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Monte Carlo simulation of the nonadditive restricted primitive model of ionic fluids:
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We report an accurate Monte Carlo calculation of the phase diagram and clustering properties of the restricted
primitive model with nonadditive hard-sphere diameters. At high density the positively nonadditive fluid shows
more clustering than in the additive model and the negatively nonadditive fluid shows less clustering than in the
additive model; at low density the reverse scenario appears. A negative nonadditivity tends to favor the formation
of neutrally charged clusters starting from the dipole. A positive nonadditivity favors the pairing of like ions at
high density. The critical point of the gas-liquid phase transition moves at higher temperatures and higher densities
for a negative nonadditivity and at lower temperatures and lower densities for a positive nonadditivity. The law
of corresponding states does not seem to hold strictly. Our results can be used to interpret recent experimental
works on room temperature ionic liquids.
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I. INTRODUCTION

Ionic soft matter [1] is a class of conventional condensed
soft matter [2–8] with prevailing contribution from electrostat-
ics, in many cases crucially affecting its physical properties.
Among the most popular representatives of such a class of
materials are natural and synthetic saline environments, such
as aqueous and nonaqueous electrolyte solutions and molten
salts as well as a variety of polyelectrolytes and colloidal
suspensions. Equally well known are many biologically
important proteins.

The simplest theoretical model for ionic colloidal suspen-
sions is the restricted primitive model (RPM) [9], a binary
mixture of uniformly charged hard spheres of diameter σ :
two species of opposite charge ±q and equal concentrations
to ensure charge neutrality, moving in a medium of fixed
dielectric constant ε. The phase diagram properties of this
model have been widely studied both through analytical
theories [10–22] and within computer experiments starting
from the seminal works of Friedman and Larsen [23] and
Vorontsov-Veliaminov and co-workers [24,25], followed by
the pioneering Gibbs ensemble Monte Carlo calculation of
Panagiotopoulos [26] and by other numerical simulations
[27–34]. The more general primitive model with asymmetry
in ion charge [35], ion size [36–38], and both ion charge and
size [37,39] has also been studied.

From these studies emerged how, in the vapor phase, an
important role is played by association and clustering. In a
previous work [40] one of us studied a modified RPM fluid
where one allows for size nonadditivity particle diameters.
Controlling the nonadditivity, it was suggested through the
use of integral equation theories that such a fluid might
have a complex behavior due to the possible competition
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between clustering tendency due to the Coulomb interaction
and demixing tendency due to entropic advantage driven by
the nonadditivity. Thus the nonadditivity of the hard-sphere
diameters does not destroy the simplifying symmetry of the
model, but enriches the properties of the pure RPM, making
it a paradigm for the self-assembly of isotropic particles and
a challenge to present day theories of fluids. In real systems,
the degree of nonadditivity might be directly related to the
anion-cation contact-pairing affinity [41], which in turn may
be mediated by the solvent.

It is the purpose of this paper to reconsider such a model
fluid from the point of view of accurate numerical experiments.
In particular, we want to study the clustering properties of the
fluid outside the gas-liquid coexistence region. To this aim we
determine the gas-liquid coexistence curve through the Gibbs
ensemble method after having studied semiquantitatively how
the coexistence region changes with the nonadditivity through
a density distribution analysis in the canonical ensemble. This
way we could be sure that our cluster analysis falls outside the
coexistence region in all the cases studied. Clustering turns
out to be greatly affected by the nonadditivity parameter,
the most striking effect being the prevalence of neutrally
charged clusters made up of an even number of particles
in the negatively nonadditive fluid. When the nonadditivity
allows complete overlap of the two species of particles, the
formation of a fluid of neutral hard spheres of half the
density is expected and our simulation results clearly show this
behavior. In contrast, for a positive nonadditivity, it is known
that the neutral hard-sphere mixture tends to demix the two
species and the demixing critical density decreases as the
nonadditivity increases [42–47]. We expect this property of the
neutral system to have some interesting effect on the clustering
properties of the charged fluid since demixing cannot occur in
a binary charged system: The frustrated tendency to segregate
like particles and the reduced space available to the ions
favor pairing of like ions and percolating clusters at high
densities. Preliminary results from our analysis are presented
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in [48]; here we extend that analysis and present the gas-
liquid binodal of the fluid as a function of the nonadditivity
parameter.

The model fluid considered in this paper may be realized
experimentally through a colloid-star polymer mixture where
both species are charged [49,50] or by room temperature ionic
liquids [51–54] as discussed in Sec. III C2. In particular in the
latter systems, liquid-liquid binodals shifted above and below
the one of the pure RPM are observed, depending on the kind
of solvent used. If, on the one hand, this can be ascribed to
the different dielectric constant of the solvent [52], on the
other hand, it is clear that, depending on the kind of solvent,
the anion-cation contact-pairing affinity may vary [41] and
thus the different experimental ionic liquids should be more
correctly described by comparison not just with the pure RPM,
but with the more realistic primitive model with the addition
of either a positive or negative size nonadditivity.

The paper is organized as follows. In Sec. II the model
for the fluid we want to study is described. In Sec. III the
results from the numerical experiments are reported. These are
divided into a cluster analysis in Sec. III A, an analysis of the
radial distribution function and structure factor in Sec. III B,
and an analysis of the gas-liquid coexistence in Sec. III C.
Theoretical remarks on the clustering properties are presented
in Sec. IV. We summarize in Sec. V.

II. MODEL

The model fluid we want to study is the restricted primitive
model of nonadditive hard spheres. The RPM consists of
N/2 uniformly charged hard spheres of species 1 of diameter
σ carrying a total charge +q each and N/2 uniformly
charged hard spheres of species 2 of the same diameter
carrying a total charge −q each. The spheres are moving in
a dielectric continuum of dielectric constant ε independent of
the thermodynamic state. The interaction between an ion of
species i and one of species j a distance r apart is given by

βφij (r) =
⎧⎨
⎩

+∞, r � σij

qiqj

kBT εr
, r > σij

(2.1)

for i,j = 1,2, where β = 1/kBT , with T the absolute temper-
ature and kB the Boltzmann constant, and qi is the charge of
an ion of species i. The ions form a mixture of nonadditive
hard spheres, i.e.,

σij =
{
σ, i = j

σ (1 + �), i �= j
(2.2)

for i,j = 1,2, with the nonadditivity parameter � > −1. A
thermodynamic state is completely specified by the reduced
density ρ∗ = ρσ 3 = Nσ 3/V , where V is the volume contain-
ing the fluid, the reduced temperature T ∗ = kBT εσ/q2 (q2/εσ

is taken as the unit of energy), and the nonadditivity parameter
�. We will call x1 = ρ−/ρ = 1/2 and x2 = ρ+/ρ = 1/2 the
anions and cations molar concentrations, respectively.

