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Statistical mechanics of bend flexoelectricity and the twist-bend phase in bent-core liquid crystals
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We develop a Landau theory for bend flexoelectricity in liquid crystals of bent-core molecules. In the nematic
phase of the model, the bend flexoelectric coefficient increases as we reduce the temperature toward the nematic
to polar phase transition. At this critical point, there is a second-order transition from high-temperature uniform
nematic phase to low-temperature nonuniform polar phase composed of twist-bend or splay-bend deformations.
To test the predictions of Landau theory, we perform Monte Carlo simulations to find the director and polarization
configurations as functions of temperature, applied electric field, and interaction parameters.
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I. INTRODUCTION

Bent-core liquid crystals exhibit a rich variety of phases
with different types of orientational order. At high temperature
they form an isotropic phase, with disorder in all of the
molecular axes. As the temperature decreases they form a
nematic phase, in which the long axes of the molecules tend to
align up or down along a director n̂. The transverse orientations
of the molecules can then have various types of order in the
plane perpendicular to n̂: they might be disordered (leading
to a uniaxial nematic phase), or have nematic order (leading
to a biaxial nematic phase), or have polar order (leading to
a net polarization). A classic argument of Meyer [1] shows
that polar order of the transverse directions couples to bend
variations in the main director n̂. As a result, it is particularly
easy to induce polar order and director bend in bent-core liquid
crystals, compared with analogous rodlike liquid crystals.

Recent research has found two remarkable physical phe-
nomena arising from polar order and director bend in bent-core
liquid crystals: flexoelectricity and modulated phases.

A. Flexoelectricity

The flexoelectric effect is a linear coupling between polar
order and director deformations in the uniaxial or biaxial
nematic phase. An imposed deformation of the nematic
director leads to an electrostatic polarization, and conversely,
an applied electric field induces a deformation of the nematic
director. This effect was initially discovered by Meyer [1] and
since then has been investigated by many researchers [2]. It
has possible applications in devices such as display panels,
actuators, micropower generators, and electro-mechanical
transducers for sensing or energy-harvesting uses. In general,
the director deformation might be either splay or bend, but
one would expect the bend flexoelectric effect to be dominant
in bent-core liquid crystals. Indeed, recent experiments by
Harden et al. [3,4] have found that bent-core liquid crystals
have a surprisingly large bend flexoelectric coefficient, up to
35 nC/m, roughly three orders of magnitude larger than the
typical value of 3–20 pC/m in rodlike liquid crystals.
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For flexoelectricity, the key theoretical question is how to
explain the large effect found in bent-core liquid crystals, so
that it can be exploited for technological application. In a
previous paper [5], we conjectured that the large flexoelectric
effect is a statistical phenomenon associated with nearby polar
phase. Near a polar phase, a nematic liquid crystal is on
the verge of developing spontaneous polar order, and hence
any deformation of the director should induce a large polar
response. In the previous paper, we explored that concept by
constructing a model for splay flexoelectricity in a system
of pear-shaped molecules. It is still necessary to extend the
model to the more complex but physically realistic case of
bend flexoelectricity in bent-core liquid crystals.

We recognize that experimental measurements of flexo-
electricity in bent-core liquid crystals are controversial [6,7].
Regardless of the experimental flexoelectric coefficient in any
particular material, we would like to understand what behavior
is theoretically possible.

B. Modulated phases

In an influential theoretical paper [8], Dozov noted that
bent-core liquid crystals have a very low energy cost for
bend in the director and described this low energy cost by
a very small bend elastic constant K3. He then speculated
that K3 could actually become negative in some bent-core
liquid crystals. (In this case, the free energy would need to be
stabilized by higher-order terms in the bend.) Dozov showed
theoretically that the uniform nematic phase would become
unstable to the formation of a modulated phase, which could be
either a twist-bend or a splay-bend phase. Related simulations
have been done by Memmer [9]. This theoretical prediction
is now supported experimentally by optical observations of
spontaneous periodic deformations in bimesogens [10], and
by extensive studies of a liquid crystal dimer, which identify
the twist-bend phase using a series of techniques including
small-angle x-ray scattering, modulated differential scanning
calorimetry, dielectric spectroscopy, and magnetic resonance
[11].

For the twist-bend and splay-bend modulated phases, there
are two important theoretical questions. First, how does the
elastic constant K3 become negative; what is the physical
meaning of this negative value? Second, what happens to the
polar order in these phases? The schematic illustrations in
Dozov’s paper [8] clearly show the presence of local polar
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order, but this polar order is not included in his theoretical
formalism.

The purpose of this paper is to develop a theory of polar
order and director bend in bent-core liquid crystals, which can
explain both flexoelectricity and modulated phases in these
materials. For this work, we use both Landau theory and lattice
simulations. In Landau theory, we construct a free energy
functional in terms of director gradients and polarization. In
the uniform nematic phase, we can minimize the free energy to
find the optimal polarization for fixed bend, or conversely the
optimal bend for fixed polarization (or applied electric field).
This minimization gives the bend flexoelectric coefficient e3, as
well as the effective bend elastic constant and effective dielec-
tric coefficient. In particular, it shows the difference between
the bare elastic constant K3 and the effective (or renormalized)
elastic constant Keff

3 . As the temperature decreases toward
a critical temperature, e3 increases and Keff

3 goes to zero.
Below that critical temperature, the uniform nematic phase
becomes unstable to the formation of a new phase which has
both polar order and spontaneous bend, and hence must have
a modulated structure. By minimizing the free energy over
variational forms for the director and the polarization, we
find that the director configuration is equivalent to Dozov’s
twist-bend or splay-bend phase, and we also determine the
accompanying polarization configuration.

