 200 and
300kBT in the dsDNA state (corresponding to torsional rigidity
around 2.4 to 4.5 × 10−19 J nm [3,6,34]) and taken to vanish
in the bubble. We show that twist dynamics plays a key role
in the closure of equilibrated large bubbles, which occurs in
two steps. First, the large flexible bubble quickly winds from
both ends (zipping regime), thus storing bending and torsional
energy in the bubble, which stops when it reaches a size of
≈10 bps. The closure of this metastable bubble depends on κφ

and N : for low κφ , an arms diffusion limited (ADL) regime is
observed, as in the previous ladder model, where the closure
is controlled by the diffusive alignment of the two ds arms;
for large κφ and not too large N , the bubble diffuses along
the DNA and closes as soon as it reaches one DNA end
[bubble diffusion limited (BDL) closure], with a closure time in
τ ≈ N2.3 for 40 � N � 100. For large κφ and N or clamped
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FIG. 1. (Color online) Snapshot of an equilibrated double helix.
The bending angle along each strand is θ0, ρ0 is the equilibrium
base-pair distance, and n̂ is the helical axis around which twist is
defined. The imposed equilibrium twist between successive pairs
is φ0.

ends, the closure is temperature activated (TA), which now
accounts for the experimental observations [11].

II. MODEL

The DNA is modeled by two interacting bead-spring chains
each made of N beads (of radius 0.17 nm) of position ri . The
Hamiltonian isH = H(1)

el + H(2)
el + Htor + Hint, where the first

two contributions are elastic energies of the strands j = 1,2
which include both stretching and bending energies

H(j )
el =

N−1∑
i=0

κs

2
(ri,i+1 − a0)2 +

N−1∑
i=0

κθ

2
(θi − θ0)2. (1)

The stretching modulus is βκs = 100, where β−1 = kBT0 is
the thermal energy, T0 = 300 K is room temperature, and
a0 = 0.357 nm. The bending modulus is large, βκθ = 600,
to maintain the angle between two consecutive tangent vectors
along each strand θi to the fixed value θ0 = 0.41 rad (see
Fig. 1). Each strand is thus modeled as a freely rotating chain
(FRC) [35]. The third and fourth terms of H are the torsional
energy and hydrogen-bonding interactions, respectively. The
torsional energy is modeled by a harmonic potential

Htor =
N−1∑
i=1

κφ,i

2
(φi − φ0)2, (2)

where φi is defined as the angle between two consecutive base-
pair vectors ρi ≡ r(1)

i − r(2)
i and ρi+1 (φ0 = 0.62 rad). The

stacking interaction between base pairs is modeled through
a κφ,i that depends on the distances between complemen-
tary bases, κφ,i = κφ[1 − f (ρi)f (ρi+1)] where f (ρi) = [1 +
erf( ρi−ρb

λ′ )]/2, and ρi = |ρi |. Hence, κφ,i = κφ in the dsDNA
state and κφ,i = 0 in the ssDNA one. We have chosen λ′ = 0.15
nm and ρb = 1.5 nm and checked that a slight change in
these values does not significantly change the results. The
hydrogen-bonding interaction is modeled by a Morse potential

Hint =
N∑

i=1

A
(
e−2 ρi−ρ0

λ − 2e− ρi−ρ0
λ

)
, (3)

where ρ0 = 1 nm, λ = 0.2 nm, and βA = 8 as in Ref. [32].

The evolution of ri(t) is governed by the overdamped
Langevin equation, integrated using a Euler’s scheme,

