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Nonequilibrium fluctuations in a frictional granular motor: Experiments and kinetic theory
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We report the study of an experimental granular Brownian motor, inspired by the one published in Eshuis et al.
[Phys. Rev. Lett. 104, 248001 (2010)], but different in some ingredients. As in that previous work, the motor is
constituted by a rotating blade, the surfaces of which break the rotation-inversion symmetry through alternated
patches of different inelasticity, immersed in a gas of granular particles. The main difference of our experimental
setup is in the orientation of the main axis, which is parallel to the (vertical) direction of shaking of the granular
fluid, guaranteeing an isotropic distribution for the velocities of colliding grains, characterized by a variance v2

0 .
We also keep the granular system diluted, in order to compare with Boltzmann-equation-based kinetic theory. In
agreement with theory, we observe the crucial role of Coulomb friction which induces two main regimes: (i) rare
collisions, with an average angular velocity 〈ω〉 ∼ v3

0 , and (ii) frequent collisions (FC), with 〈ω〉 ∼ v0. We also
study the fluctuations of the angle spanned in a large-time interval �θ , which in the FC regime is proportional
to the work done upon the motor. We observe that the fluctuation relation is satisfied with a slope which weakly
depends on the relative collision frequency.
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I. INTRODUCTION

Brownian motors (BM) are devices that can rectify ther-
mal fluctuations in order to perform work against external
loads [1,2]. The basic underlying mechanism relies on the
presence of nonequilibrium conditions, breaking the time-
reversal symmetry in the dynamics, together with some spatial
anisotropy, which allows unidirectional motion. Although
these general constraints are clearly understood [3,4], many
open questions remain to be answered concerning the several
different mechanisms for the realization of such devices. For
instance, given a particular shape of the probe, the prediction
of the drift direction is far from obvious, in particular if several
sources of dissipation are present in the system, inducing
competitive effects.

Recent years have seen an increasing wide interest on
Brownian motors directly inspired to the original setup of
the Feynman’s ratchet [3]. In these “collisional Brownian
motors” (CBM), fluctuations are induced by the collisions of an
asymmetric probe with particles of molecular fluids at different
temperatures [5–7]. Since the presence of dissipation is a
fundamental ingredient to induce nonequilibrium conditions,
a natural framework where these kinds of systems have been
studied is the realm of granular media, where interactions do
not conserve energy due to inelasticity. Several experimental
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[8–11] and theoretical results [12–15] have been obtained for
these systems.

More recently, another source of dissipation has been shown
to play an important role in the dynamics of CBM: the
Coulomb (or dry) friction, which is introduced as a nonlinear
force −Ffrictσ (v) proportional to the sign of the velocity σ (v)
[16–18]. Its main effect is the introduction of two dynamical
regimes, where the behavior of the system is dominated by
collisions or friction, respectively. More surprisingly, it has
also been shown that the Coulomb friction itself can be
sufficient to drive a motor effect, even if the probe is in contact
with a single molecular fluid at equilibrium [18,19]. The role
of friction has also been studied in other systems showing
motor effects [20–22], where fluctuations are introduced by
noise terms, which are not related to particle collisions.

The context of granular systems also paves the way to the
realization of experiments aimed at validating some important
general relations derived for nonequilibrium systems, such as
the fluctuation relation [23,24] or the Hatano-Sasa relation
[25]. In particular, in granular systems, where noise and time-
scale separation are often not fully under control and where
some coarse graining on the accessible quantities is present,
the study of these relations is very useful to assess such results
in more general situations [26–30].

In this paper, we consider an experimental setup for a
frictional granular CBM in order to get closer to conditions
where kinetic theory can be applied. Moreover, at variance
with previous studies, we also take into account the presence
of Coulomb friction which induces interesting behaviors. This
allows us to compare experimental results with analytical
predictions of kinetic theory. Furthermore, we focus on the
study of the nonequilibrium fluctuations of the spanned angle
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in a time interval, which is related to the work done by
the CBM. Our findings suggest that a symmetry relation for
these fluctuations is verified in our system, in agreement with
previous results for similar experiments [27].