In simulations, we construct a lattice Hamiltonian that
generalizes the classic Lebwohl-Lasher model [12] for nematic
liquid crystals by including two vectors on each site, which
represent the long molecular axis and the transverse direction,
respectively. This model is analogous to our previous lattice
model for splay flexoelectricity [5], but now extended to
bend flexoelectricity. We run Monte Carlo simulations of this
Hamiltonian in both the high-temperature uniform nematic
phase and the low-temperature modulated polar phase. These
simulations give results that are equivalent to Landau theory,
but without the mean-field and variational assumptions of
Landau theory. In the uniform nematic phase, they show
the increasing flexoelectric coefficient as the temperature
decreases. In the low-temperature phase, they show the
structure of the modulated phase, which may be twist-bend
or splay-bend, depending on model parameters.

The plan of this paper is as follows. In Secs. II and III, we
develop a theory for the flexoelectric effect in the uniform
nematic phase, first using Landau theory and then lattice
simulations. In Secs. IV and V, we extend the theory to the
low-temperature modulated polar phase, now in the reverse
sequence of lattice simulations and then Landau theory. In
Sec. VI we discuss and summarize the conclusions of this
study. Finally, in the Appendix we show how the lattice model
can also be solved using mean-field theory.

II. FLEXOELECTRIC EFFECT: LANDAU THEORY

To describe the flexoelectric effect in a uniform nematic
phase, we must construct the free energy density in terms of
the nematic director n̂ and the polarization P. We assume that
gradients of n̂ are small, and P is also small, so that we can
work to quadratic order in both of these quantities. (We will go
to higher order in a later section, when discussing modulated
phases.) The free energy has three parts.

First, the free energy of director gradients is just the standard
Oseen-Frank free energy. It can be written as

Fnn = 1
2K1S2 + 1

2K2T 2 + 1
2K3B2, (1)

in terms of the splay vector S = n̂(∇ · n̂), the twist
pseudoscalar T = n̂ · (∇ × n̂), and the bend vector
B = n̂ × (∇ × n̂).

Second, polar order does not occur in the uniform nematic
phase, and hence it must have a positive free energy cost. To
lowest order, this cost can be written as

Fpp = 1
2μP2, (2)

where μ is an arbitrary coefficient. There may be several
physical contributions to μ. Entropy makes a positive con-
tribution proportional to temperature T , and the electrostatic
energy makes another positive contribution independent of
T . Because we are modeling bent-core liquid crystals, we
suppose that there are packing considerations that favor polar
order, in competition with entropy and electrostatics. This
packing energy can be modeled by a negative part of the
free energy, proportional to P2, independent of T . Hence, the
combination of these effects gives a coefficient μ that varies
with temperature, and can be written as μ = μ′(T − T0). Note
that T − T0 is positive in the uniform nematic phase.

Last, following the argument of Meyer [1], polar order is
coupled to both splay and bend in the director. We already
considered the splay coupling in our previous paper on splay
flexoelectricity [5]. In this paper we are concerned with bend
flexoelectricity, and hence we consider the coupling

Fnp = −λB · P, (3)

which favors polar order along the bend direction, perpen-
dicular to the director, and hence describes ordering of the
transverse orientations of the molecules.

Putting these three pieces together, we obtain the total free
energy density

F = 1
2K1S2 + 1

2K2T 2 + 1
2K3B2 + 1

2μP2 − λB · P (4)

to quadratic order in director gradients and polar order. Note
that the last three terms are a quadratic form in B and P. The
uniform nematic phase is only stable if the quadratic form is
positive-definite, which occurs if λ2 < μK3. This condition
can be rewritten as

μ > μc = λ2

K3
(5)

or equivalently as

T > Tc = T0 + λ2

μ′K3
. (6)

Below that critical temperature, the uniform nematic phase
must become unstable to a phase with director gradients and
polar order, which will be discussed in Secs. IV and V below.

To model the flexoelectric effect, we minimize the free
energy of Eq. (4) over the polarization P for fixed bend B to
obtain

P = e3B, (7)
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where the bend flexoelectric coefficient is given by

e3 = λ

μ
= λ

μ′(T − T0)
. (8)

This coefficient increases toward a finite limit as the tempera-
ture decreases toward the critical temperature Tc. Substituting
the expression (7) for P back into Eq. (4) gives the effective
free energy

F eff = 1
2K1S2 + 1

2K2T 2 + 1
2Keff

3 B2, (9)

where the effective, renormalized bend elastic constant is given
by

Keff
3 = K3 − λ2

μ
= K3 − λ2

μ′(T − T0)
. (10)

Note that there is an important physical distinction between
the bare elastic coefficient K3 and the renormalized coefficient
Keff

3 : the bare coefficient K3 gives the energy cost of a
bend in a hypothetical experiment where the polarization is
constrained to be zero, while the renormalized coefficient Keff

3
gives the energy cost of a bend in an experiment where the
polarization is free to relax to its lowest-free-energy value. This
distinction is essentially the same as the distinction between
the bend coefficient KD

3 at constant electric displacement D
compared with KE

3 at constant electric field E, as discussed
by Castles et al. in the context of blue phase stability [13].
The renormalized coefficient is apparently the coefficient Keff

3
calculated by Cestari et al. through molecular field theory
with atomistic modeling, because their calculation involves
averaging over molecular distributions that respond to bend
[14]. The bare coefficient K3 is always positive, while the
renormalized coefficient Keff

3 passes through zero as the
temperature passes through Tc. In Sec. V, we will discuss
the behavior below Tc and will show that Keff

3 is the negative
bend constant discussed by Dozov [8].

To model the converse flexoelectric effect, we add an
electric field coupling to the polarization into the free energy
(4), which gives

F = 1
2K1S2 + 1

2K2T 2 + 1
2K3B2 + 1

2μP2 − λB · P − E · P.