ζ
dri

dt
= −∇ri

H({rj }) + ξ i(t), (4)

where ζ = 3πηa is the friction coefficient for each bead
of diameter a with η = 10−3 Pa.s the water viscosity. The
random force of zero mean ξ i(t) mimics the action of the
thermal heat bath and obeys the fluctuation-dissipation relation
〈ξ i(t) · ξ j (t ′)〉 = 6kBT ζ δij δ(t − t ′). Lengths and energies are
made dimensionless in the units of a = 0.34 nm and kBT0, re-
spectively. The dimensionless time step is δτ = δtkBT0/(a2ζ ),
set to 5 × 10−4 (δt = 0.045 ps) for sufficient accuracy [32].
The equilibrium properties of this model DNA are described
in Appendix A. As an example, a typical equilibrium config-
uration of a 30-bp dsDNA is shown in Fig. 1. In particular,
the fitted values for the dsDNA persistence length and the
pitch are �ds ≈ 160 bp and p = 12 bp for βκφ = 300, which
are comparable to the actual dsDNA values (�ds ≈ 150 bp
and p = 10.4 bp). The ssDNA persistence length is �ss =
3.7 nm, compatible with experimental measurements [36] (see
Appendix A). The initial bubble, of size L(t = 0) = N − 20,
is created in the middle of the DNA by switching off Hint

and then equilibrated for 3 μs. At t = 0 the Morse potential is
switched on in the bubble and the dynamics is followed until
the bubble closes. The cutoff value ρ∗ of the interbase distance
ρ defining closed (for ρ < ρ∗) and open (for ρ > ρ∗) states is
fixed to 1.19 nm. Output values are then calculated every 1 ns,
and samples are made of about 200 runs. The error bars are
standard errors.

III. BUBBLE CLOSURE DYNAMICS

In Figs. 2(a) and 2(b) are shown typical evolutions of the
bubble size L(t)/L(0), for βκφ = 200 [Fig. 2(a)] and 300
[Fig. 2(b)]. Two other geometric quantities related to the
bending and twist stored in the bubble are shown: the scalar
product n̂i · n̂e, where n̂i and n̂e are the tangent vectors of both
dsDNA arms (see snapshot in Fig. 4), and the mean twist angle
per base pair inside the bubble

�φ(t) = 1

L(t)

i0+L(t)−1∑
i=i0

φi(t), (5)

where i0 is the bubble first monomer.
Two regimes can be clearly distinguished for any L(0) and

κφ : First a zipping regime, where L(t)/L(0) decreases rapidly
until it reaches a second metastable regime characterized by
a stationary L(t) = L̄ ≈ 10 bp. In the simulations, we defined
the onset of the metastable regime as the first time t such
that L(t) = 11 bp. In the fast zipping regime, the initially
flexible bubble closes due to the attraction between the two
strands induced by the Morse potential. One example of the
zipping dynamics is shown in Fig. 3(a). The bubble size
decays exponentially with a relaxation time on the order of
100 ns [102 and 208 ns for N = 70 and 100, respectively,
see Fig. 3(a)]. Indeed, during zipping, the two arms rotate in
opposite directions to increase the twist of the whole chain
and thus close base pairs with an angular velocity ω 	 T /ζ0
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FIG. 2. (Color online) Time evolution of the adimensional bubble size L(t)/L(0), the scalar product between the two dsDNA arms axes,
n̂i · n̂e, and the average twist angle per bp, �φ, in the bubble for N = 60 and (a) βκφ = 200; (b) βκφ = 300. (c) Profile of the twist angles in
the dsDNA just before (◦) and just after the onset of the metastable regime (�), marked by arrows in (b) (φeq = 0.52 rad).

where T 	 2Aφeq 	 4kBT rad is the driving torque and ζ0 	
2πηρ2

0� 	 5kBT ns is the rotational friction coefficient of the
arms (� is the arm initial length). We thus find ω 	 1 rad/ns
which induces zipping velocities v 	 pω/2π 	 2 bp/ns. This
rough argument yields a consistent value with the zipping
velocities measured in Fig. 3(a) at short times. By defining
the zipping time τzip by L(τzip) = P ≡ 3

5 [L(0) − L̄], Fig. 3(b)
shows scaling laws τzip ≈ P γ with 1.4 � γ � 1.5, as already
observed with the ladder model [32]. Zipping occurs whatever
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FIG. 3. (Color online) (a) Semilog plot of the bubble size
L(t)/L(0) vs. time for βκφ = 300, N = 70 (◦), and N = 100 (�). The
solid lines are exponential fits. (b) Total zipping time as a function
of P yielding an exponent of between 1.39 (for βκφ = 200), 1.49
(βκφ = 250), and 1.51 (βκφ = 300).

the initial configuration, whether the two arms are aligned or
not.