III. RESULTS

In Fig. 1 we show the phase diagram of the pure RPM fluid,
� = 0, as obtained from the Gibbs ensemble Monte Carlo
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FIG. 1. (Color online) Diagram showing the gas-liquid coexis-
tence curve of the RPM fluid from the Gibbs ensemble MC data of
Ref. [29] (closed circles) and ours (open circles), the triangle being
the critical point, and the points (closed squares) of the phase diagram
where we run our NVT MC simulations.

method by Orkoulas and Panagiotopoulos [29] and by us (see
Sec. III C2). The thermodynamic points where we probe the
fluid with our NVT Monte Carlo simulations are also shown as
closed squares.

In our canonical NVT Monte Carlo (MC) we study the
fluid in a simulation box of volume V = L3 with periodic
boundary conditions. The long range of the 1/r interaction is
accounted for using an Ewald sum for the interacting energy
in the periodic system [55]. The interaction energy per unit
box for ε = 1 is calculated as

U =
∑
μ<ν

∑
n

qiμqjν

erfc(κ|rμν + Ln|)
|rμν + Ln|

+ 2π

L3

∑
k �=0

e−(k/2κ)2

k2
|ρk|2 − κ√

π

∑
μ

q2
iμ

− π

2κ2L3

(∑
μ

qiμ

)2

, (3.1)

where a roman index with a greek subindex denotes the species
of the particle labeled by the greek subindex, rμν = rν − rμ

with rμ the position of particle μ, ρk = ∑
μ qiμe

−ik·rμ , erfc
denotes the complementary error function, n = (nx,ny,nz)
with nx,ny,nk = 0,±1,±2, . . . , and k = (2π/L)(nx,ny,nz)
are reciprocal lattice vectors. The parameter κ that governs
the rate of convergence of the real space and reciprocal space
contribution to the energy is taken to be κ ∼ 5/L. With this
value of κ , the real space contribution can be restricted to the
first term n = 0 only. The reciprocal space term includes all k
vectors such that n2

x + n2
y + n2

z < 27. The last term in Eq. (3.1)
is zero for the RPM, but it is important in the Gibbs ensemble
simulation where a particle exchange between the two boxes
can produce systems where there is an unequal number of
positive and negative charges. Our choice for the interaction
energy takes into account the fact that each charge has a
uniform background of neutralizing opposite charge density.

In our NVT MC simulations we used N = 100 (except for
the test of the size dependence of the clustering analysis, where
we considered up to 5000 particles), the acceptance ratio is
kept, on average, close to 50% after a preliminary adjustment

052303-2



MONTE CARLO SIMULATION OF THE NONADDITIVE . . . PHYSICAL REVIEW E 87, 052303 (2013)

10-5

10-4

10-3

10-2

10-1

100

 1  10  100

<N
n>

/N

n

ρ*=0.45
T*=0.1

(a)
Δ=0.0

Δ=+0.3
Δ=-0.3

10-5

10-4

10-3

10-2

10-1

100

 1  10  100

<N
n>

/N

n

ρ*=0.3
T*=0.1

(b)
Δ=0.0

Δ=+0.3
Δ=-0.3

10-5

10-4

10-3

10-2

10-1

100

 1  10  100

<N
n>

/N

n

ρ*=0.2
T*=0.1

(c)

Δ=0.0
Δ=+0.3
Δ=-0.3

0.1
0.2
0.3
0.4
0.5

 1  2

10-5

10-4

10-3

10-2

10-1

100

 1  10  100

<N
n>

/N

n

ρ*=0.1
T*=0.1

(d)

Δ=0.0
Δ=+0.3
Δ=-0.3

0.1
0.2
0.3
0.4
0.5
0.6

 1  2

10-5

10-4

10-3

10-2

10-1

100

 1  10  100

<N
n>

/N

n

ρ*=0.01
T*=0.1

(e)

Δ=0.0
Δ=+0.3
Δ=-0.3

0.0
0.2
0.4
0.6
0.8
1.0

 1  2

10-5

10-4

10-3

10-2

10-1

100

 1  10  100

<N
n>

/N

n

ρ*=0.001
T*=0.1

(f)

Δ=0.0
Δ=+0.3
Δ=-0.3

0.0
0.2
0.4
0.6
0.8
1.0

 1  2

FIG. 2. (Color online) Clustering properties of the fluid at T ∗ = 0.1 at various values of nonadditivity. The Nn are the numbers of clusters
made of n particles. In the MC simulations we used N = 100 particles and 1 × 107 MCS. The panels are ordered (left to right, top to bottom)
in order of decreasing density: ρ∗ = 0.45 (a), 0.3 (b), 0.2 (c), 0.1 (d), 0.01 (e), and 0.001 (f). The insets allow one to read off the degree of
dissociation.

of the maximum particle displacement. We start from a simple
cubic configuration of two crystals, one made of species 1 and
one made of species 2, juxtaposed in order to avoid overlaps
at high densities. We need around 105 MC steps (MCS) in
order to equilibrate the samples and 106 MCS/particle for the
statistics.

A. Cluster analysis

During the simulation we perform a cluster analysis. After
each 100 MCS we determine the number Nn of clusters made
of n particles so that

∑
n nNn = N . We assume [56,57] that a

group of ions forms a cluster if the distance r , calculated using
periodic boundary conditions, between a particle of species i of
the group and at least one other particle of species j is less than
some fixed value, i.e., r < σij + δcσ , where δc is a parameter.1

In all our simulations we choose δc = 0.1 (in Ref. [30] a
detailed study of the sensitivity of the clustering properties

1Many different ways of defining a cluster have been proposed
[12,16,58–60] since the Bjerrum theory [61] of ionic associations
first appeared. Our choice corresponds to the one of Gillan [12] and
Caillol and Weis [30].
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to this parameter is carried out for the pure RPM fluid).
Then we take the average of these numbers 〈Nn〉. Note that
Qn = n〈Nn〉/N gives the probability that a particle belongs to
a cluster of size n. To establish a criterion for percolation we
first find the clusters without employing periodic boundary
conditions to calculate the distances and then we check
whether, among the particles of any of these clusters, there are
two that satisfy the cluster condition calculating the distances
using periodic boundary conditions. Whenever we find one
such cluster the cluster is percolating.

