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Drag force scaling for penetration into granular media
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Impact dynamics is measured for spherical and cylindrical projectiles of many different densities dropped onto
a variety non-cohesive granular media. The results are analyzed in terms of the material-dependent scaling of
the inertial and frictional drag contributions to the total stopping force. The inertial drag force scales similar to
that in fluids, except that it depends on the internal friction coefficient. The frictional drag force scales as the
square-root of the density of granular medium and projectile, and hence cannot be explained by the combination
of granular hydrostatic pressure and Coulomb friction law. The combined results provide an explanation for the
previously observed penetration depth scaling.
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Collision is one of the most fundamental processes in
nature, and can be exploited to uncover the basic physics of
systems ranging from planets to elementary particles. Impact
of projectiles into a pack of grains has been of increasing
interest for highlighting and elucidating the unusual mechan-
ical properties of granular materials. This includes studies of
crater morphology [1–3], penetration depth [4–6], dynamics
[7–18], boundary effects [16,19–23], and packing-fraction
effects [15,23,24]. One finding is that the penetration depth
scales as d ∼ Dp

2/3H 1/3, where Dp is projectile diameter and
H is the total drop distance [4,5]. Granular impact is also
important for military and industrial applications [25,26], and
cone penetration tests are used for in situ soil characterization
[27,28].

In a previous study [13] we measured the impact dynamics
of a 2.54 cm steel ball onto a packing of glass beads. The
stopping force was found to be the sum of an inertial drag,
proportional to the square of the speed v, and a frictional drag,
proportional to depth z. This has since been supported by
several other experiments [14,16–18,21–23,29]. The equation
of motion during impact is thus

ma = −mg + mv2/d1 + k|z|, (1)

where m is projectile mass, g = 980 cm/s2, and d1 and k are
materials parameters expressed with units of a length and a
spring constant, respectively. By using ma = dK/dz and an
integrating factor, as in Ref. [10], this can be solved for speed
versus depth:
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where v0 is the impact speed at z = 0. The final penetration
depth d is then given by the limit of v → 0 as
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where W (x) is the Lambert W function. An additional constant
stopping force f0 [6,18] can be included in these expressions
by replacing g with g − f0/m.

Some open questions are how d1 and k scale with the
materials properties of the projectile and the granular packing,
and how this conspires to give d ∼ D

2/3
p H 1/3. For inertial drag,

exactly as for hydrodynamic drag at high Reynolds number Re,
momentum transfer gives the expectation mv2/d1 ∼ Aρgv

2,
where A is the projected projectile area and ρg is the mass
density of the granular medium. For frictional drag, the
combination of hydrostatic pressure and Coulomb friction
gives k|z| ∼ μgρgA|z| where the internal frictional coefficient
is μ = tan θr and θr is the angle of repose. The scaling of d1

and k would thus be

d1/Dp ∼ ρp/ρg, (4)

kDp/mg ∼ μρg/ρp, (5)

where Dp and ρp correspond to diameter and density of
projectile, respectively. Here, we test the speed versus depth
prediction of Eq. (2), and we compare fitted values of d1 and
k with the above expectations. While neither turns out to be
quite correct, we connect the results to the observed penetration
depth scaling.

Our basic experimental setup is identical with previous
work [13]. The velocity of the projectile v(t) at time t is
computed by particle-image velocimetry applied to fine stripes
on a vertical rod glued to the top of the projectile. The system
has 20 μs temporal resolution and 100 nm spatial resolution,
which is fine enough to compute position and acceleration from
v(t). The primary difference from Ref. [13] is that now we
vary both the projectiles and the granular medium. We begin
with 0.35 mm diameter glass beads, prepared to a reproducible
random packing state by slowly turning off a fluidizing up-flow
of air. Into this we drop a wide variety of projectiles, listed
in Table I, from free-fall heights between 0 to 85 cm. The
first type is spheres. The second type is aluminum cylinders,
which are dropped lengthwise with the axis horizontal and
parallel to the surface of the granular medium. In both cases the
effective density is given by projectile plus rod mass divided
by projectile volume. The length of the cylinders is varied, but
we find that it does not affect the dynamics or final penetration
depths.