The onset of the metastable bubble comes from the high
three-dimensional (3D) curvature of the two single strands
inside the bubble when its size reaches the ssDNA persistence
length L̄ ≈ �ss. The two bubble single strands are quite stiff
at this scale. Either the arms are not aligned at the end of
zipping and the elastic energy is both of bending and torsional
nature, or they are aligned and it is only of torsional nature. The
nonzero twist at the onset of the metastable state (�φ ≈ 0.2
to 0.3 rad) is created by the fast out-of-equilibrium dynamical
closure of the bubble. This is illustrated in Fig. 2(c) showing
the profile of the twist angle along the DNA just before
(◦) and just after the onset of the metastable regime (�)
for the simulation run shown in Fig. 2(b). It clearly shows
that the zipping stops as soon as the two domain walls, of
approximately 5-bps width, “collide,” increasing the twist
angle value, and thus the twist energy, in the bubble center.
In brief, the zipping carries on as long as the elastic energy
in the middle of the bubble is negligible. We have checked that
the nonzero twist profile in the metastable state results from
the purely elastic properties of ssDNA (Appendix B).

Depending on the value of κφ , the torsional contribution
of the elastic energy will be an energy barrier or not. Indeed,
the closure mechanism, and therefore the dwell time in the
metastable state, vary with κφ . For βκφ = 200 [Fig. 2(a)],
�φ(t) increases smoothly until the bubble closes, whereas
n̂i · n̂e increases from a negative value to a positive one in
the metastable state. The bubble closure is thus controlled by
the alignment of the two stiff arms since closure occurs as
soon as n̂i · n̂e 	 1 (ADL closure). This behavior has already
been observed in the DNA ladder model [32] where no twist
was present (κφ = 0). The final closure was controlled by the
rotational diffusion of one arm with respect to the other one: the
metastable dwell time scaled with the DNA mean arm length,
M , as τADL

met ∼ Mα with 2 < α < 2.4, and saturated at ηβ�3
ds

for M > �ds. We observe the same behavior for the helical
DNA model with βκφ = 200, suggesting that, for this value,
the twist does not play a significant role. As shown in Fig. 6,
we obtain τADL

met ∼ N2.23 for βκφ = 200 (fitted solid line). The
corresponding melting map, shown in Fig. 4, illustrates that the
bubble does not have sufficient time to diffuse far away from
its initial position (the bubble diffusion coefficient along the
DNA is D 	 1 bp2/ns). For βκφ = 300 [Fig. 2(b)], however,
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FIG. 4. (Color online) Evolution maps (open base pairs are in black) for N = 60, βκφ = 200 (left), and βκφ = 300 (middle). Three
snapshots of the DNA are shown: during zipping (bottom), in the metastable state (middle), and just before BDL closure (top).

the arms are almost aligned during the whole metastable state
(but not necessarily during zipping). Moreover, the activation
barrier to continue zipping being too high [see Eq. (6) below],
the fastest way to close is for the bubble to diffuse along
the DNA until it reaches one end (Fig. 4). This end opens
to relax the torsion inside the bubble thus allowing a quick
closure.1 This BDL closure time is thus controlled by the one-
dimensional diffusion along the DNA. We define precisely the
arm alignment time by the condition that n̂i · n̂e = 0.9. Figure 5
shows the mean-squared displacement of the bubble center as
a function of time for βκφ = 300. The bubble dynamics is
purely diffusive, with a diffusion coefficient D 	 0.85 bp2/ns,
almost independent of the DNA length. The final closure
is limited by the diffusion of the bubble towards one DNA
end, leading to a dwell time in the metastable time, τBDL

met ≈
(N/2)2/(2D) ≈ 0.15 N2 ns. Note that for βκφ = 200, in 25%
of the simulation runs (50 over 200) the bubble also closes
using this mechanism (see Appendix C). The BDL regime
starts to dominate for βκφ > 230. Metastable dwell times τBDL

met
and closure times, defined as the first time when the bubble
closes completely τBDL

cl , are plotted in Fig. 6 as a function of
the DNA length N for βκφ = 300. The fit yields the scaling
law τmet ≈ 0.06 N2.3 which thus confirms the rough argument
above (the prefactor changes due to a slightly different
exponent). The total closure time follows the same scaling law
τBDL

cl ∼ N2.3. We checked that, for βκφ = 250, the exponent
remains the same whereas the prefactor increases slightly
to 0.075.