(11)
We minimize this free energy over both bend B and polariza-
tion P for fixed electric field E to obtain

B = λE
μK3 − λ2

, (12a)

P = K3E
μK3 − λ2

. (12b)

Equation (12a) shows that an electric field induces a bend
through the converse flexoelectric effect, while Eq. (12b)
shows that an electric field induces a polarization. The latter
equation can be compared with the standard expression for the
induced polarization in a dielectric material, P = ε0(ε − 1)E.
This comparison shows that the effective dielectric constant is

εeff = 1 + 1

ε0(μ − λ2/K3)
. (13)

Hence, the effective dielectric constant is renormalized upward
by the coupling between polarization and bend, compared with
the value ε = 1 + 1/(ε0μ) without this coupling. At the critical

temperature Tc where the uniform nematic phase becomes
unstable, the effective dielectric constant diverges.

Here we should emphasize which quantities diverge and
which remain finite at the critical point Tc. When we apply an
electric field in the converse flexoelectric effect, the induced
bend and polarization are given by susceptibilities multiplying
the field. These susceptibilities both diverge as T → Tc, as
usual for susceptibilities at a second-order phase transition.
Likewise, if we were to apply a torque that couples directly
to the bend, the induced bend and polarization would be
given by susceptibilities multiplying the torque, and those
susceptibilities would also diverge as T → Tc. However, the
flexoelectric coefficient e3 is not exactly a susceptibility;
rather, it is the ratio between bend and polarization, which
both diverge at the transition. This ratio does not diverge,
but approaches the finite maximum value emax

3 = K3/λ. By
comparing this maximum value with the bend elastic constant
and dielectric constant as T → Tc, we see that(

emax
3

)2 = K3ε0(ε − 1) = Keff
3 ε0(εeff − 1). (14)

This equation for the maximum flexoelectric coefficient is
approximately the same as the limit derived by Castles et al.
[6]. However, they derive the limit based on arguments about
the conservation of energy. We would not say that it is
related to energy conservation, but rather that it is the limit
of stability of the uniform nematic phase. Beyond that point,
the uniform nematic phase becomes unstable to the formation
of a modulated phase, as will be discussed in later sections.

III. FLEXOELECTRIC EFFECT: LATTICE MODEL

In the previous section, we developed a Landau theory for
the bend flexoelectric effect near a transition to an incipient
polar phase. In this section, we develop a lattice simulation
model to describe the same effect. This model is an extension of
the lattice model for splay flexoelectricity in our previous paper
[5]. The lattice simulations will provide clear visualizations
of the types of molecular order that occur in the flexoelectric
effect. They will also allow us to avoid the standard limitations
of Landau theory, which neglects correlated fluctuations and
applies only over a limited temperature interval.

We consider a simple cubic lattice with a bent-core liquid
crystal molecule on each site. The orientation of each molecule
is characterized by two orthogonal unit vectors, as shown in
Fig. 1. The vector n̂i represents the long molecular axis, while
the vector b̂i represents the transverse dipole of the molecule
at site i. In the uniaxial nematic phase without any bend, the
n̂ vectors are ordered but the b̂ vectors are disordered. We
would like to model how a bend in n̂ induces polar order in b̂,
or conversely, how an electric field applied to b̂ induces bend
in n̂.

For the lattice interaction between molecules on neighbor-
ing sites i and j , we must consider several terms. First, we need
the standard Lebwohl-Lasher [12] interaction −A(n̂i · n̂j )2,
which favors nematic order of the molecules. Second, to
describe a bent-core liquid crystal with incipient polar order,
we need an interaction of the form −B1 b̂i · b̂j . This term
favors polar order of the transverse dipoles, driven by packing
energy or any other mechanism. Third, there may also be
a higher-order interaction of the form −B2(b̂i · b̂j )2, which

052503-3



SHAMID, DHAKAL, AND SELINGER PHYSICAL REVIEW E 87, 052503 (2013)

FIG. 1. (Color online) Lattice model for neighboring bent-core
liquid crystal molecules, showing possible orientations of two
neighboring molecules under a bend deformation.

favors nematic order of the transverse dipoles, perpendicular
to the main nematic axis. This term gives the possibility of a
biaxial nematic phase, as in the model of Straley [15]. Fourth,
there must be an interaction −E · b̂i between each dipole and
the applied electric field.

Finally, we need a coupling of b̂ with the local bend in n̂.
Following the argument of Ref. [5], a lattice version of the
bend vector between sites i and j can be written as

[n̂ × (∇ × n̂)]ij = 1
2 [n̂i(r̂ ij · n̂i) − n̂j (r̂ ij · n̂j )

+ n̂i(n̂i · n̂j )(r̂ ij · n̂j )

− n̂j (n̂i · n̂j )(r̂ ij · n̂i)], (15)

where r̂ ij = (rj − r i)/|rj − r i | is the unit vector from site i

to j on the lattice. Note that this expression is invariant under
the symmetry operations i ↔ j , n̂i → −n̂i , and n̂j → −n̂j .
This expression for the local bend can be coupled with the
local polar order, averaged over sites i and j , to give

Vbend = C[n̂ × (∇ × n̂)]ij · b̂i + b̂j

2

= C

4
((b̂j · n̂i)[r̂ ij · {n̂i + n̂j (n̂i · n̂j )}]

− (b̂i · n̂j )[r̂ ij · {n̂j + n̂i(n̂i · n̂j )}]). (16)

The coefficient C may be either positive or negative. The
sign of C determines whether the coupling favors parallel or
antiparallel alignment of polar order and bend, but does not
otherwise affect the behavior.

Combining all the terms, our final expression for the lattice
Hamiltonian is

H = −
∑
〈i,j〉

[
A(n̂i · n̂j )2 + B1 b̂i · b̂j + B2(b̂i · b̂j )2

− C

4
((b̂j · n̂i)[r̂ ij · {n̂i + n̂j (n̂i · n̂j )}]

− (b̂i · n̂j )[r̂ ij · {n̂j + n̂i(n̂i · n̂j )}])
]

−
∑

i

E · b̂i . (17)

This expression is analogous to the lattice Hamiltonian in
Ref. [5], except that it has two orthogonal unit vectors on each
site instead of just one, so that it can describe bend instead of
splay flexoelectricity.

