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Multiple reentrant glass transitions of soft spheres at high densities:
Monotonicity of the curves of constant relaxation time in jamming phase diagrams depending on

temperature over pressure and pressure
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By using molecular-dynamics simulations, we determine the jamming phase diagrams at high densities for
a bidisperse mixture of soft spheres that interact according to repulsive power-law pair potentials. We observe
that the relaxation time varies nonmonotonically as a function of density at constant temperature. Therefore, the
jamming phase diagrams contain multiple reentrant glass transitions if temperature and density are used as control
parameters. However, if we consider a new formulation of the jamming phase diagrams where temperature over
pressure and pressure are employed as control parameters, no nonmonotonic behavior is observed.
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I. INTRODUCTION

The dynamics of soft particles usually slows down when
either the temperature is decreased or the packing fraction
is increased. A glass former consisting of soft spheres that
interact according to repulsive power-law interaction poten-
tials when they overlap is a commonly used model system
in order to study jamming or glassy dynamics (for reviews
see, e.g., [1–3]). A particular problem of great interest is
the relation of the glassy dynamics of such soft spheres and
hard spheres (see, e.g., [4–10]). While local rearrangements
of soft spheres occur if particles cross finite-energy barriers,
rearrangements of hard spheres depend on the free volume or a
global cooperative reorganization. Furthermore, hard spheres
were characterized as a fragile glass former as a function of
packing fraction, whereas soft spheres might also lead to strong
glassy dynamics [4,5,11].

In the case of small overlaps corresponding to systems with
small densities or at low pressures the dynamics of soft spheres
is similar to the one of hard spheres [7–9]. At high densities or
for large overlaps a different behavior was reported [12–15].
For example, if the density of a system with only moderate
overlaps is increased the dynamics first slows down and a
glass transition might occur at sufficiently low temperatures.
However, if the density is increased further a reentrant melting
transition was observed where the dynamics becomes faster
for increasing density or pressure [13–15]. Note that we use
the term glass transition in the sense that the relaxation time
exceeds the time accessible in the simulations.

At very high densities, if more than two particles overlap
and spheres start to interact with their next to nearest neighbors,
another glass transition with subsequent reentrant melting can
be observed. Moreover, as reported in [15], a whole series
of such successive glass and reentrant melting transitions
might occur. The corresponding nonmonotonous behavior of
the diffusion coefficient as a function of density is shown
in [15] for a two-dimensional system. In this article we
present results of similar simulations in a three-dimensional
system. Furthermore, we determine the complete jamming
phase diagrams for different exponents of the interaction
potential.

Jamming phase diagrams are employed to plot the depen-
dence of the dynamics on different control parameters in a well
arranged way [16]. Originally, the inverse density or inverse
packing fraction, the temperature, and the applied stress were
used as control parameters [1,16]. In a jamming phase diagram
the jamming surface or surfaces of constant relaxation time
are shown as a function of the control parameters. As we will
show in the following, due to the reentrant glass transitions the
jamming surface for soft spheres is not monotonous.

Recently, a new formulation of the jamming phase diagram
was proposed [8]. It uses a different set of control parameters,
namely temperature over pressure, pressure, and shear stress
over pressure. As shown in [8] an advantage of the new
jamming phase diagram is that the hard-sphere behavior is
given by the plane where the pressure vanishes and is therefore
easily accessible in the diagram. Furthermore, point J, i.e., the
point where after an instantaneous quench from infinite to
zero temperature the system cannot avoid overlaps without
crossing energy barriers [17,18], is located in the origin which
offers new insights to paths approaching point J [8]. Note
that recent works indicate that athermal jamming and the
glass transition are distinct phenomena [19–21]. Here we
present another advantage of the new set of control parameters.
As we will show, despite the reentrant glass transitions,
within the jamming phase diagrams spanned by the new
control parameters, all curves of constant relaxation time are
monotonous for all parameters that we have checked.

There are particles, e.g., star-shaped polymers [11,22,23],
that interact according to soft interaction potentials and for
which large overlaps are possible. Therefore, we expect that
the reentrant glass transitions also occur in such systems and
should in principle be accessible to experiments.