A third type of closure exists: Some trajectories show a
closure long after arms alignment but before the bubble reaches
one end [Fig. 7(a)]. This is a temperature activated (TA)
closure, associated with the crossing of an activation energy
barrier. Its torsional contribution, due to nonzero twist in the
bubble, is

Etor = 1

2

i0+L̄−1∑
i=i0

(κφ − κφ,i)(φi − φeq)2. (6)

Indeed, due to the connectivity of each DNA strand, all the
base pairs of such a small bubble can only close cooperatively.

1The second arm is ill-defined at this point, thus explaining the
sudden variation of n̂i · n̂e just before closure in Fig. 2(b).

To check this mechanism, we did simulations with clamped
ends, which allowed us to avoid the BDL mechanism, and
sufficiently large κφ , to lower the ADL one. We clamped 10
bps on both DNA extremities (with a Morse potential depth of
3A/2) to represent either long or heteropolymer DNAs with
GC rich sequences on each side, as in experiments [11]. For
N = 50 and βκφ = 300, out of 20 realizations, 12 of them
did not close before 100 μs and 8 of them closed in 52 μs
on average. The bubble diffuses back and forth between the
clamped arms several times and eventually closes. Figure 7(b)
clearly shows that the dwell time in this regime, i.e., the time
actually spent by the bubble in the metastable state once the
arms are aligned, follows an Arrhenius law

τTA
met = τ0 exp(Ea/kBT ), (7)

where τ0 is a prefactor almost independent of N , and the
measured activation energy is βEa 	 0.10βκφ − 17.6 [inset
of Fig. 7(b)]. By computing Etor using Eq. (6), we find
a comparable slope of 0.18. For βκφ � 200, the activation
energy starts to saturate since we enter the ADL regime.
Hence, from these simulations, it is clear that clamped DNAs,
mimicking heteropolymer or long DNAs, take a long time to
close, from tens to hundreds of μs. This is in quantitative
agreement with the experimental results of Altan-Bonnet
et al. [11] where an Arrhenius law was measured with
Ea = 7 kcal/mol ≈ 11kBT0 for N = 30. Indeed extrapolating
the inset of Fig. 7(b) to this value yields a torsional modulus
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FIG. 5. (Color online) Mean-squared displacement (in units of
bp2) in the metastable regime of the bubble along the DNA vs. time
for βκφ = 300 and various N .
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κφ = 280kBT0 (C = 3.7 × 10−19 J nm), a value consistent
with observations [3,34,37]. Furthermore, the same activation
energy value was measured by the authors of Ref. [11] for
three different DNA constructs with an AT insert made of
(i) a random sequence, (ii) a A track with its complementary T
track, and (iii) a palindrome susceptible to form a cruciform.
This is consistent with the scenario of a unique limiting step,
which we show to be the formation of the 10-bps metastable
bubble.
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FIG. 8. (Color online) (a) “Phase diagram” of the three mecha-
nisms of the bubble closure for a DNA with free ends (• corresponds
to τADL

met or τBDL
met = τTA

met; � and � to simulations, see Appendix C).
For clamped (e.g., GC rich) ends, the BDL region is replaced by a
TA one. (b) Sketch defining the three dwell times, τADL

met , τBDL
met , and

τTA
met together with the zipping time τzip and the closure time τcl, and

corresponding snapshots.

IV. DISCUSSION

We performed several simulations for various N and κφ ,
and constructed a “phase diagram,” shown in Fig. 8(a),
representing the occurrence of the three closure regimes in the
(N,κφ) plane. The methodology used to construct this diagram
is described in Appendix C. The definition of the various times
contributing to the final closure time τcl are sketched in Fig. 8
with corresponding snapshots. For all the cases studied, the
closure time τzip is much smaller than the dwell time in the
metastable state τmet. In particular, as soon as the initial bubble
size L(0) is larger than L̄ (and equilibrated), we expect
the closure time to be essentially independent of L(0).