In Fig. 2 we show the results of such an analysis for the fluid
at a temperature T ∗ = 0.1 well above the critical temperature
T ∗

c ≈ 0.05 of the pure RPM [31,33,34]. In the insets we show
a magnification of the region around n = 1 from which the
degree of dissociation [19,22] α = 〈N1〉/N can be read off.
In the figure we plot the cluster concentrations 〈Nn〉/N as a
function of the number of particles n in the cluster. We plot
n from n = 1 (isolated ions) up to n = N (in this case all
the particles of the fluid form one big percolating cluster).
At ρ∗ = 0.45 both the pure RPM and the � = 0.3 fluid form
percolating clusters. Lowering the density, we first reach a state
at ρ∗ = 0.3 where the negative nonadditivity gives the same
clustering of the RPM and the positive nonadditivity gives
bigger clustering (still with percolating clusters), then a state
at ρ∗ = 0.1 where the positive nonadditivity gives the same
clustering of the RPM and the negative nonadditivity a bigger
one, and finally a state ρ∗ = 0.01,0.001 at low densities where
a negative nonadditivity increases the clustering over the RPM
fluid and a positive nonadditivity diminishes it. Generally,
at high densities we find percolating clusters in the fluids,
whereas these disappear at low densities even at a positive
nonadditivity. Summarizing, in agreement with Ref. [40],
we find, for the fixed values of |�|, that at high density and
positive � we have more clustering than in the additive model
since there is a smaller effective volume for the particles, at
high density and negative � we have less clustering than in the
additive model because there is more effective volume for the
particles, at low density and positive � we have less clustering
than in the additive model due to the competition between the
tendency to demixing in the corresponding neutral mixture
and the tendency to local electroneutrality of the Coulombic
systems, and at low densities and negative � we have more
clustering than in the additive model because neutral clusters
are favored, as shown in the next section. We conclude that at
high temperature and high density the negative nonadditivity
gives lower clustering than in the RPM and by lowering
the temperature at constant density or lowering the density
at constant temperature it gradually tends to gives higher
clustering than in the RPM. In contrast, at low density the
positive nonadditivity gives lower clustering than in the RPM
and by increasing the density it gradually tends to give larger
clustering than in the RPM.

We determine the size dependence of the curves shown
in Fig. 2 and see that when we have no percolating clusters,
for example, the data at T ∗ = 0.1,ρ∗ = 0.3, and � = 0,−0.3,
the curves were unaffected by the choice of a higher number
of particles, while when we have percolating clusters, for ex-
ample, the data at T ∗ = 0.1,ρ∗ = 0.3, and � = 0.3, the curve
(n,〈Nn〉/N ) changes with N . In these latter cases we find that a
common curve is given by (x,〈Nx〉/N ) with x = n/N ∈ [0,1].

TABLE I. Fitting parameters aandb in the least-squares fit
〈Nn〉/N = annbn/n! for the simulation results of Fig. 2 without
percolating clusters (and with the exclusion of the nonsmooth data
at ρ∗ = 0.001). The reduced χ 2 is around 0.5 with greater error
approaching n = 1. Also shown is the number of particles nmax in the
biggest cluster formed in each simulation.

ρ∗ � a b nmax

0.45 −0.3 0.220(3) 1.074(4) 64
0.3 0 0.197(4) 1.084(6) 45
0.3 −0.3 0.204(3) 1.069(5) 43
0.2 0 0.206(7) 1.00(1) 23
0.2 0.3 0.200(4) 1.083(5) 45
0.2 −0.3 0.204(7) 1.04(1) 31
0.1 0 0.22(2) 0.86(3) 15
0.1 0.3 0.16(1) 1.01(4) 19
0.1 −0.3 0.15(1) 1.11(2) 29
0.01 0 0.41(7) 0.1(1) 8
0.01 0.3 0.36(8) 0.0(2) 7
0.01 −0.3 0.23(4) 0.72(7) 12

Then, in order to satisfy the normalization condition 1 =∑
n n(〈Nn〉/N ) ≈ ∫

dx xN2(〈Nx〉/N), we must have for two
different sizes N ′ and N ′′ that (〈Nx〉/N ′)/(〈Nx〉/N ′′) ≈
(N ′′/N ′)2. We have no general formula to determine when
the former behavior is to be expected over the latter. We can
only say that the first behavior is generally observed when
we do not have percolating clusters, whereas the second is
present when we have percolating clusters. In Sec. IV we show
that the size-independent curves that we find when there are
no percolating clusters can be fitted by 〈Nn〉/N = annbn/n!
[see Eq. (4.4) with zintra

n obtained from an ideal cluster
approximation], with a and b positive fitting parameters. In
Table I we show the fitting parameters a and b corresponding
to the simulated cases.

In Fig. 3 we show the clustering analysis at the thermo-
dynamic state below the critical temperature of the RPM
T ∗ = 0.04 in the gas phase ρ∗ = 5 × 10−5 and in the liquid
phase ρ∗ = 0.45. We see how in the gas phase only the first few
clusters are present, in agreement with similar results found
in Ref. [30], and for a negative nonadditivity the dipoles are
clearly the preferred kind of clusters with the smallest degree
of dissociation among the three fluids considered. In the liquid
phase all three fluids have percolating clusters.

In Fig. 4 we show the clustering analysis for the fluid
with � approaching −1 at T ∗ = 0.1 and ρ∗ = 0.45. We see
how by letting � approach −1 this stabilizes the neutrally
charged clusters and lowers the degree of dissociation. The
first stable cluster is the dipole: the “overlap” of a positive
and a negative sphere. These are dipoles of moment qr12, with
r12 < σ (1 + � + δc), which may lack a gas-liquid criticality
[62]. We clearly have a transition from a conducting to an
insulating phase as � goes from 0 to −1.

In Fig. 5 we show a snapshot of the equilibrated fluid at
T ∗ = 0.1,ρ∗ = 0.45, and � = −0.9 from which one can see
the formation of the dipoles. We expect that in the limiting
case of � = −1 the fluid we obtain is well reproduced by hard
spheres at half the density. This is confirmed by a comparison
of the like radial distribution functions with the one of the
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FIG. 3. (Color online) Clustering properties of the fluid at T ∗ =
0.04 and (a) ρ∗ = 0.45 and (b) ρ∗ = 5 × 10−5 at various values of
nonadditivity. The Nn are the numbers of clusters made of n particles.
In the MC simulations we used N = 100 particles and 1 × 107 MCS.

hard spheres even if the � = −1 fluid simulation rapidly slows
down into the frozen configuration of the overlapping anions
and cations. In order to overcome this problem one should
alternate single-particle moves and cluster moves where one
moves the center of mass of the neutrally charged pairs.
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FIG. 4. (Color online) Clustering properties of the fluid at
T ∗ = 0.1 and ρ∗ = 0.45 at various values of negative nonadditivity
approaching −1. The Nn are the numbers of clusters made of n

particles. In the MC simulations we used N = 100 particles and
5 × 107 MCS.

FIG. 5. (Color online) Snapshot of the fluid at T ∗ = 0.1,ρ∗ =
0.45, and � = −0.9 showing the formation of the dipoles.

B. Radial distribution function and structure factor

In Figs. 6–8 we show the partial radial distribution functions
(RDF) gij (r) = 〈∑′

μν δ(r + rj
ν − ri

μ)〉N/ρxixj , where ri
μ de-

notes the position of particle μ of species i and the prime to the
sum indicates that the terms μ = ν when i = j are omitted,
and the total RDF gtot = ∑2

i,j=1 gij xixj of the three fluids � =
0,±0.3 at the thermodynamic states T ∗ = 0.1,ρ∗ = 0.01,0.1
and T ∗ = 0.04,ρ∗ = 0.45. Of course, the restrictions x1 = x2

and σ11 = σ22 imply that g11 = g22. In the simulations we use
N = 100.

