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Irreversibility and chaos: Role of lubrication interactions in sheared suspensions
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We investigate non-Brownian particles suspended in a periodic shear-flow using simulations. Following
Metzger and Butler [Phys. Rev. E 82, 051406 (2010)], we show that the chaotic dynamics arising from lubrication
interactions are too weak to generate an observable particle dispersion. The irreversibility observed in periodic
flow is dominated by contact interactions. Nonetheless, we show that lubrication interactions must be included
in the calculation to obtain results that agree with experiments.
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I. INTRODUCTION

Viscous suspensions of non-Brownian and neutrally buoy-
ant spheres in a periodic shear flow exhibit a remarkable
transition. At a given volume fraction, if the strain amplitude
surpasses a critical value, the suspension transitions to a
fluctuating state: the particles do not return to their original
positions and when tracked stroboscopically at the end of each
cycle of shear, the particles exhibit large fluctuations analogous
to a random walk [1-4].

This dispersion of particles has attracted a large interest
since sheared suspensions often are assumed to be governed
by reversible equations (Stokes equations). Within this “pure-
hydrodynamic limit” (i.e., only hydrodynamic forces are
present and the Reynolds number is zero), the irreversible
motion of the particles was attributed to the chaoticity of
the hydrodynamic interactions [2,5,6]. Chaos, when coupled
to any source of noise, ensures that reversing the direction
of flow does not in practice lead to a time-reversed motion
for all of the particles; any small perturbation in the state of
the system grows exponentially in time. Thus, according to
this explanation, small perturbations (weak Brownian motion,
particle roughness, or any finite-ranged force), which are
inevitably present in real suspensions, are amplified and give
rise to the observed particle dispersion.

However, other studies have shown that the extent of
irreversibility in concentrated suspensions strongly correlates
with the particles’ roughness [7-9]. Similar observations were
reported for very dilute suspensions [ 10] and for the interaction
between two particles [7,11], where chaos cannot explain the
lack of reversibility.

Thus, fundamental questions persist regarding the role of
the hydrodynamic interactions and whether contacts should be
considered just a source of noise or as a primary source of irre-
versible displacements. The suspension dynamics arise from
three different contributions: (i) the long-range hydrodynamic
interactions, (ii) lubrication, which results from the thin layer
of viscous fluid that separates nearly touching particles, and
(iii) contacts, which prevent particles from overlapping. It is
difficult from experimental results or from existing numerical
simulations (Stokesian dynamics) to discern which mechanism
causes the irreversibility, as all three contributions are present
at the same time.

Resolving the questions requires separating the differ-
ent contributions to the particle dynamics and estimating

1539-3755/2013/87(5)/052304(4)

052304-1

PACS number(s): 83.80.Hj, 47.15.G—,47.57.E—

their relative importance. This systematic approach already
demonstrated that the long-range hydrodynamic interactions
are not a source of chaos and are not responsible for the
observed irreversibility [1]. The present work continues this
investigation by probing the role of hydrodynamic interactions
between particles at short range: the lubrication interaction.

II. MODEL

A minimal model was developed to inquire specifically
about the role of lubrication in generating chaotic and irre-
versible behavior in sheared suspensions. A total of N particles
is initially distributed in a square box with nonoverlapping
positions to give an areal-fraction ¢; simulating a monolayer
of particles provides substantial savings in computational time
while maintaining an accurate description of the relevant
physics. The particle positions are periodic in the flow, or
x, direction and are constrained in the gradient, or y, direction
by solid walls. In the absence of inertia, the sum of the
hydrodynamic forces, Fl’?, and the contact forces, Fy, on each
particle i balance,

N
F!+) F;=0. (1)
J#i
The hydrodynamic forces are given by
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where ¢ denotes the fluid viscosity, d the particle diameter, and
u; the velocity of particle i. The fluid velocity at x; = (x;,y;),
the position of particle i, is u;o, = yy; and y is the shear rate.
Lubrication forces between particle i and the particles j(i)
located within the lubrication range of particle i depend upon
the relative velocities and separation distance h;; = |x;;| — d,
where |x;;| = |X; — X/, of each pair. The particles j(i) located
within the lubrication range of particle i satisfy 2¢, < h;; <
d/2, where €, is the particle roughness. The algorithm only
accounts for the normal component of lubrication [12], which
acts along the particles’ common normal, n;; = x;;/|x;;|. The
contact forces are given by

C Fon,‘j if |hij| < 26,
F;;, =

3
0 if |h,]| > 26r, ( )
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where F\ denotes the amplitude of the repulsive force. We
set Fop =3mpuydH, where H is the separation distance
between the shearing walls, and ¢, was varied between
0 and 10~%4.