FIG. 2. (Color online) Equilibrium configurations from Monte
Carlo simulations showing (a) isotropic phase, (b) uniaxial nematic
phase, (c) biaxial nematic phase, and (d) polar phase. The color on
each molecule represents the orientation (θ ) of its short axis b̂ with
respect to the laboratory Z axis.

We carry out Monte Carlo simulations of a system of
bent-core molecules interacting with the Hamiltonian of
Eq. (17) on a simple cubic lattice of size 16 × 16 × 16.
When an electric field is applied, it is in the Z direction. The
simulation box has periodic boundary conditions in Z, but the
boundaries in X and Y are free so that the system can form bend
across those directions. In each Monte Carlo step, a molecule
is chosen randomly and it is slightly rotated about a random
axis. The change in energy �E is calculated, and the step
is accepted or rejected following the Metropolis algorithm.
Starting from a high-temperature isotropic state, the system
is cooled down slowly with temperature steps of �T = 0.01.
The final configuration at each temperature is taken as the
initial configuration for the next lower temperature. Typical
runs take about 105 steps to come to equilibrium, while runs
near phase transitions take about 6 × 105 steps.

Figure 2 shows snapshots of the molecular configuration in
four phases at zero electric field. At high temperature, the
system is in an isotropic (I ) phase, with disorder in both
n̂ and b̂. As the temperature decreases, it forms a uniaxial
nematic (NU ) phase, with nematic order in n̂ but disorder
in b̂ vectors, which are uniformly distributed in the plane
perpendicular to the average director. At lower temperature,
it forms a biaxial nematic (NB) phase, with nematic order
in both n̂ and b̂. In the NB phase, the b̂ vectors have two
favored orientations perpendicular to the average director.
At the lowest temperature, it forms a polar (P ) phase, with
nematic order in n̂ and polar order in b̂ vectors, which now have
one favored orientation perpendicular to the average director.
In this case, the the polar order induces bend in the director.
(At longer length scales more complex modulated structures
are seen, as discussed in the following section.)
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To characterize the orientational order of these phases,
we use a standard set of four uniaxial and biaxial nematic
order parameters, supplemented by an additional polar order
parameter. The nematic order is represented by the supermatrix
[16–18]

SIJ
ij =

〈
3liI ljJ − δiI δjJ

2

〉
. (18)

Here the subscripts i and j denote molecular axes while
I and J represent laboratory axes, and liI is the direction
cosine between molecular and laboratory axes, liI = î · Î . The
reference frame, which we denote as (N̂,B̂,Ĉ), is calculated
as follows [16–18]: First, the Q tensor is calculated for all
molecular axes (n̂,b̂,ĉ). The eigenvector corresponding to the
largest eigenvalue is the reference N axis. Similarly, the second
largest eigenvalue is taken to identify the secondary molecular
ordering axis. The corresponding eigenvector is the reference
B axis. The remaining reference axis C is perpendicular to
N and B. In this frame, the nematic order parameters can be
expressed as

S = SNN
nn , U = SNN

bb − SNN
cc , T = SBB

nn − SCC
nn ,

(19)
V = 1

3

[(
SBB

bb − SCC
bb

) − (
SBB

cc − SCC
cc

)]
.

As a physical interpretation, S measures the ordering of the
molecular n axis with respect to the N axis and is the usual
nematic order parameter, while U measures the difference in
ordering of the molecular b and c axes with respect to the N

axis. Conversely, T measures the difference in ordering of the
molecular n axis with respect to the reference B and C axes.
Finally, V measures the ordering of the molecular b and c

axes with respect to the reference B and C axes. Of these four
parameters, S and U are nonzero in the uniaxial and biaxial
phases, while T and V vanish in the uniaxial phase but are
nonzero in the biaxial phase. In the limit of low temperature and
high orientational order, S and V tend to 1, while U and T tend
to 0. We calculate all four of these order parameters following
the procedure of Refs. [16–18], but we present results only for
the uniaxial nematic order parameter S and biaxial nematic
order parameter V .

In addition to the nematic order parameters, we define the
polar order parameter as the average of the molecular dipole
vectors, P = 〈b̂〉, and we present results for the magnitude
P = |P |.

The order parameters S, V , and P are time-averaged in the
production cycle of simulations. Plots of the order parameters
for different values of the coupling coefficients are shown
in Fig. 3. In all these cases, the isotropic phase is stable at
high temperatures, followed by phases of reduced symmetry at
low temperatures. We find four types of transitions depending
upon the relative coupling coefficients: (i) For small biaxial
coupling B2 and even smaller polar coupling B1, there is a
series of transitions I → NU → NB → P . At each transition,
the system acquires additional order. (ii) For somewhat larger
polar coupling B1, a direct transition from uniaxial nematic
to polar phase occurs, with no intermediate biaxial nematic
phase, I → NU → P . (iii) For even stronger B1, a direct
transition from isotropic to polar phase takes place, with no
intermediate uniaxial or biaxial nematic phase, I → P . (iv)
If the molecules have a very strong biaxial coupling B2, the

FIG. 3. (Color online) Monte Carlo simulation results for the
order parameters S (�), V (×) and P (◦) as functions of temperature
T , for different values of the coupling coefficients chosen to show
different types of transitions. (a) B1 = 0.04, B2 = 0.3. (b) B1 = 0.12,
B2 = 0.3. (c) B1 = 0.4, B2 = 0.3. (d) B1 = 0.04, B2 = 0.95. In all
cases A = 1.0, C = 0.3, and E = 0.

transition goes directly from isotropic to biaxial nematic, with
no intermediate uniaxial nematic phase, I → NB → P . From
these observations, we see that the stability of the biaxial
nematic phase can be tuned with the polar strength B1 and
biaxiality B2 of the molecules.