From Fig. 6 we see how the contact value of the like RDF in
the � = −0.3 case is higher than in the additive case and in the
� = 0.3 case it is lower than in the additive case. The contact
value of the unlike RDF is highest for negative nonadditivity,
indicating the tendency to form cation-anion pairs.

From Fig. 7 we see again the same behaviors of the contact
values of the like and unlike RDFs. In the negatively additive
case we begin to see an alternation of the distribution of
oppositely charged shells of ions around a reference ion.

From Fig. 8 we see how at this high density the contact
value of the like RDF is highest in the � = −0.3 case, but
in the � = 0.3 case it is still higher than in the additive case.
At � = −0.3 we see clearly the formation of a second peak
in the unlike RDF around 2 + � and the expected alternation
between the peaks of the like RDF with the ones of the unlike
RDF also present in the additive case. This alternation is not
present in the positively nonadditive case, indicating now the
tendency of like particles to cluster on a microscopic scale:
Like particles penetrate the shell of unlike particles around a
given reference ion. The contact value of the unlike RDF is
highest for negative nonadditivity, indicating the tendency to
form cation-anion pairs.

In Fig. 9 we show the Bhatia-Thornton [63] structure
factors SNN = [S11 + S22 + 2S12]/2 and SQQ = [S11 + S22 −
2S12]/2, where Sij (k) = 〈ρi

kρ
j

−k〉/N
√

xixj are the partial
structure factors and ρi

k = ∑
μ exp(−ik · ri

μ) is the Fourier
transform of the microscopic density of particles of species
i. In the figure we chose the same thermodynamic state and
nonadditivity considered in Fig. 1 of Ref. [40]. The positive
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FIG. 6. (Color online) Partial and total RDFs in the simulations at ρ∗ = 0.01,T ∗ = 0.1, and (a) � = 0, (b) � = 0.3, and (c) � = −0.3,
with the reduced excess internal energy per particle of the fluid U ex/N = −0.3924(1), −0.29120(7), and −0.6339(1), respectively.

nonadditivity case has percolating clusters. From the figure
we see that the charge-charge structure factor SQQ tends to
zero at k = 0, a consequence of electroneutrality in charged
systems [9] that suppresses long-wavelength fluctuations. In
order to enforce this condition the structure factor needs to
develop a peak at small k that reflects an essentially alternating
distribution of the oppositely charged shell of ions around a
reference ion. This type of short-range order is an indication
of the tendency to cluster. From the figure we see that at
high density the positive nonadditive fluid tends to cluster
more than the additive fluid and the negative nonadditive
fluid tends to cluster less than the additive fluid, in agreement
with the results presented in the previous section. With regard
to the number-number structure factor SNN , we see that as
the nonadditivity decreases, the isothermal compressibility
SNN (0) (see the Appendixes of Refs. [63,64]) increases and
the short-range order is reduced.

In Table II we report the excess internal energy per particle
U ex/N = εσ 〈U〉/Nq2, the compressibility factor Z = βP/ρ,
and the total clusters concentration

∑
n〈Nn〉/N for the cases

simulated. The compressibility factor is calculated according
to the virial theorem

Z = 1 + U ex

3NT ∗ + πρ∗

3
[g11(σ ) + (1 + �)3g12(σ (1 + �))].

(3.2)

If the clusters do not interact, as in the independent
cluster model (ICM) of Gillan [12], one should have

ZICM = ∑
n〈Nn〉/N . From Table II we can see how this

condition is never satisfied in the cases considered.

C. Gas-liquid coexistence

An important question we try to answer is how the gas-
liquid coexistence curve of the pure RPM fluid changes upon
switching on of the nonadditivity parameter. To this aim we
first perform a density distribution analysis within the NVT
ensemble that allows us to easily extract a semiquantitative
result and then we use the Gibbs ensemble technique for a
careful quantitative determination of the binodals.

1. Density distribution approach

Sufficiently close to the critical point we determine how
semiquantitatively the behavior of the gas-liquid coexistence
region changes by switching on a negative or a positive
nonadditivity. To this aim we divide the simulation box into m3

cubes of side Lc = L/m and register, as the run progresses, the
density inside each cell ρi = Ni/L

3
c , where Ni is the number

of particles inside the ith cell so that
∑m3

i=1 Ni = N . Then we
calculate the density distribution function [65–67] Pm(ρ) =∑m3

i=1 Pm(ρi)/m3, where Pm(ρi) is the distribution function
for the ith cell, with

∫
Pm(ρ) dρ = 1. Above the critical

temperature the density probability distribution function can be
described by a Gaussian distribution centered at the simulation
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FIG. 7. (Color online) Same as Fig. 6, but at ρ∗ = 0.1 and T ∗ = 0.1. The reduced excess internal energy per particle of the fluid is
(a) U ex/N = −0.505 89(8), (b) U ex/N = −0.412 08(6), and (c) U ex/N = −0.7179(1).

density, whereas below it becomes bimodal with two peaks,
one centered at the gas density and one at the liquid density.

We start from an initial configuration of particles of random
species placed on a simple cubic lattice. We equilibrate (melt)
the fluid for 106 MCS/particle. We then sample the distribution
function every 10 MCS. To allow the particles to diffuse
out of the cells we choose the subdivision of the simulation
box in cells with a random displacement r = (rx,ry,rz),
with rx,ry,rz ∈ [0,L]. This procedure turned out to greatly
enhance the efficiency of the determination of the cell density
distribution. In addition, we measure the distribution function
on runs of 1 × 106 MCS/particle.

Using m = 2 and N = 100, we obtain the results for the
fluid at a temperature T ∗ = 0.025 above the triple point of
the RPM [68], a density ρ∗ = 0.2 well within the coexistence
region of the pure RPM fluid, and � = 0, ± D, with D =
10−1,10−2,5 × 10−2, as shown in Fig. 10. In this case the
minimum density that can be registered is 1/L3

c = 0.2 ×
(8/100) = 0.016. We see that the pure RPM fluid shows a
density distribution function with two peaks: the first one,
which lies below the minimum density (and is not visible in
our data), at approximately the low density of the gas phase
and the second one at approximately the high density of the
liquid phase around a reduced density of 0.3. At D = 10−2

the positions of the peaks are roughly the same as for the
pure RPM. At D = 5 × 10−2 the density of the liquid peak
in the negatively nonadditive fluid is higher than the one
of the pure RPM, whereas the positively nonadditive fluid

has a gas peak, now visible, at higher density than for the
pure RPM and a liquid peak at lower density than for the
pure RPM. At D = 10−1 this separation tends to increase: In
the positively nonadditive model the critical temperature is
too close to 0.025 and the bimodal degenerates into a curve
with a single peak centered on the simulation density 0.2,
whereas in the negatively nonadditive fluid the liquid peak is
changed into a broad tail extending up to a density of 0.8. This
finding suggests that at a given temperature the width of the
coexistence region, relative to the one of the pure RPM, tends
to increase for the negatively nonadditive model and decrease
for the positively nonadditive model. This result is made more
clear and precise in the following section where we present
our Gibbs ensemble Monte Carlo calculation.