The frontiers of the different regions (ADL, BDL, and TA)
should be viewed as fuzzy since the diagram is established
by comparing the metastable dwell times in each regime,
τADL

met , τBDL
met , and τTA

met, which are the mean values of wide
time distributions as shown in Fig. 7(a). In the case of clamped
(e.g., GC rich [11]) ends, the BDL region merges into a TA one.
For realistic DNA, one can assume βκφ � 200 [3,6,34], which
implies that only the BDL mechanism, for short DNAs, and the
TA one, for long DNAs, might be observable. Furthermore, by
extrapolating our results to very large N , both DNA with free
ends and with clamped ends would have a bubble closure time
which does not depend on N any more but is controlled by
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the local torsion, which provides a coherent picture of bubble
closure for long DNAs inside the nucleus.

A natural generalization of the model will be to consider
the bubble sequence in the modeling, for instance, by adjusting
the parameter values in the interaction potential Hint and
the torsional modulus profile κφ,i with the help of the Santa
Lucia’s nearest-neighbor model [38]. Taking into account the
single-strand torsional elasticity would slightly increase the
zipping time due to elastic resistance in the bubble, but would
not modify the occurrence of the metastable regime. Finally,
we did not consider hydrodynamic interactions in this work,
and suppose the friction of the beads to be additive. The
introduction of hydrodynamic interactions along one strand
and between the two strands [39] might accelerate the closure,
such as it decreases the relaxation times of simple polymers.
This work is in progress.

APPENDIX A: MODEL DNA EQUILIBRIUM PROPERTIES

This simple model captures most of the essential features
of the system. The directionality is maintained by computing
the sign of the determinant of (ρi ,ρi+1,n̂) and then choosing
the positive sign for a right-handed helix (see Fig. 1).
The measured values of the geometric parameters are, after
equilibration, aeq = 1.20a, θeq = 0.435 rad, and φeq = 0.52
rad, which are slightly larger than the prescribed values
a0 = 1.05a, θ0 = 0.41 rad, and φ0 = 0.62 rad due to thermal
fluctuations and nonlinear potentials entering the Hamiltonian.
Moreover, our model DNA is a symmetric double helix and
not a double helix with a major and a minor groove. The
ratio contour length over axis length is equal to 1.35 in our
simulations, whereas it is equal to 1.7 for real DNA [2].

The dsDNA persistence length �ds is computed using the
method presented by the authors of Ref. [26] for N = 150.
The tangent-tangent correlation function C(s) = 〈t̂i+s · t̂i〉 is
computed for each strand, where t̂i = ti/|ti | with ti = ri+1 −
ri is the unit vector connecting the two consecutive beads along
a single strand. The correlation function is fitted, in Fig. 9(a),
by the following theoretical expression (valid for a continuous
helical chain)

Cth(s) = e−s/�p

[
u + (1 − u) cos

(
2πs

p

)]
, (A1)

where the persistence length �p, the coefficient u, and the
helical pitch p are fitting parameters. The fitted values for the
dsDNA persistence length and the pitch are �ds ≈ 160 bp and
p = 12 bp for βκφ = 300, which are comparable to the actual
dsDNA values (�ds ≈ 150 bp and p = 10.4 bp). Note that
the equilibrium value of p is slightly larger than the prescribed
one 2π/φ0 = 10. We have checked that the dsDNA persistence
length is controlled both by bending and torsional potentials
as they modify the local stiffness. For βκφ = 200, we find
�ds ≈ 100 bp. In the paper, we argue that the actual value for
a real DNA is βκφ = 280, yielding �ds ≈ 150 bp, as expected.