A key feature of our model is that bend in n̂ is coupled to
polar order in b̂. For that reason, we expect nonzero bend to
occur spontaneously as the system moves into the polar phase,
even under zero applied electric field. To test this concept,
we calculate the average bend �θ , defined by averaging
Eq. (15) over bonds, as a function of temperature and coupling
coefficients. The results are shown in Fig. 4. Note that this

FIG. 4. (Color online) Monte Carlo simulation results for the
bend per bond as a function of temperature T , for different values
of the coupling coefficients. (a) B1 = 0.04, B2 = 0.3. (b) B1 = 0.12,
B2 = 0.3. (c) B1 = 0.4, B2 = 0.3. (d) B1 = 0.04, B2 = 0.95. In all
cases A = 1.0, C = 0.3, and E = 0.
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FIG. 5. (Color online) Phase diagram of the model system as a
function of (a) T and B2, for fixed B1 = 0.03. (b) T and B1, for fixed
B2 = 0.45. In all cases A = 1.0, C = 0.3, and E = 0.

spontaneous bend is zero in the isotropic, uniaxial nematic,
and biaxial nematic phases, and becomes nonzero in the polar
phase. One further point about the order parameters should be
noted here: We calculate S, V , and P by averaging over the
entire system. In the polar phase, because there is a systematic
bend in the molecular orientation, these global averages are
reduced. That is the reason why Fig. 3 shows a decrease in S

in the polar phase. Presumably this issue could be avoided by
calculating local averages of the order parameters, but we use
global averages because of the limited system size.

To explore the phase diagram of the system, we carry out a
series of simulations where we vary the coupling coefficients
B1 and B2 and measure the resulting order parameters.
Figure 5 shows two cross sections through the phase diagram.
Note that increasing B2 enhances the stability of the biaxial
nematic phase at the expense of the uniaxial nematic and
isotropic phases, but does not affect the polar phase. By
comparison, increasing B1 enhances the stability of the polar
phase at the expense of all the other phases.

We now simulate the converse flexoelectric effect by
applying an electric field E along the Z axis. As expected,
the dipole direction b̂ aligns parallel to the field, while the
director n̂ bends across the system, as a function of X or Y .
We calculate this induced bend from Eq. (15) as a function
of temperature, electric field, and coupling coefficients. The
results are shown in Fig. 6. Note that the bend increases as the
field increases, as the magnitude of bend-polarization coupling
C increases, and as the temperature decreases. In particular, as
the temperature decreases toward the transition into the polar
phase, the bend responds sensitively to any applied field. The
temperature dependence of the bend is sharpest for very low
fields, and it is rounded off for larger fields. This behavior is
similar regardless of whether the system passes through the
biaxial nematic phase or goes directly from uniaxial nematic
to polar. These trends are the normal behavior of an induced
order parameter in the presence of a symmetry-breaking field
above a second-order phase transition. They are consistent
with the Landau theory presented in the previous section,
which suggests that the flexoelectric and converse flexoelectric
effects become large near an incipient polar phase, where the
uniform nematic phase is almost unstable and the system is
most sensitive to any symmetry-breaking perturbation.

To visualize the molecular configuration responsible for
the large flexoelectric effect, we perform a simulation in the
uniaxial nematic phase for E = 0.04 at T = 0.42, slightly

FIG. 6. (Color online) Bend as a function of temperature for the
system under an electric field. (a, b) For different values of the bend-
polarization coupling C. (c, d) For different values of the electric
field E. Parts (a) and (c) show systems with a biaxial nematic phase,
with parameters as in Fig. 3(a), while (b) and (d) show systems with
a direct transition from uniaxial nematic to polar, with parameters as
in Fig. 3(b).

above the transition into the polar phase at TUP ≈ 0.32. A
snapshot of the configuration is shown in Fig. 7. Clearly there
are local correlated regions with bend and polar order. At this
temperature, the system is highly susceptible to an applied
electric field, which orders the local correlated regions and
induces a global polarization and bend. Presumably it would
also be highly susceptible to an applied torque coupling to the
bend, which would have the same effects, although we have
not done that simulation explicitly.

Apart from the Monte Carlo simulations, the lattice model
of Eq. (17) can also be solved analytically through mean-
field theory. The mean-field calculation is presented in the

FIG. 7. (Color online) Equilibrium configuration from a Monte
Carlo simulation just above the uniaxial nematic-polar transition
temperature for E = 0.04.
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Appendix, and the results are similar to the simulations
presented in this section.

IV. MODULATED PHASES: LATTICE MODEL

As noted in the previous section, when the system cools into
a polar phase with spontaneous polar order, it also acquires
spontaneous bend. A simple example of the spontaneous
bend is illustrated in Fig. 2(d), which shows a gradual bend
across the system, between the free boundaries. However, this
simple configuration cannot be extended to give the molecular
orientation across a larger system. In general, it is impossible
to fill space with pure uniform bend. Rather, the system must
form a more complex modulated phase, which might have
a regular array of defect walls, or might have a mixture of
bend with splay or twist in the director. Indeed the problem of
filling space with bend in a polar liquid-crystal phase is quite
analogous to the problem of filling space with twist in a chiral
liquid-crystal phase, as discussed in Ref. [19].

To determine the modulated structure of the polar phase,
we repeat the simulations of the previous section with three
modifications: we use periodic boundary conditions in all three
directions, we use a slightly larger lattice of size 20 × 20 × 20,
and we increase the magnitude of bend-polarization coupling
C to increase the bend, i.e., reduce the wavelength of the
modulated structure, so that a full wavelength will fit in
the simulation box. In these simulations no electric field is
applied, so the only polarization is spontaneous order. We
begin the simulations in the high-temperature isotropic phase
and gradually cool into the low-temperature polar phase. In this
way, the system is free to select its own modulated structure.