2. Gibbs ensemble analysis

In order to quantitatively determine the gas-liquid coexis-
tence line of our fluid we use the Gibbs ensemble MC (GEMC)
technique [69–73], starting from the pure RPM and gradually
switching on the nonadditivity. Here we are interested not in
the behavior really close to the critical point, but rather in the
shape of the binodal curve and how it moves as a function of �.

The GEMC method of Panagiotopoulos is now widely
adopted as a standard method for calculating phase equilibria
from molecular simulations. According to this method, the
simulation is performed in two boxes containing the coexisting
phases. Equilibration in each phase is guaranteed by moving
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FIG. 8. (Color online) Same as Fig. 6, but at ρ∗ = 0.45 and T ∗ = 0.04. The reduced excess internal energy per particle of the fluid is
(a) U ex/N = −0.690 94(4), (b) U ex/N = −0.552 42(5), and (c) U ex/N = −0.961 44(7).

particles. Equality of pressures is satisfied in a statistical sense
by expanding the volume of one of the boxes and contracting
the volume of the other. Chemical potentials are equalized by
transferring particles from one box to the other. Like the first
simulations for the RPM performed by Panagiotopoulos [26],
we use single-ion transfer by introducing a background charge
density to ensure charge neutrality at all times during the
run. This way the system remains overall neutral, but the
modified model is similar to a two-component plasma and in
a strict sense different from the original RPM, which assumes
a zero charge density for the background. To overcome the
electroneutrality problem Orkoulas and Panagiotopoulos [29]
considered pair transfers.

In the GEMC run we have at each step a probabil-
ity ap/(ap + av + as) for a particle random displacement,
av/(ap + av + as) for a volume change, and as/(ap + av + as)
for a particle swap move between the gas and the liquid box.
We generally choose ap = 1, av = 1/10, and as = 1. The
maximum particle displacement is kept equal to Li/1000,
where Li is the side of the ith box with i = 1,2. Regarding
the volume changes, following Ref. [69] we perform a random
walk in ln[V1/V2], with Vi the volume of the ith box choosing
a maximum volume displacement of 1%–10%. Volume moves
are computationally the cheapest since the energy scales with
the length of the box with inverse proportionality. We generally
use a total number of N = 100 particles, except close to the
critical point, where it proves necessary to increase the number
of particles in order to avoid large fluctuations in the two

densities. We use (10–40) × 106 MCS for the equilibration
and (100–200) × 106 MCS for the production.2

The results are summarized in Table III and Fig. 11. Note
that since we get the same coexistence curve as that of Orkoulas
and Panagiotopoulos [29] for the pure RPM, as Fig. 1 clearly
shows, we consider as equivalent, at the present level of ac-
curacy, our procedure, employing single-neutralized-particle
transfers, and the one of Orkoulas and Panagiotopoulos, where
pair-particle transfers between the two boxes are used. This
can be justified by observing that the fluctuations of charge
in the various statistical physics ensembles are expected to
decay to zero with the system size and we empirically find that
in our case they are already practically irrelevant. The only
relevant difference we observe with respect to the calculation
of Orkoulas and Panagiotopoulos is the fact that in our case
there is a much more considerable emptying of the gas box at
low temperatures, which may have some effect on the point
at the lowest temperature. We do not carry out a systematic
study of the possible system size dependence of the results,
but for the pure RPM we repeat the calculation at T ∗ = 0.045
and 0.0475 for two different system sizes with the largest
being N = 370. The comparison suggests that the critical
point tends to shift slightly at higher temperatures upon a

2The GEMC code took ≈26 min of CPU time for 10 million steps
of a system of size N = 200 on an IBM PLX (iDataPlex DX360M3)
cluster (2.40 GHz).
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FIG. 9. (Color online) Bhatia-Thornton structure factors (a) SNN (k) and (b) SQQ(k) for ρ∗ = 0.412 53,T ∗ = 0.12, and � = 0, ±0.5, as in
Fig. 1 of Ref. [40]. Note that our abscissa has to be divided by 1.2 in order to compare with the units used in [40].

system size increase, but far away from the critical point the
coexistence curve is not affected appreciably by the system
size. However, we stress that an accurate study of critical
properties of the present model is beyond the scope of this
work.

From the figure we can see clearly the trend: A positive
nonadditivity tends to lower the critical temperature, whereas
a negative one tends to push the binodal to higher temperatures.
This is in agreement with the findings from the density

distribution analysis previously presented. It is well known that
RPM condensation is almost identical to that of charged hard
dumbbells, underlining the fact that the vapor is essentially
already fully associated into dimers and higher neutral clusters
and that the liquid structure and thermodynamics are only
weakly perturbed by fusing ions together. Hence, if one imag-
ines cooling down on the critical isochore, we can say that the
critical point is reached when ion association is complete and
then it becomes convenient for the system to phase separate.

TABLE II. Excess internal energy per particle U ex = εσ 〈U〉/q2, compressibility factor Z = βP/ρ, and total clusters concentration∑
n〈Nn〉/N for the cases simulated.

T ∗ ρ∗ � −U ex/N Z − U ex/3NT ∗ ∑
n〈Nn〉/N

0.1 0.45 0 0.627 11(9) 3.764(5) 0.317
0.1 0.45 0.3 0.462 12(9) 9.16(1) 0.026
0.1 0.45 −0.3 0.813 57(9) 3.019(3) 0.410

0.1 0.3 0 0.588 27(6) 2.869(3) 0.528
0.1 0.3 0.3 0.474 93(7) 4.837(6) 0.255
0.1 0.3 −0.3 0.7814(1) 2.797(3) 0.483

0.1 0.2 0 0.553 90(6) 2.445(2) 0.637
0.1 0.2 0.3 0.456 39(6) 3.231(3) 0.540
0.1 0.2 −0.3 0.754 83(9) 2.657(3) 0.530

0.1 0.1 0 0.505 89(8) 2.098(2) 0.730
0.1 0.1 0.3 0.412 08(6) 2.218(2) 0.747
0.1 0.1 −0.3 0.7179(1) 2.539(3) 0.579

0.1 0.01 0 0.3924(1) 1.7373(8) 0.830
0.1 0.01 0.3 0.291 20(7) 1.493(3) 0.900
0.1 0.01 −0.3 0.6339(1) 2.409(2) 0.652

0.1 0.001 0 0.3076(1) 1.582(1) 0.870
0.1 0.001 0.3 0.1971(1) 1.2962(6) 0.943
0.1 0.001 −0.3 0.5992(1) 2.355(2) 0.677

0.04 0.45 0 0.690 94(4) 5.863(8) 0.104
0.04 0.45 0.3 0.552 42(5) 12.83(2) 0.012
0.04 0.45 −0.3 0.961 44(7) 7.09(1) 0.028

0.04 5 × 10−5 0 0.488 04(2) 4.112(1) 0.563
0.04 5 × 10−5 0.3 0.353 42(2) 3.254(1) 0.681
0.04 5 × 10−5 −0.3 0.697 64(1) 5.230(2) 0.493
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FIG. 10. (Color online) Cell density distribution function for the fluid at T ∗ = 0.025,ρ∗ = 0.2, and � = 0, ±D with (a) D = 10−2,

(b) D = 5 × 10−2, and (c) D = 10−1. We use N = 100 and m = 2 with 1 × 106 MCSs/particle.