II. SETUP

The two main components of our setup are the granular
gas and the rotor (see Fig. 1 for visual explanation). The
granular gas is made of N = 50 spheres of polyoxymethylene
(diameter d = 6 mm and mass m = 0.15 g) contained in a
polymethyl-methacrylate (PMMA) cylinder of circular base,
with area A ≈ 6.36 × 103 mm2 and maximum height 70 mm.
The cylinder is shaken with a sinusoidal signal at 53 Hz
and variable amplitude, which is measured by the maximum
acceleration � = amax/G rescaled by the gravity acceleration
G. The velocity distribution of the spheres on the plane
perpendicular to the rotation axis is obtained by particle
tracking via a fast camera (see [31] for details on the procedure)
and is fairly well approximated by a Gaussian

pg(v) ∼ e−v2
x/(2v2

0 ), (1)

where the “thermal” velocity v0 has been introduced and vx

may be replaced by vy because the system is isotropic on the
x̂y plane. Small deviations from the Gaussian are observed but
are neglected for the purpose of this study; see [18] for details.
We have changed � from 5 to 21, finding for v0 values from
120 to 500 mm s−1. The vertical average profile of the gas
density is close to the so-called “leading order” distribution
[32]: n0(z) = NG

Av2
0

exp(−G

v2
0

z), where z is the coordinate of the

vertical axis. This is sufficient to evaluate the average density
surrounding the rotator, estimated to be n = n0(z∗) where z∗
is the mid-height of the rotator.

Suspended into the gas, we have a blade (also called
“rotator”) rotating around a vertical axis. The rotator is a
PMMA cylinder with a rectangular base (see lower-right inset
of Fig. 1) of perimeter S, height h, and total surface of the sides
� = Sh = 1.2 × 10−3 mm2. The rotator (including its axis)
has mass M = 6.49 g and moment of inertia I = 353 g mm2.
The axis of the rotator is suspended to two spheres bearing.

FIG. 1. (Color online) The experimental setup.

The position versus time of the rotator is recorded by an
angular encoder (Avago Technologies, model AEDA-330),
enclosing the bearings. In this paper, we have measured all
angles in radians. In Fig. 1, top-right inset, the definition
of some quantities useful for the theory can be found. The
study of the Brownian motor phenomenon is obtained by
applying insulating tape to the rotator, partially covering its
two largest surfaces (see lower-right inset of Fig. 1 for an
explanation). Turning upside down the rotator allows one to
invert its chirality, defining two possible orientations which
we call “right” and “left”.

A close analysis of the dynamics of the rotator shows that
the angular velocity ω is well described by the following
equation of motion:

ω̇(t) = −�σ [ω(t)] − γaω(t) + ηcoll(t), (2)

where � = Ffrict/I = 38 ± 4 s−2 is the frictional force
rescaled by inertia, γa = 6 ± 1 s−1 is some viscous damping
rate related perhaps to air or to other dissipations in the
bearings, and ηcoll(t) is the random force due to collisions
with the granular gas particles. The granular gas itself is
stationary and (roughly) homogeneous and the mean free
path for the collisions between the blade and the particles
is proportional to (n�)−1. Under the hypothesis of molecular
chaos, the statistical properties of the collisional noise ηcoll(t)
are contained in the Boltzmann integral of the master equation
discussed in the next section [Eq. (3)]. The blade is further
characterized by its symmetric shape factor 〈g2〉surf = 1.51
(see [14] for details), with 〈. . .〉surf being a uniform average
over the surface of the object parallel to the rotation axis and
g(s) = r(s)·t̂(s)

RI
with t̂(s) = ẑ × n̂(s) which is the unit vector

tangent to the surface at the point r(s), and n̂(s) is the unit
vector perpendicular to the surface at that point. We have also
introduced the radius of inertia RI = √

I/M of the rotator. We
refer to the top-right inset of Fig. 1 for a visual explanation
of symbols. The restitution coefficient between spheres and
the blade has been measured to be α+ ≈ 0.67 on the PMMA
naked surface and α− ≈ 0.35 on the tape-covered face.