The equations presented above are solved for the velocities
of the particles given their spatial positions. The positions
are updated in time using a fourth-order Runge-Kutta method
with a time step that ensures a displacement of less than
d /200 for every particle. Simulations were performed with
up to N =50 particles that were tracked over a strain y = 10
for continuous shear simulations. One strain unit corresponds
to a relative displacement of the cell walls equal to their
separation distance. We also performed simulations applying
a periodic shear with strain amplitudes y, between 0.5 and 6
and a total accumulated strain of 400. The total accumulated
strain after n cycles is y = 4nyy, as yp is the strain for a
quarter-cycle.

Equations (1)—(3) describe a sheared suspension of parti-
cles interacting through lubrication and contact forces. The
model does not include long-range hydrodynamic interactions
purposely, as we aim to investigate whether lubrication forces
engender chaotic and irreversible behavior. The investigation
is facilitated by simulating three different conditions: (i) the
“pure lubrication limit,” in which case the contact force and
roughness are set to zero, Fp = 0 and ¢, = 0; (ii) the “pure
contact limit,” where the lubrication forces are not included;
and (iii) simulations containing both lubrication and contact
forces.

III. RESULTS

We first investigate the relative trajectory between two
particles as calculated for the three different cases. The
results, shown in Fig. 1, are compared to the full-solution
obtained by integrating the equation of da Cunha and Hinch
[13], which includes the long-range hydrodynamic interaction.
The trajectory obtained with lubrication differs from the
full-solution: deviation of the trajectory occurs only when
the particles are very close (within the lubrication range).
However the symmetry, and thus reversibility, of the trajectory
is preserved. The minimum separation distance between the
two particlesis hjp = 3 x 10~°d. Similar to the observation of
da Cunha and Hinch [13], the trajectory becomes asymmetric
when the contact force is included and the minimum separation
distance falls below 2¢,. Including the contact force and
ignoring lubrication results in an even larger asymmetry of the
trajectory, as the motion of the particles follows the streamlines
of the background shear flow after contacting.
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FIG. 2. (Color online) Separation distance, S, versus strain
obtained in the “pure lubrication limit” (Fy = 0) for N =50, ¢ =
0.25, and a steady shear flow.

Note that the equations can also be integrated for small
total strains for multiple particles in the “pure lubrication
limit” without violating the excluded volume restrictions. This
allows us to investigate whether lubrication interactions alone
lead to chaotic dynamics. Following Refs. [1,14-16], two
random distributions of 50 particles each are simulated. The
second distribution, labeled B, is prepared from the original
configuration, labeled A, by displacing each particle in a ran-
dom direction by a small distance ¢ = 10~*d. The Euclidian
distance between these two simulations is computed in phase
space as S = v+ 3 (v — yF)? [18]. For chaotic systems,
S grows exponentially as ee*”, where A is the Lyapunov
exponent. Figure 2 shows the exponential increase of the
separation distance, S, with accumulated strain amplitude, y.
The positive value of the Lyapunov exponent, A = 0.56, is a
clear indicator of chaos. The separation distance was obtained
by averaging data from nine sets of simulations.

We can identify two distinct mechanisms that potentially
contribute to the amplification, seen in Fig. 2, of the initial
perturbation. One contribution is from the N-body dynamics
occurring through the lubrication interactions. The second is
a two-body mechanism arising from the strong focusing and
defocusing of streamlines, which is illustrated in Fig. 3(a). Two
particles placed on top of each other separate on very different
streamlines if a small perturbation is imposed on their initial
position; see Fig. 3(b). We systematically quantify this effect
by measuring the amplification factor, /€, where o and € are
the final and initial distance between these two streamlines,