In these simulations, two distinct types of modulated
structures form, depending on the model parameters. The first
structure, shown in Fig. 8, is equivalent to the twist-bend phase
proposed by Dozov [8]. In this structure, the director n̂ has a
helical modulation, which is randomly right- or left-handed.
The director is not perpendicular to the helical axis, as in a
cholesteric liquid crystal. Rather, it precesses in a cone about
the helical axis, with a fixed cone angle between 0◦ and 90◦.

FIG. 8. (Color online) Equilibrium configuration in a Monte
Carlo simulation of the twist-bend phase, for model parameters
A = 2, B1 = 0.5, B2 = 0.4, C = −2.0, and T = 0.5. (a) Top view.
(b) Side view.

FIG. 9. (Color online) Equilibrium configuration in a Monte
Carlo simulation of the splay-bend phase, for model parameters
A = 3, B1 = 0.15, B2 = 0.4, C = −2.0, and T = 0.3. The director
and polar order are both in the plane of the figure. The labels indicate
the the local polarization along the vertical axis.

As a result, the director deformation is a mixture of twist and
bend, unlike a cholesteric liquid crystal which has pure twist.
The dipole direction b̂ also precesses about the helical axis,
while remaining perpendicular to n̂ and perpendicular to the
helical axis. This structure is spatially homogeneous, in that
every position is equivalent to every other position with a twist.
Hence, every position has the same energy, and there are no
defects.

The second structure, shown in Fig. 9, is equivalent to the
splay-bend phase proposed by Dozov [8]. Here the director n̂
goes back and forth within the plane of the figure. As a result,
the director deformation is a mixture of splay and bend. Note
that different regions are not equivalent to each other: some
regions have almost pure bend, and other regions have almost
zero bend. In this structure, the local polar order varies in both
magnitude and direction. In the pure-bend regions the b̂ vectors
are very well aligned, and hence the polar order parameter has
a large magnitude. These regions are indicated by the labels
P > 0 and P < 0 in the figure. By contrast, in the zero-bend
regions, the b̂ vectors are disordered, and hence the polar order
parameter averages to zero. These regions are indicated by the
label P = 0 in the figure. The zero-bend regions have a higher
energy than the pure-bend regions, so they can be regarded as
defect walls.

The simple example of Fig. 2(d) can be understood as one
pure-bend region going across the finite simulation cell. The
splay-bend structure of Fig. 9 shows how this structure can fill
space with a periodic alternation of pure-bend “defect-free”
regions and zero-bend “defect walls.”

When we say that the structures of Figs. 8 and 9 are
equivalent to Dozov’s twist-bend and splay-bend phases,
we mean that the director modulations are the same as
what he proposed. His paper does not explicitly consider
the polarization modulation, although his sketches suggest
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a variation in the polarization direction that is similar to
our simulation results. The twist-bend phase has also been
visualized in a simulation by Memmer [9].

V. MODULATED PHASES: LANDAU THEORY

To understand the modulated phases better, we return to the
Landau theory of Sec. II. These phases occur for temperatures
below the critical temperature of Eq. (6), where the quadratic
form in the free energy of Eq. (4) is not positive-definite.
Hence, we must add further terms to stabilize the free energy.
First, there must be a term of 1

4νP4, which keeps the magnitude
of the polar order from increasing without limit. Second, there
must be a term of 1

2κ(∇P)2, which penalizes gradients in the
magnitude and direction of polar order. [In terms of tensor
indices, we interpret this gradient term as 1

2κ(∂iPj )(∂iPj ).
There could be other tensor contractions, but they do not matter
for our analysis.] With these new terms, the Landau free energy
becomes

F = 1
2K1S2 + 1

2K2T 2 + 1
2K3B2 − λB · P

+ 1
2μ′(T − T0)P2 + 1

4νP4 + 1
2κ(∇P)2. (20)

To model the twist-bend phase, we make the variational
ansatz for n̂(x) and P(x) inspired by the simulation results of
Fig. 8,

n̂(x) = (1 − a2)1/2x̂ + a sin(qx)ŷ + a cos(qx)ẑ,
(21)

P(x) = −p cos(qx)ŷ + p sin(qx)ẑ.

This ansatz has three variational parameters: a is the sine of
the cone angle for the director, p is the magnitude of the local
polar order, and q is the wave vector of the modulation. In
terms of these parameters, the splay, twist, and bend become

S(x) = n̂(∇ · n̂) = 0, T (x) = n̂ · (∇ × n̂) = a2q,

B(x) = n̂ × (∇ × n̂) (22)

= a(1 − a2)1/2q[− cos(qx)ŷ + sin(qx)ẑ].

Note that the splay is zero, as it should be for the twist-bend
deformation. The twist and the bend magnitude are constants,
while the bend direction precesses in a helix. Plugging those
quantities into the free energy gives

FT B = 1
2K2a

4q2 + 1
2K3a

2(1 − a2)q2 − λapq(1 − a2)1/2

+ 1
2μ′(T − T0)p2 + 1

4νp4 + 1
2κp2q2. (23)

Minimizing the free energy over the variational parameters
a, p, and q then gives the behavior near the transition, for
T < Tc,

a = K3

2λ

(
μ′

K2

)1/2

(Tc − T )1/2,

p = K2
3 μ′

4λ2

(
3

2K2κ

)1/2

(Tc − T ), (24)

q = 1

2

(
3μ′

2κ

)1/2

(Tc − T )1/2.