It is useful to introduce the “equipartition” angular velocity
ω0 = v0ε/RI where ε = √

m
M

. Note that, because of inelastic
collisions and frictional dissipations, the rotator does not
satisfy equipartition and ω0 is only a useful reference value.
It is natural to adimensionalize the rotator angular velocity
defining � = ω

ω0
.

III. THEORY

The single particle probability density function (pdf) p(ω,t)
for the angular velocity of the rotator is fully described, under
the assumption of diluteness which guarantees molecular
chaos, by the following linear Boltzmann equation [14,16,18]:

∂tp(ω,t) = ∂ω{[�σ (ω) + γaω]p(ω,t)} + J [p,pg], (3a)

J [p,pg] =
∫

dω′W (ω|ω′)p(ω′,t) − p(ω,t)fc(ω), (3b)

fc(ω) =
∫

dω′W (ω′|ω), (3c)
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W (ω′|ω) = ρS

∫
ds

S

∫
dv pg(v)�{[V(s) − v] · n̂}

× |[V(s) − v] · n̂|δ[ω′ − ω − �ω(s)], (3d)

�ω(s) = (1 + α)
[V(s) − v] · n̂

RI

g(s)ε2

1 + ε2g(s)2
, (3e)

where we introduce the rates W (ω′|ω) for the transition
ω → ω′, the velocity-dependent collision frequency fc(ω),
the pdf for the gas particle velocities pg(v), and the so-called
kinematic constraint in the form of Heaviside step function
�[(V − v) · n̂] which enforces the kinematic condition neces-
sary for impact. Here, V(s) = ωẑ × r(s) is the linear velocity
of the rotator at the point of impact r(s). The collision rule is
implemented by Eq. (3e) [14].

An estimate of the ratio between the stopping time due
to dissipation (dominated by dry friction) τ� ∼ ω0

�
and the

collisional time τc ∼ 1
n�v0

is given by the parameter

β−1 = εn�v2
0√

2πRI�
≈ τ�

τc

. (4)

This parameter controls the transition from a regime (at
β−1 
 1) with fast stopping due to dissipation, called RC
(rare collisions), and a regime (at β−1 � 1) with the rotator
always in motion, continuously perturbed by collisions, called
FC (frequent collisions).

When the mass of the rotator is large with respect to the mass
of the granular gas particles, collisions are small perturbations
to ω(t) [see Eq. (3e)]. Then, it makes sense to expand Eq. (3)
in powers of ε [13,14]: by retaining only up to the second
derivative, a Fokker-Planck equation is obtained. The basic
result of this procedure is that the collisional noise in Eq. (2)
is cast into the sum of a white noise η(t) plus a viscous drag
and a systematic force inducing the motor effect:

ηcoll(t) → η(t) − γgω(t) + τmotor, (5)

with 〈η〉 = 0 and 〈η(t)η(t ′)〉 = �gδ(t − t ′). The expression for
γg , τmotor and the amplitude of the noise �g have been obtained,
for a generic asymmetric rotator in a dilute granular gas, in
[14]. For our particular shape, they read as [16]

γg =
√

2

π
n�ε2v0〈(1 + α)g2〉surf, (6)

τmotor = γg

√
3π

32

1

ε

α+ − α−
2 + α+ + α−

, (7)

�g = (1 + α)γg

ε2

R2
I

v2
0, (8)

with α = (α+ + α−)/2. We want to highlight, here, a funda-
mental point concerning the collisional noise ηcoll: as Eq. (5)
explicitly shows, such a noise is in general not white, and, even
more importantly, it is not independent from the instantaneous
velocity ω. This makes sense, as it is the superposition of
the variations of angular velocity due to collisions, which, as
shown by Eq. (3e), depends on ω. For this reason our model,
described alternatively by Eq. (2) or (3), is very different from
a model (apparently similar) recently introduced in [21], as
well as from other previous models [33].