The article is structured as follows. In Sec. II we introduce
the model system. The relaxation time as a function of density
for constant temperature is presented in Sec. III. Jamming
phase diagrams with density and temperature as control
parameters are shown in Sec. IV. In order to compare different
control parameters, we discuss pressure as a function of density
in Sec. V before the jamming phase diagrams with temperature
over pressure and pressure as control parameters are presented
in Sec. VI. Finally, we conclude in Sec. VII.
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II. SYSTEM

We consider a bidisperse mixture of soft spheres in three
dimensions. Half of the spheres have the diameter σ , the other
half are larger spheres with diameter 1.4σ . All particles have
mass m. The spheres interact according to a repulsive power-
law potential,

V (rij ) =
{

ε
α

(
1 − rij

σij

)α
for rij < σij ,

0 for rij � σij ,
(1)

where rij is the distance between two spheres and σij = (σi +
σj )/2 is their average diameter. We consider the exponents
α = 3/2, α = 2 leading to a harmonic potential, α = 5/2 for
Hertzian interactions, and α = 3.

We perform molecular-dynamics simulations with N =
1000 spheres at fixed temperature T and pressure p for a
system with periodic boundary conditions using the constraint
method by Evans and Morris [24]. We extract the number
density ρ and determine the relaxation time τ that we define as
the time where the mean square displacement is 〈r2(τ )〉 = σ 2.
Each value of τ and ρ presented in the following is averaged
over the results of three independent runs.

III. ISOTHERMAL PATHS

First, we determine the relaxation time τ as a function
of density ρ along isothermal paths (see Fig. 1). Starting
at low densities the relaxation time first increases for in-
creasing density. This is the normal behavior one expects
for the colloidal dynamics close to the glass transition. For
sufficiently small temperature τ exceeds the time that is
accessible in our simulations. However, when ρ is increased
even further, the relaxation time suddenly decreases. As
already discussed in [13–15] the decrease of τ with increas-
ing ρ is due to completely overlapping particles. Unlike
hard spheres, soft spheres can also rearrange by crossing
neighboring spheres. At height densities soft spheres even
overlap in the athermal limit [15]. Therefore, the effective
potential barrier that a sphere has to cross for a rearrange-
ment is smaller and as a consequence the relaxation time
decreases.

For small α, e.g., α = 1.5 or α = 2 as depicted in Figs. 1(a)
and 1(b), respectively, the relaxation time possesses more
than one maximum. Therefore, multiple glass transitions with
subsequent reentrant melting transitions occur. While the first
reentrant melting is due to three spheres starting to overlap,
the following reentrant transitions are caused by a forth, fifth,
etc. sphere beginning to imbricate.

For softer spheres, i.e., a larger exponent α, we only observe
one glass transition with subsequent reentrant melting. For soft
interactions four or more particles start to interact already at
a lower density, even due to thermal excitations. Therefore,
there is no sharp density where an additional sphere begins
to interleave its neighbors. In Sec. V we discuss how density
and pressure are connected, which also is an indicator on how
many spheres are overlapping and how sharp the crossovers
for additional overlaps are.
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FIG. 1. (Color online) Relaxation time τ as a function of density ρ

for selected constant temperatures T . The exponent of the interaction
potential is (a) α = 1.5, (b) α = 2, (c) α = 2.5, and (d) α = 3. The
relaxation time is given in units of (mσ 2/ε)1/2.

IV. JAMMING PHASE DIAGRAMS DEPENDING ON
TEMPERATURE AND DENSITY

In Fig. 2 we show the jamming phase diagrams. The axes
denote the temperature T and the number density ρ. Both axes
are plotted logarithmically. The curves mark parameters with
constant relaxation time τ . Below the solid black line that
denotes the relaxation time τ = 1000

√
mσ 2/ε the relaxation

time exceeds the time scale of our simulations and within
that time scale the system is jammed. Note that the relaxation
times that are depicted by the lines increase exponentially
when crossing the curves from top to bottom. Therefore, the
diagrams clearly show the non-Arrhenius increase of τ for
decreasing T . Furthermore, the oscillating behavior of the
curves, especially for α = 1.5 or α = 2 as shown in Figs. 2(a)
and 2(b), exposes the multiple reentrant glass and melting
transitions.

In Fig. 3(a) we directly compare the lines that denote the
relaxation time τ = 1000

√
mσ 2/ε for different exponents α.