Also, the free energy of the twist-bend phase just below the
transition is

FT B = − K4
3 μ′3

64K2κλ4
(Tc − T )3. (25)

By comparison, to model the splay-bend phase, we make
the variational ansatz inspired by the simulation results of
Fig. 9,

n̂(x) = cos φ(x)x̂ + sin φ(x)ẑ,
(26)

P(x) = 1
2p cos(qx) sin 2φ(x)x̂ − p cos(qx) cos φ(x)ẑ,

where φ(x) = α sin(qx). This ansatz also has three variational
parameters: α is the amplitude of the director modulation, p

is the amplitude of the polarization modulation, and q is the
modulation wave vector. For this state, the splay, twist, and
bend become

S(x) = − 1
2qα cos(qx) sin 2φ(x)x̂ − qα cos(qx) sin φ(x)ẑ,

T (x) = 0,

B(x) = 1
2qα cos(qx) sin 2φ(x)x̂ − qα cos(qx) cos φ(x)ẑ.

(27)

Here the twist is zero, as it should be for the splay-bend
deformation. The splay and bend both vary periodically
through the modulated structure. Plugging these quantities into
Eq. (20) gives a free energy density that also varies periodically
through the modulated structure. We average the free energy
density over the full modulation, and then minimize the
average free energy over the variational parameters α, p, and
q. This minimization gives the behavior near the transition,

α = K3

λ

(
μ′

K1

)1/2

(Tc − T )1/2,

p = 7K2
3 μ′

8λ2

(
1

2K1κ

)1/2

(Tc − T ), (28)

q = 7

8

(
μ′

2κ

)1/2

(Tc − T )1/2.

Furthermore, the free energy of the splay-bend phase just
below the transition is

FSB = − K4
3 μ′3

32K1κλ4
(Tc − T )3. (29)

From these results, we see that the uniform nematic phase
can become unstable to the formation of either the twist-bend
phase or the splay-bend phase at the critical temperature Tc.
We can then ask which of these modulated phases is more
stable. Comparison of the free energies (25) and (29) shows
that the twist-bend phase is more stable if K1 > 2K2, while
the splay-bend phase is more stable if K1 < 2K2. Interestingly,
this is exactly the same criterion for the relative stability of the
phases calculated by Dozov [8]. This criterion is reasonable,
because the elastic constants K1 and K2 give the energetic
costs of splay and twist deformations, which are required in
the splay-bend and twist-bend phases, respectively.

VI. DISCUSSION

In this paper, we have presented a theory for orientational
order in bent-core liquid crystals. The theory combines three
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parts: the Oseen-Frank free energy for director gradients, a
tendency toward polar order perpendicular to the director,
and a coupling between polar order and director bend. In
Landau theory, the Oseen-Frank free energy is represented
by the K terms, the tendency toward polar order by the μ

term, and the coupling by the λ term. In the lattice model, the
Oseen-Frank free energy is represented by A, the tendency
toward polar order by B1, and the coupling by C. Either
way, the physical conclusions are the same: In the uniform
nematic phase, there is a flexoelectric effect, where an imposed
bend leads to a polarization, and conversely an applied electric
field leads to a bend. This flexoelectric effect increases as the
temperature decreases toward a polar phase. At the critical
point, the response to an applied field diverges, and there
is a second-order transition from the uniform nematic phase
into a modulated polar phase. The modulation may have the
twist-bend or splay-bend structure, depending on the relative
values of K1 and K2.

To compare our theory with the previous work by Dozov [8],
note that two phenomena occur at the critical temperature
Tc: the system transitions from the uniform nematic phase to
the polar phase, and the renormalized bend elastic constant
Keff

3 of Eq. (10) changes sign from Keff
3 > 0 for T > Tc

to Keff
3 < 0 for T < Tc. Dozov would say that the modu-

lated phase is caused by the negative elastic constant Keff
3 .

By contrast, we would say that the modulated phase and
the negative Keff

3 are both caused by the bend-polarization
coupling together with the tendency toward polar order. Of
course, there is no contradiction between these two theories;
they are just different ways of expressing the same physical
concept.

Our theoretical results can be compared with recent
experiments. For the flexoelectric effect, the most relevant
comparison is with the experiments of Harden et al. [3,4],
which found a surprisingly large bend flexoelectric coefficient
in bent-core liquid crystals, about three orders of magnitude
larger than the typical value in rodlike liquid crystals. This
observation is at least qualitatively consistent with our concept
that bent-core liquid crystals are near an incipient polar phase
and hence are very sensitive to any slight polar perturbations.
However, one aspect of this comparison is confusing. In our
theory, it is easy to understand why the polarization and
bend induced by an applied electric field or an applied torque
should be very large in bent-core liquid crystals, because these
quantities diverge at the critical point. By comparison, it is not
easy to understand why the ratio between induced polarization
and induced bend should be very large, because this ratio does
not diverge at the critical point. (The ratio increases as T → Tc,
but only toward a finite limit.) Even so, that ratio is the standard
definition of the flexoelectric coefficient, which Harden et al.
found to be surprisingly large. One possible explanation of
this discrepancy might be that the experiment involves local
smectic order, which is not included in the theory; perhaps
this smectic order increases the ratio of polarization to bend.
An alternative explanation might be that the experiment is
somehow measuring one of the response coefficients that
diverges at the critical point and is not actually measuring
the ratio of polarization to bend. Yet another possibility might
be that the experiment is actually in a modulated polar phase
that has not yet been identified.

For the modulated polar phases, the most relevant compar-
ison is with recent experiments that find nonuniform nematic
phases in systems of bimesogens [10,11]. These experiments
provide good evidence that the observed modulation is a twist-
bend structure, which is an encouraging consistency between
theory and experiment. However, one point is confusing in the
comparison with Ref. [10]. The experiment reports that the
periodicity of the observed stripe pattern is twice the thickness
of the cell. By contrast, the theory predicts that the periodicity
should be determined by material parameters, even in the bulk
liquid crystal, regardless of the cell thickness. One possible
explanation of this discrepancy might be that surface anchoring
modifies the predictions of the theory and fixes the periodicity
of the incipient modulation. Such surface effects could be a
topic for future research.