Example speed versus position data are plotted in Fig. 1 for
Dp = 2.54 cm diameter projectiles of four different densities,
dropped onto the glass bead packing, with initial impact
speeds ranging from zero to 400 cm/s. For slow impacts,
the speed first increases and then decreases with depth. For
faster impacts, the speed versus depth curves gradually change
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TABLE I. Projectile properties. The steel sphere diameters are
Dp = 5.08, 2.54, 1.27, 0.635, and 0.3175 cm. The aluminum
cylinders diameters are Dp = 1.27 and 0.635 cm; each have lengths
Lp = 5.08, 10.16, and 15.24 cm. The density ρp is projectile plus
rod mass divided by projectile volume.

Projectile ρp (g/cm3) Dp (cm) Lp (cm)

Hollow PP ball 0.51 2.54 –
Wood ball 0.95 2.54 –
Delrin ball 1.65 2.54 –
PTFE ball 2.46 2.54 –
Steel ball 7.96–159 0.3175–5.08 –
Tungsten carbide ball 15.3 2.54 –
Aluminum cylinder 2.89–4.26 0.635–1.27 5.08–15.24

from concave down to concave up. Generally, there is a rapid
decrease of speed to zero at the final penetration depth. We
obtain good fits to these complex trajectories by adjusting k

and d1, as shown in Fig. 1. The displayed level of agreement
is typical for all projectiles, including the cylinders.

Unfortunately a good simultaneous fit for a given projectile
to a single pair of k and d1 values at all impact speeds can
be obtained only for denser projectiles. For the less dense
projectiles, the fitting parameters become constant only at high
impact speeds. Then the same values for k and d1 are obtained
as from the analysis method of Ref. [13]. This holds roughly
for d > Dp/2 and ρp > 2ρg as shown in Fig. 2. We speculate
that for low density projectiles and small impact speeds,
the penetration can be shallow enough that the detailed shape
of projectile must be taken into account [30]. In this regime
surface flows and surface roughness could plays a role, though
identical penetration behavior was found earlier for slick and
tacky projectiles of the same size and density [4]. We note that
including a constant force f0 as a third free parameter does
not noticeably change the fits; the largest fit value is f0/m =
2.4 cm/s2, which is small compared to g. We note, too, that f0

cannot be chosen such that k and d1 become constant. For the
rest of the paper, we restrict attention to conditions where the
deduced k and d1 values do not depend on impact speed and
hence can be considered as materials parameters.

We now compare the fitting parameters with Eqs. (4)
and (5). The expectation for d1 is based on momentum transfer,
so that the inertial drag force is mv2/d1 ∼ Aρgv

2 just like an
object moving in a fluid at high Reynolds number. For spheres
and cylinders, the characteristic length is thus d1 ∼ m/Aρg

and can be written as d1 ∼ D′
pρp/ρg if we take D′

p to be
1 times diameter for spheres and 3π/8 times diameter for
cylinders (the cylinder length drops out of the ratio m/A). For
a unified analysis, we therefore divide the fitted value of d1

by D′
p and plot versus ρp in Fig. 3(a). We find that all data,

including the cylinder data, collapse nicely onto a power-law
with the expected slope of one, i.e., d/D′

p ∼ ρ1
p holds as per

expectation.
For the fitting parameter k that sets the quasistatic friction

force, k|z|, we now make a similar comparison with expec-
tation by plotting kD′

p/mg versus ρp in Fig. 3(b). All the
data, including the cylinder, again collapse nicely to a power
law in projectile density. However, the expected power-law
kDp/mg ∼ 1/ρp is clearly wrong. The data are instead
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FIG. 1. (Color online) Example velocity versus depth data for
Dp = 2.54 cm diameter spheres. The impact begins at z = 0, and
proceeds downward in the −z direction. The black dashed curves are
a simultaneous fit to Eq. (2), where a single pair of k and d1 values is
found for different initial impact speeds. The grey dotted curves are
also fits to Eq. (2), but where k and d1 are adjusted for each impact
speed and hence do not represent well-defined materials parameters.

consistent with kDp/mg ∼ 1/
√

ρp. Therefore, the nature of
the quasistatic frictional drag is different from the simple
combination of Coulomb friction and hydrostatic pressure.