We also estimated the persistence length of ssDNA �ss for
N = 80. In Fig. 9(b) is plotted as the correlation function
C(s) for different values of θ0 in a log-linear plot. Due to the
large value of the strength of the bending potential κθ , one can
assume in a good approximation that θ ≈ θ0, and �ss is purely
controlled by the equilibrium bending angle θ0 (the freely
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FIG. 9. (Color online) (a) Correlation function C(s) for the
simulated dsDNA (N = 150 bps). The solid line corresponds to
Cth(s) given in Eq. (A1). (b) Semilog plots of C(s) for the simulated
ssDNA, allowing the determination of �ss for three different θ0

values. (Inset) Fitted value for �ss plotted together with the theoretical
prediction Eq. (A2).

rotating chain model). The correlation function is thus fitted
by the exponential e−s/�ss , which yields �ss = 11 bp, as shown
in Fig. 9(b). Moreover, we check that the ssDNA persistence
length follows the law

�ss = −a/ ln(cos θ0) 	 2a/θ2
0 (A2)

for different values of θ0 [inset of Fig. 9(b)], as expected
[35]. The value �ss = 3.7 nm is larger than the commonly
accepted value of 1 nm. However the ssDNA persistence
length is not precisely known since it has been shown
experimentally [36] and theoretically [40] that it varies with
the salt concentration. Values of the order of 4 nm have even
been found experimentally by gel electrophoresis [36]. The
ssDNA persistence �ss cannot be modified in our numerical
model without changing the pitch value because θeq is a direct
function of φ0.

APPENDIX B: GEOMETRY OF THE METASTABLE
BUBBLE

We have checked that the finite value of �φ 	 0.3, or the
nonzero twist profile, in the metastable bubble results from
purely elastic properties of ssDNA. We did some simulations
to check the dependence of �φ, in the metastable state, on
the ssDNA elastic parameters θ0 and κs . The procedure is as
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follows. We choose a snapshot of a metastable bubble for N =
60 and βκφ = 300. Then we switch the Morse potential off
inside the 10-bp bubble and slightly decrease the temperature
from T = T0 = 300 to 0 K (15 K every 30 ns). We observed
that �φ remained equal to 0.3, thus confirming that the origin
of this value is purely elastic in nature (and not entropic).

Furthermore, to find the dependence on �φ with θ0,
we varied θ0 from 0.3 to 0.6 (without random forces for
monomers belonging to the bubble). We found the linear law
�φ = 0.53 θ0 + 0.06. This is reminiscent of the 3D bending
of an elastic rod (see, e.g., Ref. [41]) with a spontaneous
curvature θ0.

Note that by decreasing the stretching modulus κs we also
observed an increase of �φ of 10% for βκs = 40, which
might be a signature of the coupling between stretching and
twisting as already mentioned in the literature [42]. Finally,
we have checked that by slightly changing the value of λ′ in
the profile κφ,i from 0.113 to 0.165 nm, we still observed the
same metastable bubble size (data not shown).

The 3D deformation of the single strands in the bubble
comes form the constraint at their ends. They take a fluctuating
helical conformation from which we can distinguish two
elastic contributions: (i) The bending is associated to the
curvature of the central axis of the bubble, and (ii) the torsion
is associated to the helical curvature of the strands, the central
axis of the bubble remaining straight. Hence, the mean twist
stored in the bubble in the metastable state results from a 3D
bending of the bubble single strands.

APPENDIX C: PHASE DIAGRAM CONSTRUCTION

Figure 10(a) shows the dwell time distributions for BDL
and TA closures. The procedure to measure them is as follows:
For each trajectory, the ADL times and the TA or BDL times
are measured. ADL times τADL are elapsed times between
the end of zipping [L(t) = 11] and the arms alignment (n̂i ·
n̂e = 0.9), BDL times τBDL are times between the alignment
and closure at one DNA end, and TA times τTA are times
between the alignment and closure inside the DNA (see Fig. 8).
One clearly observes the increase of the mean value and the
spreading of the distribution with increasing N for the BDL
case. To construct the phase diagram, we compare the average
times of these distributions. All the data from simulations
are given in Table I, where κφ is given in kBT0 and N in
bps. For a given κφ and N , the percentage of realizations
belonging to BDL, TA, and ADL are given. The percentages
are computed for ≈200 realizations. To distinguish between
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FIG. 10. (Color online) (a) BDL dwell time τBDL distributions for
various N and κφ = 300, together with the TA time τTA distribution
for free ends and βκφ = 200 [same as Fig. 4(a)]. (b) Evolution of the
TA dwell time with κφ for clamped ends. The values for βκφ = 200
and 210 (•) are extrapolated.