As already mentioned in the previous section, multiple
reentrant transitions can be observed for small α, while for
softer spheres with larger α the multiple reentrant behavior is
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FIG. 2. (Color online) Jamming phase diagrams depending on
temperature T and number density ρ. Each curve denotes states where
the same relaxation time is observed. Therefore, below the solid black
line that corresponds to relaxation times τ/(mσ 2/ε)1/2 = 103 the time
scale of rearrangements exceeds the maximal time of our simulations.
Time is given in units of (mσ 2/ε)1/2. The exponent of the interaction
potential is (a) α = 1.5, (b) α = 2, (c) α = 2.5, and (d) α = 3.

less pronounced. Finally, for α = 3 only one maximum occurs,
i.e., there is only one glass transition with subsequent reentrant
melting.

Since in some articles time is given in units of
√

m/(pσ )
instead of

√
mσ 2/ε (see, e.g., [7–9,25]), we show lines of

constant relaxation time in units of
√

m/(pσ ) in Fig. 3(b). We
do not observe any qualitative differences between the two
representations of the jamming phase diagrams in Figs. 3(a)
and 3(b) that only differ by the unit of time. Therefore, the
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FIG. 3. (Color online) Comparison of lines with constant relax-
ation time (a) τ = 1000

√
mσ 2/ε and (b) τ = 1000

√
m/(pσ ) for

different exponents α. Temperature T and number density ρ are used
as control parameters. Note that (a) and (b) differ by the employed
unit of time.

multiple reentrant glass are not an artifact of the employed time
unit. However, as we will show later, by changing the control
parameters, jamming phase diagrams can be constructed such
that the lines of constant relaxation time are monotonous.

V. PRESSURE AS A FUNCTION OF DENSITY

As already mentioned in Sec. III the nonmonotonous
behavior of the relaxation time as a function of density is
due to the possibility of overlaps of multiple spheres. If the
density is increased the dynamics slows down every time
new pairs of particles start to interact, e.g., at low densities
all spheres start to overlap with their nearest neighbor, for
further increased density after the first reentrant transition the
dynamics slows down again due to interactions with the next to
nearest neighbors, etc. On the other hand, the reentrant melting
is observed whenever the particles overlap significantly but no
additional contacts or overlaps occur if the density is slightly
increased. For the athermal limit and for two-dimensional
systems this behavior is also studied in [15].

The sequence of an increase of the number of new contacts
followed by increasing overlaps but no new interacting pairs of
particles also leads to a nontrivial dependence of the pressure
on density. In Fig. 4(a) we show the pressure as a function
of number density. The derivative of the pressure with respect
to the density is plotted in Fig. 4(b). The solid red curves
in Fig. 1 represent a typical case where multiple reentrant
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FIG. 4. (Color online) (a) Pressure as function of the number
density for a case where multiple reentrant glass transitions are
observed (α = 1.5, kBT = 0.05ε, solid red line) and a case where
only one glass transition with subsequent reentrant melting occurs
(α = 2.0, kBT = 0.09ε, dotted magenta line). (b) Derivatives of
the curves in (a) that demonstrate the nontrivial dependence of the
pressure on density.

glass transitions are observed, while the dotted magenta curves
denote a case where only one maximum of the relaxation time
exists. Accordingly, in Fig. 4(b) the solid red curve shows
an oscillating behavior, while the dotted magenta curve only
possesses one local maximum. The pressure dependence can
be explained by overlaps between the spheres. If new pairs
of spheres start to interact the pressure increases rapidly. This
corresponds to the density ranges where the dynamics becomes
slower. However, whenever an increase of the density only
causes increasing overlaps but no new contacts, the increase
of pressure is smaller. This coincides with the densities where
the relaxation times are small.

VI. JAMMING PHASE DIAGRAMS DEPENDING ON
TEMPERATURE OVER PRESSURE AND PRESSURE

In a new formulation of the jamming phase diagram [8]
temperature over pressure T/p and pressure p are used
as control parameter. The different control parameters are
motivated by a number of advantages of the new formulation.
For example, temperature over pressure is a suitable control
parameter to characterize both the glass transition at low
temperatures and the colloidal glass transition at large densities
[7,25]. Therefore, in a jamming phase diagram with the new
control parameters a universal limit corresponding to the hard
sphere case is approached for p → 0 [8].