In the FC limit, β−1 � 1, the Coulomb friction term and
the external viscosity may be neglected, i.e.,

γaω + �σ (ω) 
 γgω, (9)

so that Eq. (2) is cast into the much simpler form

ω̇(t) = −γgω(t) + η(t) + τmotor. (10)

From such an equation one may estimate the average velocity
of the Brownian motor to be [16,17]

〈ω〉 = τmotor

γg

. (11)

Another interesting observation follows from Eq. (10). It
concerns the fluctuations f (�θ ) of the spanned angle in a
time interval of length �t , �θ = θ (t + �t) − θ (t) for any t

in the steady state. For the particularly simple linear Langevin
case [Eq. (10)], it can be shown that such fluctuations obey,
for large �t , the following fluctuation relation (FR) [34,35]:

φ(�θ ) = ln

[
f (�θ )

f (−�θ )

]
≈ s�θ, (12)

with

s = γgτmotor

�g

≈ τmotor

〈ω2〉 . (13)

We mention that such a FR is closely related to the FR for
the entropy produced in the time �t , which in this system
is approximated by the work done by the “Brownian motor
force” W ≈ τmotor�θ divided by the “temperature” 〈ω2〉 [36].

In the RC regime, on the other side, one may assume that the
probe’s dynamics is a sequence of independent kicks received
at zero velocity, resulting in the following formula for the
adimensional average angular velocity [16]:

〈�〉 = qβ−1, (14)

q =
√

π

4
[(1 + α+)2 − (1 + α−)2] (15)

×
(

tan−1 √
ξ√

ξ
− 1

1 + ξ

)
, (16)

where ξ = mL2/(4I ) and L is the length of the blade. We note
that for the dimensional angular velocity this means |ω| ∼
v3

0ε. In the RC regime, the behavior of φ(�θ ) is unknown in
principle. A FR for the entropy production certainly exists,
but we are not aware of a simple relation between �θ and the
entropy produced in a given time interval.

IV. MOTOR EFFECT

In Fig. 2, the evolution in time of the angle θ (t) spanned by
the rotator is shown for different choices of the maximum
shaking acceleration � and different orientations of the
asymmetry (“left” L or “right” R). A measure of the “thermal”
velocity of the particles v0 through the fast camera allows
one to determine β−1 which estimates the relative relevance
of collisions with respect to Coulomb friction. A steady
drift, signaling the presence of Brownian motor effect, is
observed both in the friction dominated regime (β−1 < 1)
and in the collisions dominated regime (β−1 > 1). Turning
the rotator upside down, i.e., changing its asymmetry from
L to R or vice versa, inverts the sign of the drift: such an
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FIG. 2. (Color online) Trajectories with different shaking param-
eters and different chiralities. The inset shows the behavior of the
symmetric (i.e., without tape) blade.

observation confirms that the observed drift is caused by
the asymmetry of α, as expected from the given theoretical
arguments. A further confirmation that the observed drift is
due to the surface heterogeneity comes from the study of the
“symmetric” rotator, which has no patches of insulating tape:
on the same time scale only a very weak drift is observed, much
weaker than the one observed with the L- and R-type rotators.
We impute such a weak bias measured with the symmetric
rotator to imperfections of the experimental setup: any kind of
asymmetry (e.g., not sufficiently precise vertical alignments,
not perfectly circular profile of the container, etc.) may induce
secondary motor effects.