/Contact Force Only
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FIG. 1. (Color online) Relative trajectory between two particles initially located at (x1,y;) = (0,0) and (x3,y,) = (—10,0.1).
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(a) (c) In the following, we investigate whether this chaotic
P01 @ Full solution dyqamics can be responsible for the irreversibility o'bserve.d in
ggw A Lubrication only penochcally shea.red suspensions. We peyformed simulations
m applying a periodic shear with strain amplitudes y, between 0.5
. and 6 and a total accumulated strain of 400. The particle mean
square displacements are evaluated from the particle positions
at the end of each cycle of shear. Changes in the mean-square
displacements indicate the presence of irreversible dynamics,
whereas the lack of a change in the mean-square displacements
, from cycle-to-cycle indicate that the system is in a reversible
00s o1  Sstate.
Separation distance, /d The mean-square displacements obtained in the “pure
lubrication limit” do not show, at the particle scale, any
FIG. 3. (a) llustration of the streamline focusing and defocusing significant growth: the system behaves in a reversible way (cf.
before and after the apex of the interaction. (b) Relative trajectories for Fig. 4). This seems at first inconsistent with the chaotic nature
two particles initially displaced at [(x1,y1) = (0,0), (x2,32) = (0,d +  of lubrication interactions shown above. However, considering
h)], and at [(x1,y1) = (0,0), (x2,2) = (0,d + h +¢€), with h =5 x4 strain amplitude of yy = 3, the amplification of perturbations
107*d and € = 5 x 107*d. The distance in the y direction between caused by chaos is ¢’ & 5. The amplification of the noise
these two trajectories after a strain y = 10 is «. (c) Amplification present in our system [typically round-off error 0(1078)]
cz'iused by the streamline defocusing, «/€, versus initial separation is, thus, too small to produce an irreversible displacement
distance, h. observable at the particle scale O(1). Therefore, the chaos
arising from lubrication is not responsible for the irreversibility
observed in periodically sheared suspensions.
respectively, as the function of the initial particle separation In the “pure contact limit,” the mean-square displacements
distance &. Figure 3(c) shows that the amplification of an initial increase rapidly and then plateau after an accumulated strain
perturbation can be O(20) for two particles initially separated y =~ 150. The system freezes into a reversible state even
by a small distance #. However, this effect decreases when at large strain amplitudes. This evolution occurs since the
the initial separation distance increases; two particles initially ~ particles driven solely by contact forces organize into layers
separated by a distance & > 0.1d are weakly sensitive to this [see inset of Fig. 4(a)], a configuration in which collisions
mechanism as «/e — 1. Note that this amplification is the  between particles cease.
same using the full solution of da Cunha and Hinch [13] or A steady fluctuating state is attained at large strain ampli-
lubrication only. tudes when both contact and lubrication interactions are in-
To remove this effect in the estimation of the Lyapunov  cluded in the calculations. The lubrication interactions disrupt
exponent, simulations were performed with altered initial the formation of layers [see inset of Fig. 4(a)] and consequently
conditions where the minimum separation distance between  particles remain on streamlines where collisions occur. We
particles was set at 0.1d instead of zero. The results calculated ~ found that the slope of the mean-square displacement strongly
from these initial conditions, labeled as “modified initial con- depends on the particle roughness €, [shown on Fig. 4(a)] but
ditions” in Fig. 2, show that S still grows exponentially, albeit weakly depends on the upper bound of the lubrication range.
with a lower rate of A = 0.31. The lubrication interactions thus Note that the above dynamics (self-organization into layers

lead to a chaotic behavior. when particles are solely interacting through contacts and the
(a) (®)
0.4- o contactHubr?cat?on, & ZIOjd 10-1,E o D
<yy> o contact+lubrication, €, =10d 3 i O
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FIG. 4. (a) Mean square displacements versus accumulated strain for ¢ = 0.4 and y, = 3. (b) Diffusion coefficients versus strain amplitude
for simulations with contact and lubrication interactions for ¢ = 0.5 and €, = 0.002d.
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disruption of particle layering when lubrication is included) are
also observed when simulations are performed with N = 200
particles. This suggests that the results are not due to finite-size
effects.

The slopes of the particle mean-square displacements for
strains of ¥ > 100 are used in calculating the dimensionless
diffusivities, D} = (xx)/2yd* and D} = (yy)/2yd?, plotted
in Fig. 4(b). The diffusion coefficients parallel, D}, and
perpendicular, DY, to the flow direction rapidly increase with
strain amplitude. These numerical results agree qualitatively
with the experimental data of Pine et al. [2] and successfully
predict the transition of the particle dispersion at yy =~ 2. For
strain amplitudes smaller than 2, the system self-organizes
into a nonfluctuating quiescent state as suggested by the
experiments of Corté et al. [17].

IV. CONCLUSIONS

We have examined the role of lubrication interactions in
suspensions of non-Brownian particles submitted to a periodic
shear-flow. We used a simple model that includes repulsive
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forces (to prevent overlap) and lubrication (to describe the
interaction between particles). We found that chaos arises
from the N-body dynamics occurring through the lubrication
interactions. However, for the strain amplitudes considered
here, yy = [0.25-6], this chaos is too weak to produce a
significant irreversibility under oscillatory shear. Therefore,
in periodically sheared suspensions, lubrication is not respon-
sible for the irreversibility, which is dominated by contact
interactions. Nonetheless, lubrication plays an important role
by disrupting the particle layering that occurs if particles solely
interact through contact forces. Lubrication thus ensures that
the collision process perpetuates and allows the system to reach
the steady fluctuating state observed in experiments at large
strain amplitudes.
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