With positive nonadditivity, ion association is less favorable
and the critical temperature must go down (association is com-
plete only at lower temperatures); with negative nonadditivity,
ion association is more favorable and the critical tempera-
ture must go up (association is complete already at higher
temperatures).

In order to determine the critical point (T ∗
c ,ρ∗

c ) we
empirically fit the binodals using the “diameter” (ρ∗

g + ρ∗
l )/2

equation [74]

ρ∗
g + ρ∗

l

2
= ρ∗

c + A|T ∗ − T ∗
c | + C|T ∗ − T ∗

c |2βI

+D|T ∗ − T ∗
c |1−αI (3.3)

and the form of the Wegner expansion [74,75] for the width
of the coexistence curve

ρ∗
l − ρ∗

g = B|T ∗ − T ∗
c |βI + B1|T ∗ − T ∗

c |βI +�I

+B2|T ∗ − T ∗
c |βI +2�I , (3.4)

where A,C,D, and B,B1,B2 are coefficients that we take as
fitting parameters as well as ρ∗

c ,T ∗
c . We stress that our data do

not extend sufficiently close to the critical region to allow quan-
titative estimates of critical exponents and nonuniversal quan-
tities, still we used the above functional forms as convenient
fitting formulas, able to capture the typical flatness of the fluid
coexistence curves [69]. The pure RPM is believed [33,76–78]
to belong to the three-dimensional Ising universality class,
so we choose βI = 0.325,αI = 0.11, and �I = 0.51. We are
then able to fit the pure RPM case � = 0, for which we find

the critical point at ρ∗
c = 0.0319 and T ∗

c = 0.0476; the RPM
with positive nonadditivity � = 0.1, for which the critical
point is found at ρ∗

c = 0.0275 and T ∗
c = 0.0432; and the RPM

with negative nonadditivity � = −0.1, for which ρ∗
c = 0.0495

and T ∗
c = 0.0526. We stress that these numbers, in particular

the values of critical densities, should be considered more as
indicative of the dependence of the critical point location on
diameter nonadditivity than as accurate estimates.

We believe that our results can be relevant for the in-
terpretation of experimental work on the phase diagrams of
room temperature ionic liquids [53] such as the phospho-
nium halogenide in alkanes solvents and 1-hexyl 3-methyl
imidazolium tetrafluoro borate (C6mimBF4) in alcohols and
water. The degree of nonadditivity seems directly related to
the anion-cation contact-pairing affinity [41]. The salts in the
(hydrocarbon) solution dissociate in cations (the phospho-
nium) and anions (the halogen atoms). The contact affinity
between anions and cations is mediated by the solvent and dif-
ferent solvents produce different affinities. As a consequence,
in the experimental work of Ref. [53], liquid-liquid coexistence
curves were observed that, depending on the kind of solvent
used in the ionic liquid mixture, can be above (C6mimBF4

in alcohols and water) the one of the purely theoretical RPM
or below (phosphonium halogenide in alkanes) it in reduced
units. Moreover, when plotted onto a corresponding state
representation, all the experimental binodals seem to collapse
on the same curve even if this occurs very close to the
critical point. We then try to see whether or not the law of
corresponding states holds for our fluid; we find that far from
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TABLE III. Phase coexistence properties for the pure RPM (� = 0) and the nonadditive RPM (� �= 0). Here T ∗ is the reduced temperature,
N is the total number of particles in the system for a certain run, Ng is the average number of particles in the gas box during the run,
μ∗

l = μlεσ/q2 − T ∗ ln �3 is the reduced chemical potential of the liquid box (� being the de Broglie thermal wavelength), U ex
i is the total

excess internal energy, and ρ∗
i is the reduced density of the gas phase i = g and the liquid phase i = l.

� T ∗ N Ng/N −μ∗
l −U ex

g /N −U ex
l /N ρ∗

g ρ∗
l

0 0.0475 370 0.51(1) 0.63(1) 0.547(1) 0.609(1) 5.2(9) × 10−3 0.11(3)
0 0.0475 200 0.33(1) 0.63(1) 0.559(2) 0.604(1) 1.1(3) × 10−2 0.08(3)
0 0.045 370 0.26(1) 0.69(3) 0.528(4) 0.6400(7) 2.3(5) × 10−3 0.22(5)
0 0.045 100 0.27(1) 0.63(2) 0.537(4) 0.6393(9) 3.1(7) × 10−3 0.22(5)
0 0.0425 100 0.166(8) 0.65(1) 0.52(1) 0.6576(8) 2.3(4) × 10−3 0.29(2)
0 0.04 100 0.069(5) 0.73(1) 0.50(2) 0.6745(5) 8(3) × 10−4 0.35(3)
0 0.0375 100 0.036(2) 0.72(1) 0.4(1) 0.6835(5) 4(2) × 10−4 0.38(5)
0 0.035 100 0.0020(6) 0.75(2) 0.05(40) 0.6938(5) 2(20) × 10−5 0.42(2)

−0.1 0.0525 200 0.297(9) 0.71(2) 0.602(2) 0.6844(9) 9(2) × 10−3 0.19(5)
−0.1 0.05 100 0.37(1) 0.67(1) 0.609(4) 0.712(1) 4.8(7) × 10−3 0.33(5)
−0.1 0.0475 100 0.094(4) 0.71(2) 0.562(7) 0.7240(8) 1.7(3) × 10−3 0.36(7)
−0.1 0.045 100 0.092(5) 0.69(2) 0.590(9) 0.7380(8) 1.3(2) × 10−3 0.42(5)
−0.1 0.0425 100 0.031(3) 0.85(3) 0.4(1) 0.7503(8) 5.6(10) × 10−4 0.46(4)
−0.1 0.04 100 0.0034(7) 0.83(2) 0.08(40) 0.7582(7) 5(30) × 10−5 0.48(4)