In Fig. 3, the rescaled average angular velocity of the rotator
〈�〉 measured in experiments with both L- and R-type rotators,
is shown as a function of β−1. The velocity of the L rotator
is changed of sign for the purpose of a better visualization.
In the same plot, we have also shown the results of numerical
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FIG. 3. (Color online) Average angular velocity, rescaled by ω0,
of the rotator: experiments, theory, and simulations, for several values
of β−1 and both chiralities. In the inset, only simulations are shown in
order to appreciate the comparison with both RC and FC theoretical
limits at very small and very large β−1.

simulations of Eq. (3) with the same parameters as in the
experiment (only for the R-type rotator). Details about the
simulation can be found in the Supplemental Material of
Ref. [18]. As a first observation, we highlight the quite good
agreement between experimental and numerical data.

The thick blue dashed and magenta dotted-dashed lines
represent the theoretical predictions for the RC and FC limits,
Eqs. (14) and (11), respectively. In the inset of the figure,
we have displayed the results of the simulations on a much
wider range of β−1 in order to appreciate the agreement
with the theoretical limits. The simulations teach us that such
theoretical predictions for the RC limit (FC limit) are useful
for quite small (large) values of β−1. The experimentally
accessible values of β−1 appear to be at the crossover between
the two regimes: nevertheless, they span a sufficiently wide
range, so that both the 〈�〉 ∼ β−1 behavior (RC regime) and
the trend toward saturation 〈�〉 → const (FC regime) can
be identified. We consider this to be the best comparison,
up to our present knowledge, between experimental granular
Brownian motors and kinetic theory. We mention that it is
quite difficult, in our experiment, to expand the accessible
β−1 range. Indeed, exploring smaller values of β−1 requires a
considerable increase of the dry friction coefficient �, which is
not under our direct control; moreover, a large � may amplify
nonideal effects where the behavior of the spheres bearings do
not follow the Coulomb law: such effects are already observed
here (at small velocities, small deviations are observed) and
are likely responsible for the not perfect match with simulation
results at small β−1; we also notice that static friction is
not considered here, but it could become relevant at large
� [37]. The opposite limit, i.e., large values of β−1, are even
more difficult to be attained since they would require a larger
collision frequency; however, the maximum acceleration of the
shaker is a hard limit, while increasing the number of grains
does not trivially produce the desired result, for two reasons:
(1) higher densities correspond to a reduction of the average
kinetic energy and (2) molecular chaos is only guaranteed at
low density. Notwithstanding these limits, we believe that the
results of Fig. 3 are already a quite good success of kinetic
theory and make us claim that Eq. (3) is a fair description of
the experimental setup.

V. NONEQUILIBRIUM FLUCTUATIONS

In Fig. 4, we have displayed the empirical large deviation
rate − ln[f (�θ )]/�t of the pdf f (�θ ) for different choices
of the time window �t , in two experiments with a small and a
large value of β−1. In both cases, we have also superimposed
a parabolic fit of the data at the largest available time. We
mention that the characteristic time τc for the decay of
the angular velocity autocorrelation, not shown here, is in
the range 0.03–0.06 s. As frequently observed [38,39], the
empirical large deviation rate tends to become independent
from time only at very large �t � τc. Here, we evaluate
�t ∼ 1 s as a minimum value before considering reaching
the large deviation limit. In both experiments, we may
appreciate deviations from the parabolic fit (which is checked
to be the same for all the data with �t > 1 s), i.e., slightly
non-Gaussian tails, signaling that we are indeed probing the
large deviations of the pdf of �θ . The asymmetry function
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FIG. 4. (Color online) Empirical large deviation function for the
fluctuations of �θ for two experiments in the RC regime (left) and
in the FC regime (right), at several values of �t . A small correction
is operated to each pdf f (�θ ), normalizing it by its maximum value,
before taking the logarithm, for the purpose of a better vertical
alignment. The dashed curve is a parabolic fit of the data at �

t = 5.12 s.

φ(�θ ) = ln[ f (�θ)
f (−�θ) ] for the pdf of �θ is shown, for the same

two experiments, in Fig. 5. At values of �t large enough, but
smaller than those necessary to achieve a stable large deviation
rate, the asymmetry functions already display a linear behavior
∼s�θ with a slope s not dramatically changing with time. The
values of the slope have been measured for all experiments and
many values of �t and are reported in Fig. 6.