To investigate this further, we perform a second series
of experiments where Dp = 2.54 cm diameter steel spheres
are dropped into rice, beach sand, and sugar (with materials
properties listed in Table II). As in Fig. 1, speed vs position data
for a range of impact speeds are fit to Eq. (2) to obtain values
of d1 and k. Based on Fig. 3, and assuming that the x axis of
this figure is correctly made dimensionless by dividing out the
bulk density ρg of the granular medium, the observed scalings
so far are d1/D

′
p ∼ (ρp/ρg) and kD′

p/mg ∼ (ρp/ρg)−1/2.
Therefore, we divide out this density dependence and plot
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FIG. 2. (Color online) Scatter plot of penetration depth versus
projectile density, scaled, respectively, by projectile diameter and
grain density. An open circle is plotted for conditions such that the
k and d1 fitting parameters are constant; a cross is plotted otherwise.
Blue is for glass beads; green is for rice; pink is for beach sand; yellow
is for sugar.

it in Fig. 4 versus the only remaining material property of
the grains: the internal friction coefficient μ = tan θr , where
θr is the draining angle of repose. In this figure the data for
glass beads, from Fig. 3, all lie at μ = 0.45. The range of μ

values is less than a factor of two, but to within uncertainty the
scaled d1 and k parameters collapse to power-laws in μ. For the
quasistatic frictional drag coefficient we find k ∼ μ, which is
expected for Coulomb friction. For the speed-squared inertial
drag coefficient, we find d1 ∼ 1/μ. Therefore the inertial drag
force is proportional to μ, which could correspond to an
added-mass effect whereby the volume of grains boosted to
the projectile speed grows in proportion to μ. This is unlike
the case of simple fluids, where the fluid flow and the inertial
drag force at high Re depend only on the density of the fluid.

As an alternative analysis for the μ dependence of d1,
one could imagine that an inertial drag force ∼ρgv

2A loads
the contacts and gives an additional friction force of μ

times this loading. Then the total velocity-squared force
is mv2/d1 ∼ (1 + αμ)ρgv

2A, which gives d1 ∝ 1/(1 + αμ).
This reasonably fits the data, as shown in Fig. 4 a with α =
2.2 ± 0.6. The residuals are smaller for the power-law form.

Combining the power-laws in Figs. 3 and 4, and the
actual numerical prefactors, the inertial and frictional drag
coefficients are altogether found by measurements for a range
of projectiles and grains to be consistent with

d1/D
′
p = (0.25/μ)(ρp/ρg), (6)

kD′
p/mg = 12μ(ρg/ρp)1/2. (7)

TABLE II. Granular media properties: ρg is bulk density; θr is
drainage angle of repose; size is the range of grain diameters, except
for rice where it is the length of short and long axes.

Granular material ρg (g/cm3) θr Grain size (mm)

Glass beads 1.45 24◦ 0.25–0.35
Rice 0.77 35◦ 2×8
Beach sand 1.51 36◦ 0.2–0.8
Sugar 0.89 40◦ 0.4–0.7
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FIG. 3. (Color online) (a) Dimensionless inertial drag length scale
d1/D

′
p , and (b) dimensionless quasistatic drag coefficient kD′

p/mg,
versus projectile density, for impact into glass beads. Here D′

p is the
effective projectile diameter; m is its total mass, including rod; ρp

is m divided by projectile volume; g = 980 cm/s2. Open symbols
are for spheres made of hollow PP (�), wood (�), PTFE (�), delrin
(	), steel (©), and tungsten carbide (�); closed diamonds are for
aluminum cylinders. Symbol sizes increase with D′

p , with values
given in Table I. The solid gray lines denote power-laws as labeled.
The dashed line in (b) is the expected scaling, kD′

p/mg ∼ ρ−1
p .