ADL and TA closure mechanisms, we first calculated from the
whole metastable trajectory τADL and τTA. Then, if τADL >

τTA, we took that trajectory to belong to the ADL case and
vice versa. We used the same procedure to distinguish between
BDL and TA closure mechanisms.

The data agrees with the phase diagram of Fig. 8(a). We
also did a few simulations for larger N .

(1) For βκφ = 200 and N = 200 (� in the phase diagram):
56 realizations; 37 ADL closures, 1 BDL closure, and 18 TA
closures. This point is indeed slightly below the ADL-TA
frontier line in the phase diagram, as expected. The mean
closure time is τcl = 1.9(±0.1) μs

(2) For βκφ = 250 and N = 200 (� in the phase diagram):
56 realizations; 1 ADL closure, 23 BDL closures, and 32 TA

TABLE I. Percentage of the bubble trajectories (DNA with free ends) following the closure mechanisms, ADL, BDL, or TA.

N 60 70 80 90 100

κφ BDL TA ADL BDL TA ADL BDL TA ADL BDL TA ADL BDL TA ADL

200 35.4 49.4 15.1 28.4 40.0 31.5 20.2 49.2 30.5 12.5 33.9 50.5 9.1 31.7 59.1
210 56.4 35.9 7.7 44.4 35.2 20.4 34.7 43.5 21.7 28.3 44.0 27.7 20.2 45.0 34.8
220 70.0 22.7 7.2 56.8 32.9 10.1 54.3 37.5 8.1 42.6 43.6 13.7 34.5 38.0 27.3
240 89.6 9.2 1.0 89.6 9.8 0.5 81.2 16.2 2.5 74.8 20.7 4.3 71.1 23.9 4.9
250 95.2 4.7 0.0 90.5 7.8 1.5 90.6 6.7 2.6 90.1 6.5 3.2 87.8 9.4 2.7
300 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0
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closures. This point is thus almost at the frontier BDL-TA, as
it can be checked in the phase diagram. The mean closure time
is τcl = 4.7(±0.4) μs.

The few assumptions made in constructing the diagram
are as follows: ADL closure does not depend on κφ ; BDL
times does not depend on κφ [as shown in Fig. 5]; and TA
times are independent on N [local mechanism, see Fig. 7(b)
of the text]. Furthermore, as one needs to know the TA times
for βκφ = 200 and 210 since these values correspond to both
ADL times and TA times (as observed in simulations), we
did an extrapolation as shown in Fig. 10(b). All the times are
plotted in the same Fig. 6 to extract the few data points for
constructing the phase diagram.

For example, the intersection between a TA horizontal line
and the ADL one for βκφ = 200 gives N = 52. Hence above
N = 52, the metastable bubble closes mainly through ADL.
Likewise, the intersection between a TA horizontal line for

βκφ = 240 and the BDL one for βκφ = 300 (we assume it
is almost the same for 240) gives N = 120, which states
that below N = 120 the bubble closes by BDL (most of the
realizations) and above which it closes by TA.

Since TA times are given by τTA
met = τ0 exp[Ea(κφ)/kBT ]

and assuming that ADL and BDL times do not depend on
κφ , τmet = τ ′

0 Nα , equating both times yields the equation of
the line separating TA and ADL or BDL regions in the phase
diagram, βκφ = v + w ln N . By fitting the five data points
for the frontier between the BDL and TA regions, one obtains
v = 88 and w = 29. The fitted frontier line between ADL and
TA (three points) yields v = 101 and the same value for w. It
is important to note that the frontier for low N between BDL,
ADL, and TA is very fuzzy. Since for arm lengths larger than
the dsDNA persistence length M > �ds ≈ 150, the ADL time
does not depend on N any more [32], the frontier becomes
horizontal.
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