0.1 0.0425 100 0.40(2) 0.58(1) 0.493(3) 0.5620(9) 5(1) × 10−3 0.11(3)
0.1 0.04 100 0.23(1) 0.62(3) 0.487(2) 0.5877(9) 1.6(4) × 10−3 0.19(5)
0.1 0.0375 100 0.068(5) 0.70(2) 0.40(4) 0.6068(5) 8(1) × 10−4 0.24(3)
0.1 0.035 100 0.015(2) 0.72(2) 0.17(26) 0.6157(6) 1.7(40) × 10−4 0.28(2)

the critical point it is not strictly satisfied, as shown by Fig. 12.
Interestingly enough, a plot of the RDF between corresponding
states shows an almost complete overlap of the three curves
upon a shift by ±� in r , as shown in Fig 13. We think that
the only visible difference, the contact values of the like RDF,
is a direct hallmark of the breakup of the corresponding states
as a physical consequence of the existence of a third relevant
interaction parameter in addition to the unlike hard-sphere
diameter and the electric charge. While the Cl− ion and the
BF−

4 anion may be approximated reasonably well by a sphere
so that the center of charge is identical to the center of mass,
the NTF−

2 anion is by no means spherical. The NTF−
2 anion

is flexible and allows for different conformers. The nitrogen
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FIG. 11. (Color online) Binodals obtained with the GEMC
simulations. The dashed lines are the results of the extrapolation
described in the text. The closed circles are the critical points.

atom in the anion is not necessarily identical to the center of
mass and the center of charges [54]. In these cases, instead of
the RPM it is better to choose the primitive model with ions
of differing sizes as the reference system [36–38].

IV. THEORETICAL REMARKS ON THE CLUSTERING

Under highly diluted conditions [79] we can approximate
the fluid as an ideal mixture of cation and anions, anions,
and cations with partial densities ρ± = (1 − α)ρ/2 and ρ− =
ρ+ = αρ/2, respectively, and for the chemical potentials
μ± = kBT ln[(1 − α)ρ�3

+�3
−/2K], μ− = kBT ln(αρ�3

+/2),
and μ+ = kBT ln(αρ�3

−/2), where �− and �+ are the
de Broglie thermal wavelengths of the anions and cations,
respectively. Here K is the configurational integral of a
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FIG. 12. (Color online) Corresponding state representation of the
phase diagram.
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and � = −0.1. The inset shows the functions shifted by ±�.

cation-anion pair

K = 4π

∫ rc

σ (1+�)
r2eλB/rdr, (4.1)

where λB = σ/T ∗ is the Bjerrum length and rc is a cutoff
radius conventionally chosen equal to λB/2 corresponding to
the minimum of the integrand. At equilibrium μ± = μ+ + μ−,
which implies (1 − α)/α2 = Kρ/2. Solving for α yields

α =
√

1 + 2Kρ − 1

Kρ
. (4.2)

An approximate closed form expression for K valid at low T ∗
can be obtained by writing for the anion-cation pair distance
r = σ (1 + �) + δr with δr small. Then σ/r ≈ 1/(1 + �) −
σδr/σ 2(1 + �)2 = 2/(1 + �) − r/σ (1 + �)2. Substituting
into Eq. (4.1) and performing the integral with rc = ∞ yields

K ≈ 4πσ 3(1 + �)4e1/T ∗(1+�)T ∗

×{1 + 2(1 + �)T ∗[1 + (1 + �)T ∗]}. (4.3)

In our simulations we are never in this very diluted condition
and as a consequence we observe the formation of clusters
of a higher number of particles than just the dimers. Thus, to
estimate the cluster concentrations xc

n = 〈Nn〉/N , we need a
different analysis closer in spirit to the one of Tani and Hen-
derson [56,57,80]. Simplifying that analysis, we can consider
as the intercluster configurational partition function the one of
an ideal gas of clusters, in reduced units, Zinter ≈ (V/σ 3)Nt ,
where Nt = ∑nc

n=1 Nn is the total number of clusters and we
assume to have only clusters made of up to nc particles. Then
the equations for the equilibrium cluster concentrations xc

n are

xc
n = λnzintra

n /ρ∗, n = 1,2, . . . ,nc, (4.4)

1 =
nc∑

n=1

nxc
n, (4.5)

where zintra
n are the configurational intracluster partition

functions in reduced units, with zintra
1 = 2, and λ (= αρ∗/2)

is a Lagrange multiplier. Moreover, neglecting the excess
internal energy of the clusters, we can approximate zintra

n ≈
(vn/σ

3)n−1 ∑n
s=0[s!(n − s)!]−1 = (vn/σ

3)n−12n/n! where vn
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FIG. 14. (Color online) Cluster analysis described in the text for
nc = 100 at various densities.

is the volume of an n cluster. Moreover, assuming further the
cluster to be in a closed packed configuration, we can approx-
imate, for � = 0, vn ≈ nσ 3/

√
2. Notice that for � �= 0 we

would expect vn to change by a constant multiplicative factor
that would still give the same result for the cluster concentra-
tions. Clearly a proper analysis of the n-cluster volume would
require a MC simulation [12]. This temperature-independent
approximation gives for nc = 100 the results shown in Fig. 14
(note that the results have a very small dependence on nc).

From the figure we can say that our simulation results
for T ∗ = 0.1 and � = −0.3 have qualitatively the same
behavior as of our oversimplified analysis. This justifies the
fit of Table I where the Laplace multiplier is considered as a
fitting parameter. The strong dependence on the nonadditivity
(and on temperature) that we observe in the simulation
is an indication that the approximation of neglecting the
excess internal energy of a cluster is too severe. One should
consider zintra

n = e−nf ex
n /T ∗

(vn/σ
3)n−12n/n!, where f ex

n (T ∗) =∫ 1/T ∗

0 uex
n (1/x) dx is the excess free energy per particle of

the n cluster and uex
n (T ∗) = (εσ/q2)〈∑n

i>j=1 φij (rij )〉/n is the
reduced excess internal energy per particle of the n cluster.
Note once again that choosing an f ex

n independent of n would
lead to the same oversimplified result we described for the
cluster concentrations. What really matters is the combined
dependence of f ex

n (T ∗) on n and T ∗, which can be assessed
within the MC simulation [12,56,57]. For example, the curves
of Figs. 2 and 3 with percolating clusters are better fitted by
the three-parameter expression xc

n ≈ λn+an2
nbn/n!.

One thing that can be done is to distinguish among the
clusters of n particles between the ones formed by s negative
particles and t positive particles with t + s = n, as done in
Ref. [30], in order to be able to approximate analytically the
intracluster excess free energy per particle

zintra
n =

n∑
s=0

zintra
s,n−s , (4.6)

zintra
s,t = 1

s!t!