The two main differences, from the simple expectation of
Eqs. (4) and (5), are the factor of 1/μ in d1 and the density
ratio exponent of 1/2 rather than 1 in k. These results may be
inspected differently by rewriting the equation of motion as

ma = −mg + 2.7μρgv
2A + 8.0μ(ρpρg)1/2g|z|A. (8)

Note that the numerical prefactor for the depth-dependent
frictional drag is significantly larger than unity, and that

√
ρpρg

is larger than ρg for dense projectiles. For both reasons,
frictional drag exceeds the value expected from hydrostatic
pressure and Coulomb friction. One might have expected the
opposite effect, either by a decrease in contact area between
projectile and grains due to ejection of grains or by fluidization
of the grains from the motion of the projectile. Our results
instead appear to indicate that frictional contacts are loaded
by the motion of the projectile, so that the medium is stronger
than set by gravity alone. Such behavior is not seen for the
fast horizontal rotation of bars [29], where the depth- and
speed-dependent forces are easily disentangled, and warrants
further attention.

As a final test we now compare data for the final penetration
depth d with Eq. (8). Prior observations [4,5] are consistent
with the empirical form

d = 0.14μ−1(ρp/ρg)1/2D′2/3
p H 1/3. (9)
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FIG. 4. (Color online) (a) (d1/D
′
p)(ρg/ρp) and (b) (kD′

p/mg)
(ρp/ρg)1/2, versus μ = tan θr , where θr is the repose angle of the
granular medium. The symbols at μ = 0.45 are for glass beads, with
the same symbol codes as in Fig. 3. The colored circles at increasing
μ are for rice (green), beach sand (pink), and sugar (yellow). The
gray lines indicate power-law behavior. The dashed curve in (a) is a
fit to d1 ∝ 1/(1 + αμ), giving α = 2.2 ± 0.6.

Thus in Fig. 5 we plot penetration depth data for all trials
versus the quantity (ρp/ρg)1/2D

′2/3
p H 1/3 from the right-hand

side of this expression. This collapses our new data to within
the experimental uncertainty, including that for the cylinder,
to the line y = 0.14x and hence shows agreement with
prior work. However Eqs. (3) and (8) do not predict perfect
power-law behavior. To compare with data, we first calculate
the geometric mean of each of the five variables H , Dp, ρp,
ρg , and μ over the range of experimental conditions employed
here. The predicted penetration depth for these mean values is
shown by a single red open circle in Fig. 5. Then we vary
each of variables, one at a time, keeping all others fixed
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FIG. 5. (Color online) Final penetration depth scaling plot. All
trials data are shown and they reasonably agree with the empirical
scaling d = 0.14μ−1(ρp/ρg)1/2D′2/3

p H 1/3 (dotted line) [4,5]. Colored
curves show the force-law predictions. They are also close to data and
the empirical scaling.

at their mean value. The resulting five predicted penetration
depth curves are included in Fig. 5. They are not identical,
or even perfect power-laws, but are all close together and in
fair agreement with the data. Thus the empirical penetration
depth data scaling is satisfactorily understood in terms of the
nature of the stopping force exerted by the medium onto the
projectile.

In conclusion, we developed an exact solution of Eq. (1)
for the dynamics of penetration, and we conducted a wide
range of granular impact experiments to elucidate the materials
dependence of the inertial and frictional contributions to the
stopping force. The final equation of motion, Eq. (8), is roughly
consistent with the empirical scaling of penetration depth
versus drop height and materials parameters. However it is
not consistent with the apparently simplistic expectation of
Eqs. (4) and (5). So there is unanticipated physics, yet to be
understood, which could possibly arise from motion-loading
of frictional contacts or from granular flow fields that depend
on the internal friction coefficient.
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