In Fig. 5 we plot the lines of constant relaxation time as
function of the control parameters temperature over pressure
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FIG. 5. (Color online) Jamming phase diagrams depending on
temperature over pressure T/p and pressure p. Time is given in
units of (mσ 2/ε)1/2. The exponent of the interaction potential is
(a) α = 1.5, (b) α = 2, (c) α = 2.5, and (d) α = 3.

T/p and pressure p. Interestingly, for all cases we have studied
all curves are monotonous. There is a steplike behavior for
low temperatures that is the remainder of the nonmonotonous
behavior in the old formulations of the jamming phase
diagrams. Within the new diagrams, no reentrant transitions
occur for all horizontal or vertical paths. The isothermal paths
presented in Sec. III correspond to paths along hyperbolic
curves in the new diagrams (straight lines with slope −1 in the
log-log plots of Fig. 5).

Figure 6(a) shows a comparison of the lines with relaxation
time τ = 1000

√
mσ 2/ε for different exponents α. As shown

previously [7,9], such lines should originate from the universal
hard-sphere limit for p → 0. However, for the pressures
or densities studied here, we already observe significant
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FIG. 6. (Color online) Comparison of lines with constant relax-
ation time (a) τ = 1000

√
mσ 2/ε and (b) τ = 1000

√
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different exponents α. Temperature over pressure T/p and pressure
p are used as control parameters. Note that (a) and (b) differ by the
employed unit of time.

differences between the curves for different α. In particular,
in systems with soft spheres, i.e., large α, the relaxation times
are smaller than in systems with small α that are closer to the
hard-sphere limit.

For completeness we also determined the new jamming
phase diagrams for lines of constant relaxation times where
the time is given in units of

√
m/(pσ ) instead of in units

of
√

mσ 2/ε. In Fig. 6(b) we plot the lines with τ =
1000

√
m/(pσ ) for different exponents α as a function of the

new control parameter. The differences between the different
employed time units are small. Though for

√
m/(pσ ) as a

unit of time there are some almost horizontal parts in the
lines of constant relaxation time, we did not observe any
nonmonotonous curves for all parameters we looked at.

VII. CONCLUSIONS

We have studied the multiple reentrant glass transitions that
occur in soft-sphere systems when increasing the density. We
determined the jamming phase diagrams in their traditional

formulation with temperature and density as control parameter
as well as in the new formulation where the lines of constant
relaxation times are plotted as functions of temperature over
pressure and pressure. While in the traditional diagrams the
reentrant glass transitions lead to nonmonotonous lines of
constant relaxation time, in diagrams employing the new set
of control parameters we did not find any nonmonotonicity.

In experiments (see, e.g., [4]) the density or packing fraction
are accessible parameters, while the pressure probably is
hard to determine. Therefore, the traditional jamming phase
diagrams seem to be the obvious choice for experimentalists.
However, from a theoretical point of view, the new set
of control parameters possesses important advantages. In
the limit p → 0 the universal hard-sphere limit is obtained
[7,8] for all repulsive, finite-ranged interaction potentials.
Furthermore, while for the traditional control parameters
any pertubative approximation that is employed in order
to connect the relaxation times for different densities or
for different interactions seems to be hard to apply, such
approximations are more likely to work in terms of pressure
and temperature over pressure. As already shown in [9], the
dynamics of soft spheres with small overlaps can be mapped
onto the hard-sphere behavior by introducing an effective
diameter using the Andersen-Weeks-Chandler approximation
[26]. Probably, similar mappings can be found for larger
pressures by employing methods that were developed to
describe the structure of liquids at high densities (see, e.g.,
[27,28]). For example, the approximative description of the
structure was extended to larger densities by mapping the
soft-sphere system onto a soft r−12 reference system instead of
onto hard spheres [28]. In general, since even for large overlaps
the relaxation time is a monotonous function of the new control
parameters and there seems to occur no dynamical crossover
or any other fundamental change in the type of dynamics when
the pressure is increased, we also expect that approximations
used to compare the dynamics at different densities or of
particles with different interactions work in a similar way
as the Andersen-Weeks-Chandler approximation does close
to the hard-sphere limit. Another interesting question for
future research is whether scaling relations that were reported
for soft spheres with small overlaps (e.g., [5,6]) can be
connected to relations observed for soft spheres at high
densities [12].
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