While confirming the direct observation done in Fig. 5,
Fig. 6 clearly teaches us that the slope of the φ(�θ ) becomes
stable at times of the order �t ∼ 0.3 s. In the inset of Fig. 6
we have displayed the slope s (from a constant fit of the main
plot including values �t � 0.32 s) versus β−1. The squared
symbols joined by the green dashed line represent the result
of formula (13). Many important comments are in order here:
(1) For large values of β−1, as expected, dry friction becomes
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FIG. 5. (Color online) Asymmetry function φ(�θ ) for the pdfs of
�θ for two experiments in the RC (left) and the FC regimes (right),
at several values of �t .
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FIG. 6. (Color online) Slopes of the asymmetry functions for
several different experiments, as a function of �t . The inset shows
the value of the slope (the values of each experiment are averaged
over the plateau visible in the main plot at large �t) as a function of
β−1. The squares joined by the green dashed line represent the result
of formula (13).

negligible and, at the leading order, the system is described
by Eq. (10), which is confirmed by the good agreement of
the slope with Eq. (13). (2) At moderate and small values of
β−1, the “simplified” Langevin description of Eq. (10) is not
expected to hold, and indeed discrepancy is found between
experimental slopes of φ(�θ ) and those predicted by Eq. (13).
Nevertheless, (3) such experimental values of the slope appear
to depend only weakly upon β−1, so that they do not differ
too much from the values at large β−1. The last observation is
an empirical fact which does not have a simple explanation: at
small values of β−1 the noise felt by the rotator is discontinuous
and the average drift can hardly be described as the effect of
a continuous torque (as it is τmotor in the FC limit). Therefore,
it is not clear at all how to define a work or an injected power
and, consequently, a candidate for the entropy production. A
theory for the fluctuations of �θ in such a situation is, up to
our knowledge, unknown and the discovery of the validity of
the FR with a slope similar to a very different regime is largely
unanticipated. We mention that in the Gaussian approximation,
i.e., assuming a parabolic form for the large deviation rate of
�θ or, equivalently,

f (�θ ) ∼ exp

[
− (�θ − 〈ω〉�t)2

2D�t

]
, (17)

leads to the identification s = 2〈ω〉/D. Again, no theoretical
expectations exist, for the stochastic process modeled in
Eq. (3), for the ratio between the average drift and the angular
“diffusion” coefficient D. The empirical observation that such
a ratio is somehow independent from the relative importance
between collisions and dry friction (controlled by β−1) is
quite an interesting fact. Interestingly, in a previous paper [27]
where similar measurements have been done on the different
setup cited in the Introduction [9], the validity of the FR
for the asymmetry function φ(�θ ) was observed at very
different shaking strengths, with a slope ∼0.2 independent
from the dynamical regime [see Figs. 2(a) and 3(b) of [27]]
and amazingly close to the slope measured in our experiment.
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VI. CONCLUSIONS

In summary, we have repeated the studies that recently
appeared in [9] and [27], concerning the experimental mea-
surement of the average Brownian motor effect and the analysis
of the FR, respectively, for a setup which appears to be simple
enough for a reasonable comparison against kinetic theory.
Such a theory predicts two main regimes, rare collisions
and frequent collisions, with two different formulas for the
average angular velocity of the rotator, formulas (14) and (11),
respectively. The same theory is able, only in the FC, to
predict the validity of the FR φ(�θ ) = s�θ with an analytical
formula for the slope s, which is in good agreement with
the experiments in that regime. The interesting observation,

detailed above, is that such a slope does not depend strongly
upon β−1, giving a similar value even in a regime where
collisions are rare excitations followed by fast dissipation due
to dry friction. Future investigation of this puzzling observation
is in order, in particular through numerical simulations or
further variations of the experimental setup.
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