1

σ 3(s+t−1)

∫
�s,t

dr2 · · · drs+t

×exp

⎛
⎝−β

s+t∑
μ>ν=1

φiμjν
(rμν)

⎞
⎠ , (4.7)

052303-12



MONTE CARLO SIMULATION OF THE NONADDITIVE . . . PHYSICAL REVIEW E 87, 052303 (2013)

10-5

10-4

10-3

10-2

10-1

100

 1  10  100

<N
n>

/N

n

Δ=-0.8
Δ=-0.7
Δ=-0.6

FIG. 15. (Color online) Cluster analysis described in the text
for nc = 30, T ∗ = 0.1, ρ∗ = 0.45, a = 1.5, and b = 0.9 at various
values of �.

where the configurational integral goes only over the relative
positions and covers the region �s,t of cluster configuration
space. This way one can quantitatively [30] estimate how
Tani and Henderson’s theory [80] deviates from the exact MC
results.

We immediately see how zintra
1,1 ∝ K/σ 3 becomes increas-

ingly bigger as � → −1 and the same holds for all the zintra
k,k

that clearly dominate over all the other zintra
s,t with s �= t . This

qualitatively explains Fig. 4 and is shown in Fig. 15, where
we show the results from the approximation described in
Appendix for nc = 30, T ∗ = 0.1, ρ∗ = 0.45, a = 1.5, b =
0.9, and various values of � (note that the results have a
very small dependence on nc).

V. CONCLUSION

We have performed NVT MC simulations of the RPM with
nonadditive hard-sphere diameters outside the coexistence
region with particular emphasis on the clustering properties.
In order to establish whether the cluster analysis falls outside
the gas-liquid coexistence region for a given value of the
nonadditivity, we accurately determined the binodals of the
nonadditive fluid using the Gibbs ensemble method after a
density distribution function analysis to get insight into the
shift of the coexistence region with the nonadditivity. It turned
out that a negative nonadditivity tends to shift the critical
point to higher temperatures and higher densities whereas
a positive one shifts it to lower temperatures and densities.
The law of corresponding states does not seem to be strictly
fulfilled over an extended region below the critical point for
� = 0,±0.1. Our results can be used as a theoretical support
to the analysis of experimental work on room temperature
ionic liquids [52–54] where shifts in the liquid-liquid binodals
akin to ours are observed as a function of the kind of solvent
used in the ionic mixture.

From the cluster analysis, we were able to distinguish
between two kind of behaviors for the cluster concentrations.
When we do not observe percolating clusters during the
simulation, the curves for the cluster concentrations as a
function of the cluster size are independent of the number of

particles used in the simulation. When we observe percolation
during the simulation the curves depend on the number of
particles used in the simulation, but obey a straightforward
scaling with N relationship.

At low densities the negative nonadditive fluid has stronger
clustering than in the pure RPM, whereas at high densities
the positive nonadditive fluid has the strongest clustering.
The positive nonadditive fluid is the first one reaching the
percolating clusters upon an increase of density. This certainly
depends on the fact that for a positive nonadditivity the ions
have less space in which to move at a given density and,
due to the presence of two oppositely charged species, there
is a competition between the tendency to clustering driven
by the Coulomb interaction and the tendency to demixing
due to entropic reasons. A negative nonadditivity tends to
favor the formation of the neutrally charged clusters starting
with dipolar ones. Traces of these features can also be read
from an analysis of the partial radial distribution function and
structure factors. Our clustering results can be summarized
by observing that at high density for a positive deviation
from additivity we have more clustering than in the additive
model, whereas for a negative deviation from additivity we
have less clustering than in the additive model. At low
density the reverse behavior is found. These results can be
explained by the following arguments: At high density a
positive nonadditivity leaves less effective volume to the
particles and a negative nonadditivity leaves more effective
volume relative to the additive model; at low density a negative
nonadditivity favors the formation of neutral clusters and
a positive nonadditivity favors the competition between the
tendency to demixing in a neutral mixture and the tendency
to microscopic intermixing of the two species favored by the
Coulombic interactions. These observations are in agreement
with the fact that the energy of a cation-anion pair at contact
increases for positive nonadditivity and decreases for negative
nonadditivity.

A simple temperature-independent clustering theory where
we regard the clusters as forming an ideal gas and we
approximate the n cluster as an ideal ensemble of n particles
in a closed packed configuration can be used to qualitatively
explain the cluster concentrations observed at not to high
density and absolute value of the nonadditivity. In order to
qualitatively explain the prevalence of the neutral clusters in
the negatively nonadditive fluid it is necessary to refine the
approximation at the intracluster level.

In the future it would be desirable to make quantitative the
comparison between clustering theory and MC exact results.
The determination of the percolation threshold as a function
of nonadditivity would also be interesting. In the temperature
density phase diagram, one can determine the percolation
threshold by calculating the fraction of configurations with
percolating clusters within the NVT simulation as a function
of density for two systems of different size N . A point of the
percolation threshold results then where the curves of the two
systems meet.
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APPENDIX: APPROXIMATED INTRACLUSTER
CONFIGURATIONAL PARTITION FUNCTION FOR

NEGATIVE NONADDITIVITY

Let us call the anions i− = 1−, . . . ,s− and the cations j+ =
1+, . . . ,t+. From Eq. (4.7) it follows that

zintra
t,t = 1

t!2

1

σ 3(2t−1)

∫
�t,t

t∏
l=2

dr1+l−

t∏
k=1

drk+k−

×
t∏

i>j=1

e−2λB/ri+j+
t∏

i,j=1

e+λB/ri+j−

≈ 1

t!2

1

σ 3(2t−1)

∫
�t,t

t∏
l=2

dr1+l−

t∏
k=1

drk+k−

t∏
i,j=1

e+λB/ri+j− ,

(A1)

where we approximated e−λB/r ≈ 1, which is justified at
high T ∗ < 1/2(1 + �) or low λB . Now we observe that,
for example, r1+2− = |r1+1− + r1−2−|, with r1−2− > σ and
e+λB/r1+2− ≈ 1. Thus, for negative nonadditivity we can further

approximate

zintra
t,t ≈ 1

t!2

1

σ 3(2t−1)

∫
�t,t

t∏
l=2

dr1+l−

t∏
k=1

drk+k−

t∏
i,j=1

e+λB/ri+j−

≈ 1

t!2

1

σ 3(2t−1)

∫
�t,t

t∏
l=2

dr1+l−

t∏
k=1

drk+k−

t∏
i=1

e+λB/ri+ i−

∝∼ (2t)b(2t−1)

t!2
(K/K0)t , (A2)

where the factor (2t)b(2t−1) takes into account the volume of
�t,t with b a free parameter and

K/K0 =
∫ λB/2

aσ (1+�)
r2e+λB/rdr

/ ∫ λB/2

aσ (1+�)
r2dr (A3)

with a a second free parameter. With the same approximations
we can say that

zintra
s,t

∝∼ (s + t)b(s+t−1)

s!t!
(K/K0)min{s,t}. (A4)
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1417 (2006).
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