As a final point, we note that the modulated polar phases are
locally ferroelectric; they have spontaneous polar order which
leads to electrostatic polarization. This local polarization is
modulated in a helix for the twist-bend phase or a planar
wave for the splay-bend phase, and hence it averages to zero
globally. For that reason, it might be difficult to observe in
an experiment. In this respect, the modulated polar phases are
similar to ferroelectric smectic-C* liquid crystals, which also
have local polar order that is modulated in a helix and averages
to zero globally. By analogy with ferroelectric smectic-C*
liquid crystals, there might be ways to unwind the helix of
the twist-bend phase (or eliminate the wave modulation in a
splay-bend phase) to obtain a structure with long-range polar
order. For example, strong surface anchoring might give a
surface-stabilized ferroelectric nematic phase. This surface
stabilization could be another topic for future research.
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APPENDIX: MEAN-FIELD CALCULATION
FOR LATTICE MODEL

The purpose of this Appendix is to show how the lattice
model of Sec. III can be solved analytically through mean-field
theory, rather than Monte Carlo simulations. The calculation is
analogous to the mean-field theory in our previous paper [5],
but now for bend instead of splay flexoelectricity. The results
are similar to the simulations presented in Sec. III.

For the mean-field calculation, we consider a small region
of the system in the uniform nematic phase under an applied
electric field. We suppose that the field and average polariza-
tion are along the ẑ axis, and the director has a bend from
layer to layer in the lattice as function of x, as shown in
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FIG. 10. (Color online) Construction for the lattice mean-field
calculation.

Fig. 10. Hence, we write

n̂ =

⎧⎪⎨
⎪⎩

(cos �θ,0, − sin �θ ) in layer 1,

(1,0,0) in layer 2,

(cos �θ,0, sin �θ ) in layer 3.

(A1)

Similarly, for the dipole direction b̂i on site i, we write

b̂i =

⎧⎪⎨
⎪⎩

(sin �θ cos θ̃i , sin θ̃i , cos �θ cos θ̃i) in layer 1,

(0, sin θ̃i , cos θ̃i) in layer 2,

(− sin �θ cos θ̃i , sin θ̃i , cos �θ cos θ̃i) in layer 3.

(A2)

We now suppose that the uniaxial nematic order is perfect, with
a single well-defined value of the bend angle �θ , but there is a
statistical distribution of the dipole orientations θ̃ . In terms of
this distribution, the polar order parameters is P1 = 〈cos θ̃〉 and
the biaxial order parameter is P2 = 〈cos 2θ̃〉. If we average the
lattice Hamiltonian of Eq. (17) over the statistical distribution
of θ̃ , and assume that �θ is small, then we obtain the average
energy per site

U = −A[3 − (�θ )2] − B1P
2
1

[
3 − 1

2 (�θ )2
]

−B2
[

3
2

(
1 + P 2

2

) − 1
4 (1 + P2)2(�θ )2

] − CP1�θ − EP1

(A3)

To construct the free energy, we must combine the average
energy with the entropy associated with the distribution of
dipole orientations θ̃ . The orientational distribution function
is

ρ(θ̃ ) = e(v1 cos θ̃+v2 cos 2θ̃ )∫ 2π

0 e(v1 cos θ̃+v2 cos 2θ̃ )dθ̃
(A4)

where v1 and v2 are two parameters in the effective potential
acting on θ̃ . They are related to the order parameters P1 and
P2 by

Pn(v1,v2) =
∫ 2π

0 cos(nθ̃ )e(v1 cos θ̃+v2 cos 2θ̃ )dθ̃∫ 2π

0 e(v1 cos θ̃+v2 cos 2θ̃ )dθ̃
(A5)

FIG. 11. (Color online) Mean-field results for the order param-
eters showing different types of transitions. (a, b) The biaxial order
parameter P2 (•) and polar order parameter P1 (
) as functions of
temperature T , for B1 = 0.03 (in a) and B1 = 0.20 (in b) at zero
field. (c, d) Bend �θ as a function of temperature under an applied
field. In all cases A = 1.0, B2 = 0.45, and C = 0.30.

for n = 1 and 2. The entropic part of the free energy
then becomes

−T S = kBT

∫ 2π

0
ρ(θ̃ ) log[ρ(θ̃ )]dθ̃

= kBT

[
v1P1 + v2P2− log

(∫ 2π

0
e(v1 cos θ̃+v2 cos 2θ̃ )dθ̃

)]
.

(A6)

Combining Eqs. (A3) and (A6), the full free energy is F =
U − T S.

The problem to be solved is now: For a given set of
interaction parameters A, B1, B2, C, E, and temperature T ,
we should find the variational parameters v1, v2, and �θ that
minimize the free energy. Once we know the values of v1 and
v2, we can calculate the order parameters P1 and P2. We can
then determine whether the phase is uniaxial nematic (NU ),
biaxial nematic (NB), or polar (P ), and we can see how the
bend �θ is related to the order parameters.

The free energy is minimized with Mathematica.
Figures 11(a) and 11(b) shows plots of the order parameters
and the bend in zero field as functions of temperature. Clearly
the qualitative behavior of the phase transitions found in
Monte Carlo simulations is reproduced. For small B1 and
B2, there is a transition from NU → NB , followed by a
transition from NB → P at lower temperature. For slightly
larger B1, the two transitions merge into a direct transition from
NU → P . These mean-field results are generally consistent
with the simulation results shown in Fig. 4, except that the
transition temperatures are significantly higher. As mean-field
theory exaggerates the tendency towards an ordered phase,
it overestimates the transition temperatures. Despite this
limitation, the simple mean-field calculation is successful in
describing the qualitative behavior of the system.

To see the effect of an applied electric field, we repeat
the minimization with a small field E in the free energy.
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Figures 11(c) and 11(d) shows the variation of the bend as a
function of temperature under a field. These mean-field results
are generally consistent with the simulation results shown in

Fig. 6, showing a bend that responds more sensitively to any
applied field as the temperature decreases toward the transition
into the polar phase.
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